Skip to main content
Erschienen in: Drugs 2/2004

01.01.2004 | Review Article

Efflux-Mediated Drug Resistance in Bacteria

verfasst von: Xian-Zhi Li, Dr Hiroshi Nikaido

Erschienen in: Drugs | Ausgabe 2/2004

Einloggen, um Zugang zu erhalten

Abstract

Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, ‘advanced’ agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and β-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Literatur
1.
Zurück zum Zitat Levy SB. Antibiotic resistance: an ecological imbalance. Ciba Found Symp 1997; 207: 1–9PubMed Levy SB. Antibiotic resistance: an ecological imbalance. Ciba Found Symp 1997; 207: 1–9PubMed
2.
Zurück zum Zitat Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med 2002 Aug; 252(2): 91–106PubMedCrossRef Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med 2002 Aug; 252(2): 91–106PubMedCrossRef
3.
Zurück zum Zitat Ball PR, Chopra I, Eccles SJ. Accumulation of tetracyclines by Escherichia coli K-12. Biochem Biophys Res Commun 1977 Aug 22; 77(4): 1500–7PubMedCrossRef Ball PR, Chopra I, Eccles SJ. Accumulation of tetracyclines by Escherichia coli K-12. Biochem Biophys Res Commun 1977 Aug 22; 77(4): 1500–7PubMedCrossRef
4.
Zurück zum Zitat Ball PR, Shales SW, Chopra I. Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 1980 Mar 13; 93(1): 74–81PubMedCrossRef Ball PR, Shales SW, Chopra I. Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 1980 Mar 13; 93(1): 74–81PubMedCrossRef
5.
Zurück zum Zitat Levy SB, McMurry L. Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature 1978 Nov 2; 276(5683): 90–2PubMedCrossRef Levy SB, McMurry L. Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature 1978 Nov 2; 276(5683): 90–2PubMedCrossRef
6.
Zurück zum Zitat McMurry L, Petrucci Jr RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 1980 Jul; 77(7): 3974–7PubMedCrossRef McMurry L, Petrucci Jr RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 1980 Jul; 77(7): 3974–7PubMedCrossRef
7.
Zurück zum Zitat Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976 Nov 11; 455(1): 152–62PubMedCrossRef Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976 Nov 11; 455(1): 152–62PubMedCrossRef
9.
Zurück zum Zitat Lomovskaya O, Warren MS, Lee V. Efflux mechanisms: molecular and clinical aspects. In: Hughes D, Andersson DI, editors. Antibiotic development and resistance. London: Taylor and Francis 2001: 65–90 Lomovskaya O, Warren MS, Lee V. Efflux mechanisms: molecular and clinical aspects. In: Hughes D, Andersson DI, editors. Antibiotic development and resistance. London: Taylor and Francis 2001: 65–90
10.
Zurück zum Zitat Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol 2002 Jun; 3(2): 77–98PubMedCrossRef Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol 2002 Jun; 3(2): 77–98PubMedCrossRef
11.
Zurück zum Zitat Paulsen IT, Lewis K. Microbial multidrug efflux. Wynmondham: Horizon Press, 2002 Paulsen IT, Lewis K. Microbial multidrug efflux. Wynmondham: Horizon Press, 2002
12.
Zurück zum Zitat Fath MJ, Kolter R. ABC transporters: bacterial exporters. Microbiol Rev 1993 Dec; 57(4): 995–1017PubMed Fath MJ, Kolter R. ABC transporters: bacterial exporters. Microbiol Rev 1993 Dec; 57(4): 995–1017PubMed
13.
Zurück zum Zitat Higgins CF. ABC transporters: physiology, structure and mechanism: an overview. Res Microbiol 2001 Apr–May; 152(3–4): 205–10PubMedCrossRef Higgins CF. ABC transporters: physiology, structure and mechanism: an overview. Res Microbiol 2001 Apr–May; 152(3–4): 205–10PubMedCrossRef
14.
Zurück zum Zitat Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998 Mar; 62(1): 1–34PubMed Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998 Mar; 62(1): 1–34PubMed
15.
Zurück zum Zitat Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 1999 Jan; 31(1): 394–5PubMedCrossRef Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 1999 Jan; 31(1): 394–5PubMedCrossRef
16.
Zurück zum Zitat Paulsen IT, Skurray RA, Tam R, et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 1996 Mar; 19(6): 1167–75PubMedCrossRef Paulsen IT, Skurray RA, Tam R, et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 1996 Mar; 19(6): 1167–75PubMedCrossRef
17.
Zurück zum Zitat Saier Jr MH, Tam R, Reizer A, et al. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 1994 Mar; 11(5): 841–7PubMedCrossRef Saier Jr MH, Tam R, Reizer A, et al. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 1994 Mar; 11(5): 841–7PubMedCrossRef
18.
Zurück zum Zitat Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996 Oct; 178(20): 5853–9PubMed Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996 Oct; 178(20): 5853–9PubMed
19.
Zurück zum Zitat Paulsen IT, Park JH, Choi PS, et al. A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 1997 Nov 1; 156(1): 1–8PubMedCrossRef Paulsen IT, Park JH, Choi PS, et al. A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 1997 Nov 1; 156(1): 1–8PubMedCrossRef
20.
Zurück zum Zitat Johnson JM, Church GM. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 1999 Apr 2; 287(3): 695–715PubMedCrossRef Johnson JM, Church GM. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 1999 Apr 2; 287(3): 695–715PubMedCrossRef
21.
Zurück zum Zitat Dinh T, Paulsen IT, Saier Jr MH. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 1994 Jul; 176(13): 3825–31PubMed Dinh T, Paulsen IT, Saier Jr MH. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 1994 Jul; 176(13): 3825–31PubMed
22.
Zurück zum Zitat Saier Jr MH, Paulsen IT, Sliwinski MK, et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 1998 Mar; 12(3): 265–74PubMed Saier Jr MH, Paulsen IT, Sliwinski MK, et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 1998 Mar; 12(3): 265–74PubMed
23.
Zurück zum Zitat Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 1992; 8: 67–113PubMedCrossRef Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 1992; 8: 67–113PubMedCrossRef
24.
Zurück zum Zitat Bolhuis H, van Veen HW, Brands JR, et al. Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP. J Biol Chem 1996 Sep 27; 271(39): 24123–8PubMedCrossRef Bolhuis H, van Veen HW, Brands JR, et al. Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP. J Biol Chem 1996 Sep 27; 271(39): 24123–8PubMedCrossRef
25.
Zurück zum Zitat Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001 Oct; 183(19): 5639–44PubMedCrossRef Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001 Oct; 183(19): 5639–44PubMedCrossRef
26.
Zurück zum Zitat Marger MD, Saier Jr MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 1993 Jan; 18(1): 13–20PubMedCrossRef Marger MD, Saier Jr MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 1993 Jan; 18(1): 13–20PubMedCrossRef
27.
Zurück zum Zitat Saier Jr MH, Beatty JT, Goffeau A, et al. The major facilitator superfamily. J Mol Microbiol Biotechnol 1999 Nov; 1(2): 257–79PubMed Saier Jr MH, Beatty JT, Goffeau A, et al. The major facilitator superfamily. J Mol Microbiol Biotechnol 1999 Nov; 1(2): 257–79PubMed
28.
Zurück zum Zitat Yoshida H, Bogaki M, Nakamura S, et al. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990 Dec; 172(12): 6942–9PubMed Yoshida H, Bogaki M, Nakamura S, et al. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990 Dec; 172(12): 6942–9PubMed
29.
Zurück zum Zitat Lomovskaya O, Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 1992 Oct 1; 89(19): 8938–42PubMedCrossRef Lomovskaya O, Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 1992 Oct 1; 89(19): 8938–42PubMedCrossRef
30.
Zurück zum Zitat Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 1998 Jul; 42(7): 1778–82PubMed Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 1998 Jul; 42(7): 1778–82PubMed
31.
Zurück zum Zitat Chung YJ, Saier Jr MH. SMR-type multidrug resistance pumps. Curr Opin Drug Discov Devel 2001 Mar; 4(2): 237–45PubMed Chung YJ, Saier Jr MH. SMR-type multidrug resistance pumps. Curr Opin Drug Discov Devel 2001 Mar; 4(2): 237–45PubMed
32.
Zurück zum Zitat Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996 Dec; 60(4): 575–608PubMed Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996 Dec; 60(4): 575–608PubMed
33.
Zurück zum Zitat Grinius L, Dreguniene G, Goldberg EB, et al. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 1992 Mar; 27(2): 119–29PubMedCrossRef Grinius L, Dreguniene G, Goldberg EB, et al. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 1992 Mar; 27(2): 119–29PubMedCrossRef
34.
Zurück zum Zitat Schuldiner S, Lebendiker M, Yerushalmi H. EmrE, the smallest ion-coupled transporter, provides a unique paradigm for structure-function studies. J Exp Biol 1997 Jan; 200 (Pt 2): 335–41PubMed Schuldiner S, Lebendiker M, Yerushalmi H. EmrE, the smallest ion-coupled transporter, provides a unique paradigm for structure-function studies. J Exp Biol 1997 Jan; 200 (Pt 2): 335–41PubMed
35.
Zurück zum Zitat Tseng TT, Gratwick KS, Kollman J, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999 Aug; 1(1): 107–25PubMed Tseng TT, Gratwick KS, Kollman J, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999 Aug; 1(1): 107–25PubMed
36.
Zurück zum Zitat Grosse C, Grass G, Anton A, et al. Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J Bacteriol 1999 Apr; 181(8): 2385–93PubMed Grosse C, Grass G, Anton A, et al. Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J Bacteriol 1999 Apr; 181(8): 2385–93PubMed
37.
Zurück zum Zitat Droge M, Puhler A, Selbitschka W. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 2000 Apr; 263(3): 471–82PubMedCrossRef Droge M, Puhler A, Selbitschka W. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 2000 Apr; 263(3): 471–82PubMedCrossRef
38.
Zurück zum Zitat Nikaido H. Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 1998 Aug; 27 Suppl. 1: S32–41PubMedCrossRef Nikaido H. Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 1998 Aug; 27 Suppl. 1: S32–41PubMedCrossRef
39.
Zurück zum Zitat Ma D, Cook DN, Alberti M, et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 1993 Oct; 175(19): 6299–313PubMed Ma D, Cook DN, Alberti M, et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 1993 Oct; 175(19): 6299–313PubMed
40.
Zurück zum Zitat Fralick JA. Evidence that tolC is required for functioning of the mar/acrAB efflux pump of Escherichia coli. J Bacteriol 1996 Oct; 178(19): 5803–5PubMed Fralick JA. Evidence that tolC is required for functioning of the mar/acrAB efflux pump of Escherichia coli. J Bacteriol 1996 Oct; 178(19): 5803–5PubMed
41.
Zurück zum Zitat Poole K, Krebes K, McNally C, et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993 Nov; 175(22): 7363–72PubMed Poole K, Krebes K, McNally C, et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993 Nov; 175(22): 7363–72PubMed
42.
Zurück zum Zitat Li XZ, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995 Sep; 39(9): 1948–53PubMedCrossRef Li XZ, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995 Sep; 39(9): 1948–53PubMedCrossRef
43.
Zurück zum Zitat Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 1989 Nov; 33(11): 1831–6PubMedCrossRef Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 1989 Nov; 33(11): 1831–6PubMedCrossRef
44.
Zurück zum Zitat Li XZ, Livermore DM, Nikaido H. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994 Aug; 38(8): 1732–41PubMedCrossRef Li XZ, Livermore DM, Nikaido H. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994 Aug; 38(8): 1732–41PubMedCrossRef
45.
Zurück zum Zitat Li XZ, Ma D, Livermore DM, et al. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 1994 Aug; 38(8): 1742–52PubMedCrossRef Li XZ, Ma D, Livermore DM, et al. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 1994 Aug; 38(8): 1742–52PubMedCrossRef
46.
Zurück zum Zitat Nikaido H. The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria: can we improve drug access? Drug Resist Updat 1998; 1: 93–8PubMedCrossRef Nikaido H. The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria: can we improve drug access? Drug Resist Updat 1998; 1: 93–8PubMedCrossRef
47.
Zurück zum Zitat Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001 Oct; 183(20): 5803–12PubMedCrossRef Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001 Oct; 183(20): 5803–12PubMedCrossRef
48.
Zurück zum Zitat Nakamura H. Gene-controlled resistance to acriflavine and other basic dyes in Escherichia coli. J Bacteriol 1965 Jul; 90(1): 8–14PubMed Nakamura H. Gene-controlled resistance to acriflavine and other basic dyes in Escherichia coli. J Bacteriol 1965 Jul; 90(1): 8–14PubMed
49.
Zurück zum Zitat Zgurskaya HI, Nikaido H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 1999 Jun 22; 96(13): 7190–5PubMedCrossRef Zgurskaya HI, Nikaido H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 1999 Jun 22; 96(13): 7190–5PubMedCrossRef
50.
Zurück zum Zitat Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM 4454. Antimicrob Agents Chemother 2001 Dec; 45(12): 3375–80PubMedCrossRef Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM 4454. Antimicrob Agents Chemother 2001 Dec; 45(12): 3375–80PubMedCrossRef
51.
Zurück zum Zitat Palumbo JD, Kado CI, Phillips DA. An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 1998 Jun; 180(12): 3107–13PubMed Palumbo JD, Kado CI, Phillips DA. An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 1998 Jun; 180(12): 3107–13PubMed
52.
Zurück zum Zitat Peng WT, Nester EW. Characterization of a putative RND-type efflux system in Agrobacterium tumefaciens. Gene 2001 May 30; 270(1–2): 245–52PubMedCrossRef Peng WT, Nester EW. Characterization of a putative RND-type efflux system in Agrobacterium tumefaciens. Gene 2001 May 30; 270(1–2): 245–52PubMedCrossRef
53.
Zurück zum Zitat Krummenacher P, Narberhaus F. Two genes encoding a putative multidrug efflux pump of the RND/MFP family are cotranscribed with an rpoH gene in Bradyrhizobium japonicum. Gene 2000 Jan 11; 241(2): 247–54PubMedCrossRef Krummenacher P, Narberhaus F. Two genes encoding a putative multidrug efflux pump of the RND/MFP family are cotranscribed with an rpoH gene in Bradyrhizobium japonicum. Gene 2000 Jan 11; 241(2): 247–54PubMedCrossRef
54.
Zurück zum Zitat Burns JL, Wadsworth CD, Barry JJ, et al. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob Agents Chemother 1996 Feb; 40(2): 307–13PubMed Burns JL, Wadsworth CD, Barry JJ, et al. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob Agents Chemother 1996 Feb; 40(2): 307–13PubMed
55.
Zurück zum Zitat Moore RA, DeShazer D, Reckseidler S, et al. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999 Mar; 43(3): 465–70PubMed Moore RA, DeShazer D, Reckseidler S, et al. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999 Mar; 43(3): 465–70PubMed
56.
Zurück zum Zitat Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 2002 Jul; 46(7): 2124–31PubMedCrossRef Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 2002 Jul; 46(7): 2124–31PubMedCrossRef
57.
Zurück zum Zitat Pradel E, Pages JM. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 2002 Aug; 46(8): 2640–3PubMedCrossRef Pradel E, Pages JM. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 2002 Aug; 46(8): 2640–3PubMedCrossRef
58.
Zurück zum Zitat Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000 Mar; 182(6): 1754–6PubMedCrossRef Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000 Mar; 182(6): 1754–6PubMedCrossRef
59.
Zurück zum Zitat Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002 Dec; 184(23): 6490–8PubMedCrossRef Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002 Dec; 184(23): 6490–8PubMedCrossRef
60.
Zurück zum Zitat Ma D, Cook DN, Hearst JE, et al. Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 1994 Dec; 2(12): 489–93PubMedCrossRef Ma D, Cook DN, Hearst JE, et al. Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 1994 Dec; 2(12): 489–93PubMedCrossRef
61.
Zurück zum Zitat Baranova N, Nikaido H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002 Aug; 184(15): 4168–76PubMedCrossRef Baranova N, Nikaido H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002 Aug; 184(15): 4168–76PubMedCrossRef
62.
Zurück zum Zitat Nagakubo S, Nishino K, Hirata T, et al. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002 Aug; 184(15): 4161–7PubMedCrossRef Nagakubo S, Nishino K, Hirata T, et al. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002 Aug; 184(15): 4161–7PubMedCrossRef
63.
Zurück zum Zitat Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 2002 Apr; 184(8): 2319–23PubMedCrossRef Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 2002 Apr; 184(8): 2319–23PubMedCrossRef
64.
Zurück zum Zitat Sanchez L, Pan W, Vinas M, et al. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 1997 Nov; 179(21): 6855–7PubMed Sanchez L, Pan W, Vinas M, et al. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 1997 Nov; 179(21): 6855–7PubMed
65.
Zurück zum Zitat Hagman KE, Pan W, Spratt BG, et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 1995 Mar; 141 (Pt 3): 611–22PubMedCrossRef Hagman KE, Pan W, Spratt BG, et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 1995 Mar; 141 (Pt 3): 611–22PubMedCrossRef
66.
Zurück zum Zitat Lucas CE, Balthazar JT, Hagman KE, et al. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 1997 Jul; 179(13): 4123–8PubMed Lucas CE, Balthazar JT, Hagman KE, et al. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 1997 Jul; 179(13): 4123–8PubMed
67.
Zurück zum Zitat Lee EH, Shafer WM. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 1999 Aug; 33(4): 839–45PubMedCrossRef Lee EH, Shafer WM. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 1999 Aug; 33(4): 839–45PubMedCrossRef
68.
Zurück zum Zitat Ikeda T, Yoshimura F. A resistance-nodulation-cell division family xenobiotic efflux pump in an obligate anaerobe, Porphyromonas gingivalis. Antimicrob Agents Chemother 2002 Oct; 46(10): 3257–60PubMedCrossRef Ikeda T, Yoshimura F. A resistance-nodulation-cell division family xenobiotic efflux pump in an obligate anaerobe, Porphyromonas gingivalis. Antimicrob Agents Chemother 2002 Oct; 46(10): 3257–60PubMedCrossRef
69.
Zurück zum Zitat Poole K, Tetro K, Zhao Q, et al. Expression of the multidrug resistance operon MexA-MexB-OprM in Pseudomonas aeruginosa: MexR encodes a regulator of operon expression. Antimicrob Agents Chemother 1996 Sep; 40(9): 2021–8PubMed Poole K, Tetro K, Zhao Q, et al. Expression of the multidrug resistance operon MexA-MexB-OprM in Pseudomonas aeruginosa: MexR encodes a regulator of operon expression. Antimicrob Agents Chemother 1996 Sep; 40(9): 2021–8PubMed
70.
Zurück zum Zitat Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the MexC-MexD-OprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 1996 Aug; 21(4): 713–24PubMedCrossRef Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the MexC-MexD-OprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 1996 Aug; 21(4): 713–24PubMedCrossRef
71.
Zurück zum Zitat Kohler T, Michea-Hamzehpour M, Henze U, et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 1997 Jan; 23(2): 345–54PubMedCrossRef Kohler T, Michea-Hamzehpour M, Henze U, et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 1997 Jan; 23(2): 345–54PubMedCrossRef
72.
Zurück zum Zitat Aires JR, Kohler T, Nikaido H, et al. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 1999 Nov; 43(11): 2624–8PubMed Aires JR, Kohler T, Nikaido H, et al. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 1999 Nov; 43(11): 2624–8PubMed
73.
Zurück zum Zitat Mine T, Morita Y, Kataoka A, et al. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999 Feb; 43(2): 415–7PubMed Mine T, Morita Y, Kataoka A, et al. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999 Feb; 43(2): 415–7PubMed
74.
Zurück zum Zitat Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 1999 Dec; 43(12): 2975–83PubMed Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 1999 Dec; 43(12): 2975–83PubMed
75.
Zurück zum Zitat Aendekerk S, Ghysels B, Cornelis P, et al. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 2002 Aug; 148 (Pt 8): 2371–81PubMed Aendekerk S, Ghysels B, Cornelis P, et al. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 2002 Aug; 148 (Pt 8): 2371–81PubMed
76.
Zurück zum Zitat Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 2002 Sep; 184(18): 5036–44PubMedCrossRef Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 2002 Sep; 184(18): 5036–44PubMedCrossRef
77.
Zurück zum Zitat Kieboom J, Dennis JJ, de Bont JA, et al. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 1998 Jan 2; 273(1): 85–91PubMedCrossRef Kieboom J, Dennis JJ, de Bont JA, et al. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 1998 Jan 2; 273(1): 85–91PubMedCrossRef
78.
Zurück zum Zitat Ramos JL, Duque E, Godoy P, et al. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 1998 Jul; 180(13): 3323–9PubMed Ramos JL, Duque E, Godoy P, et al. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 1998 Jul; 180(13): 3323–9PubMed
79.
Zurück zum Zitat Fukumori F, Hirayama H, Takami H, et al. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Extremophiles 1998 Nov; 2(4): 395–400PubMedCrossRef Fukumori F, Hirayama H, Takami H, et al. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Extremophiles 1998 Nov; 2(4): 395–400PubMedCrossRef
80.
Zurück zum Zitat Mosqueda G, Ramos JL. A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 2000 Feb; 182(4): 937–43PubMedCrossRef Mosqueda G, Ramos JL. A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 2000 Feb; 182(4): 937–43PubMedCrossRef
81.
Zurück zum Zitat Rojas A, Duque E, Mosqueda G, et al. Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 2001 Jul; 183(13): 3967–73PubMedCrossRef Rojas A, Duque E, Mosqueda G, et al. Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 2001 Jul; 183(13): 3967–73PubMedCrossRef
82.
Zurück zum Zitat Li XZ, Zhang L, Poole K. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2002 Feb; 46(2): 333–43PubMedCrossRef Li XZ, Zhang L, Poole K. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2002 Feb; 46(2): 333–43PubMedCrossRef
83.
Zurück zum Zitat Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001 Dec; 45(12): 3497–503PubMedCrossRef Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001 Dec; 45(12): 3497–503PubMedCrossRef
84.
Zurück zum Zitat Alonso A, Martinez JL. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2000 Nov; 44(11): 3079–86PubMedCrossRef Alonso A, Martinez JL. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2000 Nov; 44(11): 3079–86PubMedCrossRef
85.
Zurück zum Zitat Kumar A, Worobec EA. Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump. J Antimicrob Chemother 2002 Oct; 50(4): 593–6PubMedCrossRef Kumar A, Worobec EA. Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump. J Antimicrob Chemother 2002 Oct; 50(4): 593–6PubMedCrossRef
86.
Zurück zum Zitat Nikaido H, Basina M, Nguyen V, et al. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol 1998 Sep; 180(17): 4686–92PubMed Nikaido H, Basina M, Nguyen V, et al. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol 1998 Sep; 180(17): 4686–92PubMed
87.
Zurück zum Zitat Lacroix FJ, Cloeckaert A, Grepinet O, et al. Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 1996 Jan 15; 135(2–3): 161–7PubMedCrossRef Lacroix FJ, Cloeckaert A, Grepinet O, et al. Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 1996 Jan 15; 135(2–3): 161–7PubMedCrossRef
88.
Zurück zum Zitat Sulavik MC, Houseweart C, Cramer C, et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 2001 Apr; 45(4): 1126–36PubMedCrossRef Sulavik MC, Houseweart C, Cramer C, et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 2001 Apr; 45(4): 1126–36PubMedCrossRef
89.
Zurück zum Zitat Furukawa H, Tsay JT, Jackowski S, et al. resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol 1993 Jun; 175(12): 3723–9PubMed Furukawa H, Tsay JT, Jackowski S, et al. resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol 1993 Jun; 175(12): 3723–9PubMed
90.
Zurück zum Zitat Bohn C, Bouloc P. The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-β-D-thiogalactopyranoside exclusion and spectinomycin sensitivity. J Bacteriol 1998 Nov; 180(22): 6072–5PubMed Bohn C, Bouloc P. The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-β-D-thiogalactopyranoside exclusion and spectinomycin sensitivity. J Bacteriol 1998 Nov; 180(22): 6072–5PubMed
91.
Zurück zum Zitat Nilsen IW, Bakke I, Vader A, et al. Isolation of cmr, a novel Escherichia coli chloramphenicol resistance gene encoding a putative efflux pump. J Bacteriol 1996 Jun; 178(11): 3188–93PubMed Nilsen IW, Bakke I, Vader A, et al. Isolation of cmr, a novel Escherichia coli chloramphenicol resistance gene encoding a putative efflux pump. J Bacteriol 1996 Jun; 178(11): 3188–93PubMed
92.
Zurück zum Zitat Edgar R, Bibi E. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J 1999 Feb 15; 18(4): 822–32PubMedCrossRef Edgar R, Bibi E. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J 1999 Feb 15; 18(4): 822–32PubMedCrossRef
93.
Zurück zum Zitat Mine T, Morita Y, Kataoka A, et al. Evidence for chloramphenicol/H+ antiport in Cmr (MdfA) system of Escherichia coli and properties of the antiporter. J Biochem (Tokyo) 1998 Jul; 124(1): 187–93CrossRef Mine T, Morita Y, Kataoka A, et al. Evidence for chloramphenicol/H+ antiport in Cmr (MdfA) system of Escherichia coli and properties of the antiporter. J Biochem (Tokyo) 1998 Jul; 124(1): 187–93CrossRef
94.
Zurück zum Zitat Dorman CJ, Foster TJ, Shaw WV. Nucleotide sequence of the R26 chloramphenicol resistance determinant and identification of its gene product. Gene 1986; 41(2–3): 349–53PubMedCrossRef Dorman CJ, Foster TJ, Shaw WV. Nucleotide sequence of the R26 chloramphenicol resistance determinant and identification of its gene product. Gene 1986; 41(2–3): 349–53PubMedCrossRef
95.
Zurück zum Zitat Ploy MC, Courvalin P, Lambert T. Characterization of In40 of Enterobacter aerogenes BM2688, a class 1 integron with two new gene cassettes, cmlA2 and qacF. Antimicrob Agents Chemother 1998 Oct; 42(10): 2557–63PubMed Ploy MC, Courvalin P, Lambert T. Characterization of In40 of Enterobacter aerogenes BM2688, a class 1 integron with two new gene cassettes, cmlA2 and qacF. Antimicrob Agents Chemother 1998 Oct; 42(10): 2557–63PubMed
96.
Zurück zum Zitat Toro CS, Lobos SR, Calderon I, et al. Clinical isolate of a porinless Salmonella typhi resistant to high levels of chloram-phenicol. Antimicrob Agents Chemother 1990 Sep; 34(9): 1715–9PubMedCrossRef Toro CS, Lobos SR, Calderon I, et al. Clinical isolate of a porinless Salmonella typhi resistant to high levels of chloram-phenicol. Antimicrob Agents Chemother 1990 Sep; 34(9): 1715–9PubMedCrossRef
97.
Zurück zum Zitat Bissonnette L, Champetier S, Buisson JP, et al. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol 1991 Jul; 173(14): 4493–502PubMed Bissonnette L, Champetier S, Buisson JP, et al. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol 1991 Jul; 173(14): 4493–502PubMed
98.
Zurück zum Zitat Kim E, Aoki T. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol 1996; 40(9): 665–9PubMed Kim E, Aoki T. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol 1996; 40(9): 665–9PubMed
99.
Zurück zum Zitat Bolton LF, Kelley LC, Lee MD, et al. Detection of multidrug-resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J Clin Microbiol 1999 May; 37(5): 1348–51PubMed Bolton LF, Kelley LC, Lee MD, et al. Detection of multidrug-resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J Clin Microbiol 1999 May; 37(5): 1348–51PubMed
100.
Zurück zum Zitat Boyd D, Peters GA, Cloeckaert A, et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 2001 Oct; 183(19): 5725–32PubMedCrossRef Boyd D, Peters GA, Cloeckaert A, et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 2001 Oct; 183(19): 5725–32PubMedCrossRef
101.
Zurück zum Zitat White DG, Hudson C, Maurer JJ, et al. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J Clin Microbiol 2000 Dec; 38(12): 4593–8PubMed White DG, Hudson C, Maurer JJ, et al. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J Clin Microbiol 2000 Dec; 38(12): 4593–8PubMed
102.
Zurück zum Zitat Schuldiner S, Granot D, Steiner S, et al. Precious things come in little packages. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 155–62PubMed Schuldiner S, Granot D, Steiner S, et al. Precious things come in little packages. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 155–62PubMed
103.
Zurück zum Zitat Yerushalmi H, Schuldiner S. A model for coupling of H+ and substrate fluxes based on ‘time-sharing’ of a common binding site. Biochemistry 2000 Dec 5; 39(48): 14711–9PubMedCrossRef Yerushalmi H, Schuldiner S. A model for coupling of H+ and substrate fluxes based on ‘time-sharing’ of a common binding site. Biochemistry 2000 Dec 5; 39(48): 14711–9PubMedCrossRef
104.
Zurück zum Zitat Yerushalmi H, Schuldiner S. A common binding site for substrates and protons in EmrE, an ion-coupled multidrug transporter. FEBS Lett 2000 Jun 30; 476(1–2): 93–7PubMedCrossRef Yerushalmi H, Schuldiner S. A common binding site for substrates and protons in EmrE, an ion-coupled multidrug transporter. FEBS Lett 2000 Jun 30; 476(1–2): 93–7PubMedCrossRef
105.
Zurück zum Zitat Yerushalmi H, Schuldiner S. An essential glutamyl residue in EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 2000 Feb 25; 275(8): 5264–9PubMedCrossRef Yerushalmi H, Schuldiner S. An essential glutamyl residue in EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 2000 Feb 25; 275(8): 5264–9PubMedCrossRef
106.
Zurück zum Zitat Chung YJ, Saier Jr MH. Overexpression of the Escherichia colisugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 2002 May; 184(9): 2543–5PubMedCrossRef Chung YJ, Saier Jr MH. Overexpression of the Escherichia colisugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 2002 May; 184(9): 2543–5PubMedCrossRef
107.
Zurück zum Zitat Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother 1992 Apr; 36(4): 695–703PubMedCrossRef Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother 1992 Apr; 36(4): 695–703PubMedCrossRef
108.
Zurück zum Zitat Thanassi DG, Suh GS, Nikaido H. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J Bacteriol 1995 Feb; 177(4): 998–1007PubMed Thanassi DG, Suh GS, Nikaido H. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J Bacteriol 1995 Feb; 177(4): 998–1007PubMed
109.
Zurück zum Zitat Yamaguchi A, Udagawa T, Sawai T. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem 1990 Mar 25; 265(9): 4809–13PubMed Yamaguchi A, Udagawa T, Sawai T. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem 1990 Mar 25; 265(9): 4809–13PubMed
110.
Zurück zum Zitat Linton KJ, Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 1998 Apr; 28(1): 5–13PubMedCrossRef Linton KJ, Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 1998 Apr; 28(1): 5–13PubMedCrossRef
111.
Zurück zum Zitat Allikmets R, Gerrard B, Court D, et al. Cloning and organization of the abc and mdl genes of Escherichia coli: relationship to eukaryotic multidrug resistance. Gene 1993 Dec 22; 136(1–2): 231–6PubMedCrossRef Allikmets R, Gerrard B, Court D, et al. Cloning and organization of the abc and mdl genes of Escherichia coli: relationship to eukaryotic multidrug resistance. Gene 1993 Dec 22; 136(1–2): 231–6PubMedCrossRef
112.
Zurück zum Zitat Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994 Apr 15; 264(5157): 382–8PubMedCrossRef Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994 Apr 15; 264(5157): 382–8PubMedCrossRef
113.
Zurück zum Zitat Poole K, Heinrichs DE, Neshat S. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 1993 Nov; 10(3): 529–44PubMedCrossRef Poole K, Heinrichs DE, Neshat S. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 1993 Nov; 10(3): 529–44PubMedCrossRef
114.
Zurück zum Zitat Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 2001 Jun; 12(3): 215–23PubMedCrossRef Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 2001 Jun; 12(3): 215–23PubMedCrossRef
115.
Zurück zum Zitat Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 255–64PubMed Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 255–64PubMed
116.
Zurück zum Zitat Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000 Aug 31; 406(6799): 959–64PubMedCrossRef Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000 Aug 31; 406(6799): 959–64PubMedCrossRef
117.
Zurück zum Zitat Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1992 Sep; 36(9): 1847–51PubMedCrossRef Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1992 Sep; 36(9): 1847–51PubMedCrossRef
118.
Zurück zum Zitat Masuda N, Sakagawa E, Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995 Mar; 39(3): 645–9PubMedCrossRef Masuda N, Sakagawa E, Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995 Mar; 39(3): 645–9PubMedCrossRef
119.
Zurück zum Zitat Srikumar R, Paul CJ, Poole K. Influence of mutations in the MexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2000 Mar; 182(5): 1410–4PubMedCrossRef Srikumar R, Paul CJ, Poole K. Influence of mutations in the MexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2000 Mar; 182(5): 1410–4PubMedCrossRef
120.
Zurück zum Zitat Ziha-Zarifi I, Llanes C, Köhler T, et al. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa over-expressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999 Feb; 43(2): 287–91PubMed Ziha-Zarifi I, Llanes C, Köhler T, et al. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa over-expressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999 Feb; 43(2): 287–91PubMed
121.
Zurück zum Zitat Köhler T, Kok M, Michea-Hamzehpour M, et al. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996 Oct; 40(10): 2288–90PubMed Köhler T, Kok M, Michea-Hamzehpour M, et al. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996 Oct; 40(10): 2288–90PubMed
122.
Zurück zum Zitat Li XZ, Zhang L, Srikumar R, et al. β-Lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Feb; 42(2): 399–403PubMed Li XZ, Zhang L, Srikumar R, et al. β-Lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Feb; 42(2): 399–403PubMed
123.
Zurück zum Zitat Schweizer HP. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 1998 Feb; 42(2): 394–8PubMed Schweizer HP. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 1998 Feb; 42(2): 394–8PubMed
124.
Zurück zum Zitat Srikumar R, Li XZ, Poole K. Inner membrane efflux components are responsible for β-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 1997 Dec; 179(24): 7875–81PubMed Srikumar R, Li XZ, Poole K. Inner membrane efflux components are responsible for β-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 1997 Dec; 179(24): 7875–81PubMed
125.
Zurück zum Zitat Li XZ, Zhang L, Poole K. Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 1998 Jun; 180(11): 2987–91PubMed Li XZ, Zhang L, Poole K. Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 1998 Jun; 180(11): 2987–91PubMed
126.
Zurück zum Zitat Srikumar R, Kon T, Gotoh N, et al. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 1998 Jan; 42(1): 65–71PubMed Srikumar R, Kon T, Gotoh N, et al. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 1998 Jan; 42(1): 65–71PubMed
127.
Zurück zum Zitat Li XZ, Poole K. Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 1999 Jan; 45(1): 18–22PubMed Li XZ, Poole K. Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 1999 Jan; 45(1): 18–22PubMed
128.
Zurück zum Zitat Masuda N, Sakagawa E, Ohya S, et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000 Dec; 44(12): 3322–7PubMedCrossRef Masuda N, Sakagawa E, Ohya S, et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000 Dec; 44(12): 3322–7PubMedCrossRef
129.
Zurück zum Zitat Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990 Jan; 34(1): 52–7PubMedCrossRef Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990 Jan; 34(1): 52–7PubMedCrossRef
130.
Zurück zum Zitat Okamoto K, Gotoh N, Nishino T. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 2001 Jul; 45(7): 1964–71PubMedCrossRef Okamoto K, Gotoh N, Nishino T. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 2001 Jul; 45(7): 1964–71PubMedCrossRef
131.
Zurück zum Zitat Okamoto K, Gotoh N, Nishino T. Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2002 Aug; 46(8): 2696–9PubMedCrossRef Okamoto K, Gotoh N, Nishino T. Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2002 Aug; 46(8): 2696–9PubMedCrossRef
132.
Zurück zum Zitat Zhao Q, Li XZ, Srikumar R, et al. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 1998 Jul; 42(7): 1682–8PubMed Zhao Q, Li XZ, Srikumar R, et al. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 1998 Jul; 42(7): 1682–8PubMed
133.
Zurück zum Zitat Gotoh N, Tsujimoto H, Nomura A, et al. Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa. FEMS Microbiol Lett 1998 Aug 1; 165(1): 21–7PubMed Gotoh N, Tsujimoto H, Nomura A, et al. Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa. FEMS Microbiol Lett 1998 Aug 1; 165(1): 21–7PubMed
134.
Zurück zum Zitat Maseda H, Yoneyama H, Nakae T. Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000 Mar; 44(3): 658–64PubMedCrossRef Maseda H, Yoneyama H, Nakae T. Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000 Mar; 44(3): 658–64PubMedCrossRef
135.
Zurück zum Zitat Passador L, Cook JM, Gambello MJ, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993 May 21; 260(5111): 1127–30PubMedCrossRef Passador L, Cook JM, Gambello MJ, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993 May 21; 260(5111): 1127–30PubMedCrossRef
136.
Zurück zum Zitat Hastings JW, Greenberg EP. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 1999 May; 181(9): 2667–8PubMed Hastings JW, Greenberg EP. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol 1999 May; 181(9): 2667–8PubMed
137.
Zurück zum Zitat Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 1999 Feb; 181(4): 1203–10PubMed Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 1999 Feb; 181(4): 1203–10PubMed
138.
Zurück zum Zitat Evans K, Passador L, Srikumar R, et al. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1998 Oct; 180(20): 5443–7PubMed Evans K, Passador L, Srikumar R, et al. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1998 Oct; 180(20): 5443–7PubMed
139.
Zurück zum Zitat Hirakata Y, Srikumar R, Poole K, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002 Jul 1; 196(1): 109–18PubMedCrossRef Hirakata Y, Srikumar R, Poole K, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002 Jul 1; 196(1): 109–18PubMedCrossRef
140.
Zurück zum Zitat Chuanchuen R, Beinlich K, Hoang TT, et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 2001 Feb; 45(2): 428–32PubMedCrossRef Chuanchuen R, Beinlich K, Hoang TT, et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 2001 Feb; 45(2): 428–32PubMedCrossRef
141.
Zurück zum Zitat Morita Y, Komori Y, Mima T, et al. Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 2001 Aug 7; 202(1): 139–43PubMedCrossRef Morita Y, Komori Y, Mima T, et al. Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 2001 Aug 7; 202(1): 139–43PubMedCrossRef
142.
Zurück zum Zitat Masuda N, Gotoh N, Ohya S, et al. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996 Apr; 40(4): 909–13PubMed Masuda N, Gotoh N, Ohya S, et al. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996 Apr; 40(4): 909–13PubMed
143.
Zurück zum Zitat Li XZ, Barre N, Poole K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 2000 Dec; 46(6): 885–93PubMedCrossRef Li XZ, Barre N, Poole K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 2000 Dec; 46(6): 885–93PubMedCrossRef
144.
Zurück zum Zitat Gotoh N, Tsujimoto H, Tsuda M, et al. Characterization of the MexC-MexD-OprJ multidrug efflux system in △MexA-MexB-OprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Aug; 42(8): 1938–43PubMed Gotoh N, Tsujimoto H, Tsuda M, et al. Characterization of the MexC-MexD-OprJ multidrug efflux system in △MexA-MexB-OprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Aug; 42(8): 1938–43PubMed
145.
Zurück zum Zitat Masuda N, Sakagawa E, Ohya S, et al. Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to β-lactams due to reduced expression of the AmpC β-lactamase. Antimicrob Agents Chemother 2001 Apr; 45(4): 1284–6PubMedCrossRef Masuda N, Sakagawa E, Ohya S, et al. Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to β-lactams due to reduced expression of the AmpC β-lactamase. Antimicrob Agents Chemother 2001 Apr; 45(4): 1284–6PubMedCrossRef
146.
Zurück zum Zitat Ochs MM, McCusker MP, Bains M, et al. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999 May; 43(5): 1085–90PubMed Ochs MM, McCusker MP, Bains M, et al. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999 May; 43(5): 1085–90PubMed
147.
Zurück zum Zitat Köhler T, van Delden C, Curty LK, et al. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 2001 Sep; 183(18): 5213–22PubMedCrossRef Köhler T, van Delden C, Curty LK, et al. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 2001 Sep; 183(18): 5213–22PubMedCrossRef
148.
Zurück zum Zitat Alonso A, Martinez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 1997 May; 41(5): 1140–2PubMed Alonso A, Martinez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 1997 May; 41(5): 1140–2PubMed
149.
Zurück zum Zitat Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother 2000 Feb; 44(2): 287–93PubMedCrossRef Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother 2000 Feb; 44(2): 287–93PubMedCrossRef
150.
Zurück zum Zitat Alonso A, Martinez JL. Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001 Jun; 45(6): 1879–81PubMedCrossRef Alonso A, Martinez JL. Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001 Jun; 45(6): 1879–81PubMedCrossRef
151.
Zurück zum Zitat Burns JL, Hedin LA, Lien DM. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 1989 Feb; 33(2): 136–41PubMedCrossRef Burns JL, Hedin LA, Lien DM. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 1989 Feb; 33(2): 136–41PubMedCrossRef
152.
Zurück zum Zitat Zhang L, Li XZ, Poole K. Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother 2001 Oct; 48(4): 549–52PubMedCrossRef Zhang L, Li XZ, Poole K. Fluoroquinolone susceptibilities of efflux-mediated multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Burkholderia cepacia. J Antimicrob Chemother 2001 Oct; 48(4): 549–52PubMedCrossRef
153.
Zurück zum Zitat Kim K, Lee S, Lee K, et al. Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM 73. J Bacteriol 1998 Jul; 180(14): 3692–6PubMed Kim K, Lee S, Lee K, et al. Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM 73. J Bacteriol 1998 Jul; 180(14): 3692–6PubMed
154.
Zurück zum Zitat Sparling PF, Sarubbi Jr FA, Blackman E. Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 1975 Nov; 124(2): 740–9PubMed Sparling PF, Sarubbi Jr FA, Blackman E. Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 1975 Nov; 124(2): 740–9PubMed
155.
Zurück zum Zitat Guymon LF, Sparling PF. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol 1975 Nov; 124(2): 757–63PubMed Guymon LF, Sparling PF. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol 1975 Nov; 124(2): 757–63PubMed
156.
Zurück zum Zitat Lysko PG, Morse SA. Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. J Bacteriol 1981 Feb; 145(2): 946–52PubMed Lysko PG, Morse SA. Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. J Bacteriol 1981 Feb; 145(2): 946–52PubMed
157.
Zurück zum Zitat Pan W, Spratt BG. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 1994 Feb; 11(4): 769–75PubMedCrossRef Pan W, Spratt BG. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 1994 Feb; 11(4): 769–75PubMedCrossRef
158.
Zurück zum Zitat Rouquette C, Harmon JB, Shafer WM. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 1999 Aug; 33(3): 651–8PubMedCrossRef Rouquette C, Harmon JB, Shafer WM. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 1999 Aug; 33(3): 651–8PubMedCrossRef
159.
Zurück zum Zitat Delahay RM, Robertson BD, Balthazar JT, et al. Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology 1997 Jul; 143 (Pt 7): 2127–33PubMedCrossRef Delahay RM, Robertson BD, Balthazar JT, et al. Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology 1997 Jul; 143 (Pt 7): 2127–33PubMedCrossRef
160.
Zurück zum Zitat Hagman KE, Lucas CE, Balthazar JT, et al. The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 1997 Jul; 143 (Pt 7): 2117–25PubMedCrossRef Hagman KE, Lucas CE, Balthazar JT, et al. The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 1997 Jul; 143 (Pt 7): 2117–25PubMedCrossRef
161.
Zurück zum Zitat Zarantonelli L, Borthagaray G, Lee EH, et al. Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 2001 May; 47(5): 651–4PubMedCrossRef Zarantonelli L, Borthagaray G, Lee EH, et al. Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 2001 May; 47(5): 651–4PubMedCrossRef
162.
Zurück zum Zitat McFarland L, Mietzner TA, Knapp JS, et al. Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol 1983 Jul; 18(1): 121–7PubMed McFarland L, Mietzner TA, Knapp JS, et al. Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol 1983 Jul; 18(1): 121–7PubMed
163.
Zurück zum Zitat Morse SA, Lysko PG, McFarland L, et al. Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 1982 Aug; 37(2): 432–8PubMed Morse SA, Lysko PG, McFarland L, et al. Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 1982 Aug; 37(2): 432–8PubMed
164.
Zurück zum Zitat Shafer WM, Veal WL, Lee EH, et al. Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and N. imeningitidis. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 219–24PubMed Shafer WM, Veal WL, Lee EH, et al. Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and N. imeningitidis. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 219–24PubMed
165.
Zurück zum Zitat Garg P, Chakraborty S, Basu I, et al. Expanding multiple antibiotic resistance among clinical strains of Vibrio cholerae isolated from 1992–7 in Calcutta, India. Epidemiol Infect 2000 Jun; 124(3): 393–9PubMedCrossRef Garg P, Chakraborty S, Basu I, et al. Expanding multiple antibiotic resistance among clinical strains of Vibrio cholerae isolated from 1992–7 in Calcutta, India. Epidemiol Infect 2000 Jun; 124(3): 393–9PubMedCrossRef
166.
Zurück zum Zitat Huda MN, Morita Y, Kuroda T, et al. Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a nonhalophilic bacterium. FEMS Microbiol Lett 2001 Sep 25; 203(2): 235–9PubMedCrossRef Huda MN, Morita Y, Kuroda T, et al. Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a nonhalophilic bacterium. FEMS Microbiol Lett 2001 Sep 25; 203(2): 235–9PubMedCrossRef
167.
Zurück zum Zitat Colmer JA, Fralick JA, Hamood AN. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol Microbiol 1998 Jan; 27(1): 63–72PubMedCrossRef Colmer JA, Fralick JA, Hamood AN. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol Microbiol 1998 Jan; 27(1): 63–72PubMedCrossRef
168.
Zurück zum Zitat Baranwal S, Dey K, Ramamurthy T, et al. Role of active efflux in association with target gene mutations in fluoroquinolone resistance in clinical isolates of Vibrio cholerae. Antimicrob Agents Chemother 2002 Aug; 46(8): 2676–8PubMedCrossRef Baranwal S, Dey K, Ramamurthy T, et al. Role of active efflux in association with target gene mutations in fluoroquinolone resistance in clinical isolates of Vibrio cholerae. Antimicrob Agents Chemother 2002 Aug; 46(8): 2676–8PubMedCrossRef
169.
Zurück zum Zitat Miyamae S, Ueda O, Yoshimura F, et al. A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 2001 Dec; 45(12): 3341–6PubMedCrossRef Miyamae S, Ueda O, Yoshimura F, et al. A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 2001 Dec; 45(12): 3341–6PubMedCrossRef
170.
Zurück zum Zitat Wigfield SM, Rigg GP, Kavari M, et al. Identification of an immunodominant drug efflux pump in Burkholderia cepacia. J Antimicrob Chemother 2002 Apr; 49(4): 619–24PubMedCrossRef Wigfield SM, Rigg GP, Kavari M, et al. Identification of an immunodominant drug efflux pump in Burkholderia cepacia. J Antimicrob Chemother 2002 Apr; 49(4): 619–24PubMedCrossRef
171.
Zurück zum Zitat Miyamae CC, Valvano MA. Cloning and characterization of the Burkholderia vietnamiensis norM gene encoding a multi-drug efflux protein. FEMS Microbiol Lett 2002 Oct 8; 215(2): 279–83CrossRef Miyamae CC, Valvano MA. Cloning and characterization of the Burkholderia vietnamiensis norM gene encoding a multi-drug efflux protein. FEMS Microbiol Lett 2002 Oct 8; 215(2): 279–83CrossRef
172.
Zurück zum Zitat Nishino K, Yamaguchi A. Overexpression of the response regulator evgAof the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol 2001 Feb; 183(4): 1455–8PubMedCrossRef Nishino K, Yamaguchi A. Overexpression of the response regulator evgAof the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol 2001 Feb; 183(4): 1455–8PubMedCrossRef
173.
Zurück zum Zitat Naroditskaya V, Schlosser MJ, Fang NY, et al. An E. coli gene emrD is involved in adaptation to low energy shock. Biochem Biophys Res Commun 1993 Oct 29; 196(2): 803–9PubMedCrossRef Naroditskaya V, Schlosser MJ, Fang NY, et al. An E. coli gene emrD is involved in adaptation to low energy shock. Biochem Biophys Res Commun 1993 Oct 29; 196(2): 803–9PubMedCrossRef
174.
Zurück zum Zitat Phadtare S, Yamanaka K, Kato I, et al. Antibacterial activity of 4,5-dihydroxy-2-cyclopentan-1-one (DHCP) and cloning of a gene conferring DHCP resistance in Escherichia coli. J Mol Microbiol Biotechnol 2001 Jul; 3(3): 461–5PubMed Phadtare S, Yamanaka K, Kato I, et al. Antibacterial activity of 4,5-dihydroxy-2-cyclopentan-1-one (DHCP) and cloning of a gene conferring DHCP resistance in Escherichia coli. J Mol Microbiol Biotechnol 2001 Jul; 3(3): 461–5PubMed
175.
Zurück zum Zitat Yerushalmi H, Lebendiker M, Schuldiner S. EmrE, an Escherichia coli12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 1995 Mar 24; 270(12): 6856–63PubMedCrossRef Yerushalmi H, Lebendiker M, Schuldiner S. EmrE, an Escherichia coli12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 1995 Mar 24; 270(12): 6856–63PubMedCrossRef
176.
Zurück zum Zitat Turner RJ, Taylor DE, Weiner JH. Expression of Escherichia coliTehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemother 1997 Feb; 41(2): 440–4PubMed Turner RJ, Taylor DE, Weiner JH. Expression of Escherichia coliTehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemother 1997 Feb; 41(2): 440–4PubMed
177.
Zurück zum Zitat Li X-Z, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosato aminoglycosides and dyes. Antimicrob Agents Chemother 2003; 47(1): 27–33CrossRef Li X-Z, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosato aminoglycosides and dyes. Antimicrob Agents Chemother 2003; 47(1): 27–33CrossRef
178.
Zurück zum Zitat Hongo E, Morimyo M, Mita K, et al. The methyl viologen-resistance-encoding gene smvAof Salmonellatyphimurium. Gene 1994 Oct 11; 148(1): 173–4PubMedCrossRef Hongo E, Morimyo M, Mita K, et al. The methyl viologen-resistance-encoding gene smvAof Salmonellatyphimurium. Gene 1994 Oct 11; 148(1): 173–4PubMedCrossRef
179.
Zurück zum Zitat Santiviago CA, Fuentes JA, Bueno SM, et al. The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol Microbiol 2002 Nov; 46(3): 687–98PubMedCrossRef Santiviago CA, Fuentes JA, Bueno SM, et al. The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol Microbiol 2002 Nov; 46(3): 687–98PubMedCrossRef
180.
Zurück zum Zitat Baquero F. Gram-positive resistance: challenge for the development of new antibiotics. J Antimicrob Chemother 1997 May; 39 Suppl. A: 1–6PubMedCrossRef Baquero F. Gram-positive resistance: challenge for the development of new antibiotics. J Antimicrob Chemother 1997 May; 39 Suppl. A: 1–6PubMedCrossRef
181.
Zurück zum Zitat Hooper DC. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2002 Sep; 2(9): 530–8PubMedCrossRef Hooper DC. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2002 Sep; 2(9): 530–8PubMedCrossRef
182.
Zurück zum Zitat Ahmed M, Lyass L, Markham PN, et al. Two highly similar multidrug transporters of Bacillussubtiliswhose expression is differentially regulated. J Bacteriol 1995 Jul; 177(14): 3904–10PubMed Ahmed M, Lyass L, Markham PN, et al. Two highly similar multidrug transporters of Bacillussubtiliswhose expression is differentially regulated. J Bacteriol 1995 Jul; 177(14): 3904–10PubMed
183.
Zurück zum Zitat Baranova NN, Danchin A, Neyfakh AA. Mta, a global MerR-type regulator of the Bacillussubtilismultidrug-efflux transporters. Mol Microbiol 1999 Mar; 31(5): 1549–59PubMedCrossRef Baranova NN, Danchin A, Neyfakh AA. Mta, a global MerR-type regulator of the Bacillussubtilismultidrug-efflux transporters. Mol Microbiol 1999 Mar; 31(5): 1549–59PubMedCrossRef
184.
Zurück zum Zitat Woolridge DP, Vazquez-Laslop N, Markham PN, et al. Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilismultidrug transporter Blt. J Biol Chem 1997 Apr 4; 272(14): 8864–6PubMedCrossRef Woolridge DP, Vazquez-Laslop N, Markham PN, et al. Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilismultidrug transporter Blt. J Biol Chem 1997 Apr 4; 272(14): 8864–6PubMedCrossRef
185.
Zurück zum Zitat Masaoka Y, Ueno Y, Morita Y, et al. A two-component multidrug efflux pump, EbrAB, in Bacillussubtilis. J Bacteriol 2000 Apr; 182(8): 2307–10PubMedCrossRef Masaoka Y, Ueno Y, Morita Y, et al. A two-component multidrug efflux pump, EbrAB, in Bacillussubtilis. J Bacteriol 2000 Apr; 182(8): 2307–10PubMedCrossRef
186.
Zurück zum Zitat Davis DR, McAlpine JB, Pazoles CJ, et al. Enterococcus faecalismulti-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 179–84PubMed Davis DR, McAlpine JB, Pazoles CJ, et al. Enterococcus faecalismulti-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 179–84PubMed
187.
Zurück zum Zitat Singh KV, Weinstock GM, Murray BE. An Enterococcusfaecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 2002 Jun; 46(6): 1845–50PubMedCrossRef Singh KV, Weinstock GM, Murray BE. An Enterococcusfaecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 2002 Jun; 46(6): 1845–50PubMedCrossRef
188.
Zurück zum Zitat Jonas BM, Murray BE, Weinstock GM. Characterization of emeA, a norAhomolog and multidrug resistance efflux pump, in Enterococcusfaecalis. Antimicrob Agents Chemother 2001 Dec; 45(12): 3574–9PubMedCrossRef Jonas BM, Murray BE, Weinstock GM. Characterization of emeA, a norAhomolog and multidrug resistance efflux pump, in Enterococcusfaecalis. Antimicrob Agents Chemother 2001 Dec; 45(12): 3574–9PubMedCrossRef
189.
Zurück zum Zitat Lynch C, Courvalin P, Nikaido H. Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob Agents Chemother 1997 Apr; 41(4): 869–71PubMed Lynch C, Courvalin P, Nikaido H. Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob Agents Chemother 1997 Apr; 41(4): 869–71PubMed
190.
Zurück zum Zitat Bolhuis H, van Veen HW, Molenaar D, et al. Multidrug resistance in Lactococcuslactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J 1996 Aug 15; 15(16): 4239–45PubMed Bolhuis H, van Veen HW, Molenaar D, et al. Multidrug resistance in Lactococcuslactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J 1996 Aug 15; 15(16): 4239–45PubMed
191.
Zurück zum Zitat Bolhuis H, Poelarends G, van Veen HW, et al. The lactococcal imrPgene encodes a proton motive force-dependent drug transporter. J Biol Chem 1995 Nov 3; 270(44): 26092–8PubMedCrossRef Bolhuis H, Poelarends G, van Veen HW, et al. The lactococcal imrPgene encodes a proton motive force-dependent drug transporter. J Biol Chem 1995 Nov 3; 270(44): 26092–8PubMedCrossRef
192.
Zurück zum Zitat Perreten V, Schwarz FV, Teuber M, et al. Mdt (A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactisand Escherichiacoli. Antimicrob Agents Chemother 2001 Apr; 45(4): 1109–14PubMedCrossRef Perreten V, Schwarz FV, Teuber M, et al. Mdt (A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactisand Escherichiacoli. Antimicrob Agents Chemother 2001 Apr; 45(4): 1109–14PubMedCrossRef
193.
Zurück zum Zitat Mata MT, Baquero F, Perez-Diaz JC. A multidrug efflux transporter in Listeriamonocytogenes. FEMS Microbiol Lett 2000 Jun 15; 187(2): 185–8PubMedCrossRef Mata MT, Baquero F, Perez-Diaz JC. A multidrug efflux transporter in Listeriamonocytogenes. FEMS Microbiol Lett 2000 Jun 15; 187(2): 185–8PubMedCrossRef
194.
Zurück zum Zitat Ross JI, Eady EA, Cove JH, et al. Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 1995 Feb 3; 153(1): 93–8PubMedCrossRef Ross JI, Eady EA, Cove JH, et al. Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 1995 Feb 3; 153(1): 93–8PubMedCrossRef
195.
Zurück zum Zitat Fournier B, Aras R, Hooper DC. Expression of the multidrug resistance transporter NorA from Staphylococcusaureusis modified by a two-component regulatory system. J Bacteriol 2000 Feb; 182(3): 664–71PubMedCrossRef Fournier B, Aras R, Hooper DC. Expression of the multidrug resistance transporter NorA from Staphylococcusaureusis modified by a two-component regulatory system. J Bacteriol 2000 Feb; 182(3): 664–71PubMedCrossRef
196.
Zurück zum Zitat Littlejohn TG, Pauken IT, Gillespie MT, et al. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcusaureus. FEMS Microbiol Lett 1992 Aug 15; 74(2–3): 259–65PubMedCrossRef Littlejohn TG, Pauken IT, Gillespie MT, et al. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcusaureus. FEMS Microbiol Lett 1992 Aug 15; 74(2–3): 259–65PubMedCrossRef
197.
Zurück zum Zitat Clancy J, Dib-Hajj F, Petitpas JW, et al. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 1997 Dec; 41(12): 2719–23PubMed Clancy J, Dib-Hajj F, Petitpas JW, et al. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 1997 Dec; 41(12): 2719–23PubMed
198.
Zurück zum Zitat Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcuspneumoniae. Antimicrob Agents Chemother 1999 Jan; 43(1): 187–9PubMed Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcuspneumoniae. Antimicrob Agents Chemother 1999 Jan; 43(1): 187–9PubMed
199.
Zurück zum Zitat Tait-Kamradt A, Clancy J, Cronan M, et al. mefEis necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Oct; 41(10): 2251–5PubMed Tait-Kamradt A, Clancy J, Cronan M, et al. mefEis necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Oct; 41(10): 2251–5PubMed
200.
Zurück zum Zitat Clancy J, Petitpas J, Dib-Hajj F, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcuspyogenes. Mol Microbiol 1996 Dec; 22(5): 867–79PubMedCrossRef Clancy J, Petitpas J, Dib-Hajj F, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcuspyogenes. Mol Microbiol 1996 Dec; 22(5): 867–79PubMedCrossRef
201.
Zurück zum Zitat Ainsa JA, Blokpoel MC, Otal I, et al. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacteriumfortuitumand Mycobacteriumtuberculosis. J Bacteriol 1998 Nov; 180(22): 5836–43PubMed Ainsa JA, Blokpoel MC, Otal I, et al. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacteriumfortuitumand Mycobacteriumtuberculosis. J Bacteriol 1998 Nov; 180(22): 5836–43PubMed
202.
Zurück zum Zitat Takiff HE, Cimino M, Musso MC, et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacteriumsmegmatis. Proc Natl Acad Sci U S A 1996 Jan 9; 93(1): 362–6PubMedCrossRef Takiff HE, Cimino M, Musso MC, et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacteriumsmegmatis. Proc Natl Acad Sci U S A 1996 Jan 9; 93(1): 362–6PubMedCrossRef
203.
Zurück zum Zitat Choudhuri BS, Sen S, Chakrabarti P. Isoniazid accumulation in Mycobacteriumsmegmatisis modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 1999 Mar 24; 256(3): 682–4PubMedCrossRef Choudhuri BS, Sen S, Chakrabarti P. Isoniazid accumulation in Mycobacteriumsmegmatisis modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 1999 Mar 24; 256(3): 682–4PubMedCrossRef
204.
Zurück zum Zitat Choudhuri BS, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrAand drrBof Mycobacterium tuberculosis. Biochem J 2002 Oct 1; 367 (Pt 1): 279–85PubMedCrossRef Choudhuri BS, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrAand drrBof Mycobacterium tuberculosis. Biochem J 2002 Oct 1; 367 (Pt 1): 279–85PubMedCrossRef
205.
Zurück zum Zitat Doran JL, Pang Y, Mdluli KE, et al. Mycobacteriumtuberculosis efpAencodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol 1997 Jan; 4(1): 23–32PubMed Doran JL, Pang Y, Mdluli KE, et al. Mycobacteriumtuberculosis efpAencodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol 1997 Jan; 4(1): 23–32PubMed
206.
Zurück zum Zitat Silva PE, Bigi F, de la Paz Santangelo M, et al. Characterization of P55, a multidrug efflux pump in Mycobacteriumbovisand Mycobacteriumtuberculosis. Antimicrob Agents Chemother 2001 Mar; 45(3): 800–4PubMedCrossRef Silva PE, Bigi F, de la Paz Santangelo M, et al. Characterization of P55, a multidrug efflux pump in Mycobacteriumbovisand Mycobacteriumtuberculosis. Antimicrob Agents Chemother 2001 Mar; 45(3): 800–4PubMedCrossRef
207.
Zurück zum Zitat De Rossi E, Branzoni M, Cantoni R, et al. mmr, a Mycobacterium tuberculosisgene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 1998 Nov; 180(22): 6068–71PubMed De Rossi E, Branzoni M, Cantoni R, et al. mmr, a Mycobacterium tuberculosisgene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 1998 Nov; 180(22): 6068–71PubMed
208.
Zurück zum Zitat Carbon C. MRSA and MRSE: is there an answer? Clin Microbiol Infect 2000 Aug; 6 Suppl. 2: 17–22CrossRef Carbon C. MRSA and MRSE: is there an answer? Clin Microbiol Infect 2000 Aug; 6 Suppl. 2: 17–22CrossRef
209.
Zurück zum Zitat Tennent JM, Lyon BR, Midgley M, et al. Physical and biochemical characterization of the qacAgene encoding antiseptic and disinfectant resistance in Staphylococcusaureus. J Gen Microbiol 1989 Jan; 135 (Pt 1): 1–10PubMed Tennent JM, Lyon BR, Midgley M, et al. Physical and biochemical characterization of the qacAgene encoding antiseptic and disinfectant resistance in Staphylococcusaureus. J Gen Microbiol 1989 Jan; 135 (Pt 1): 1–10PubMed
210.
Zurück zum Zitat Paulsen IT, Brown MH, Littlejohn TG, et al. Multidrug resistance proteins QacA and QacB from Staphylococcusaureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A 1996 Apr 16; 93(8): 3630–5PubMedCrossRef Paulsen IT, Brown MH, Littlejohn TG, et al. Multidrug resistance proteins QacA and QacB from Staphylococcusaureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A 1996 Apr 16; 93(8): 3630–5PubMedCrossRef
211.
Zurück zum Zitat Noguchi N, Hase M, Kitta M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcusaureus. FEMS Microbiol Lett 1999 Mar 15; 172(2): 247–53PubMedCrossRef Noguchi N, Hase M, Kitta M, et al. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcusaureus. FEMS Microbiol Lett 1999 Mar 15; 172(2): 247–53PubMedCrossRef
212.
Zurück zum Zitat Kaatz GW, Seo SM, Ruble CA. Efflux-mediated fluoroquinolone resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1993 May; 37(5): 1086–94PubMedCrossRef Kaatz GW, Seo SM, Ruble CA. Efflux-mediated fluoroquinolone resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1993 May; 37(5): 1086–94PubMedCrossRef
213.
Zurück zum Zitat Ng EY, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship toflqB, a quinolone resistance locus on the Staphylococcusaureus chromosome. Antimicrob Agents Chemother 1994 Jun; 38(6): 1345–55PubMedCrossRef Ng EY, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship toflqB, a quinolone resistance locus on the Staphylococcusaureus chromosome. Antimicrob Agents Chemother 1994 Jun; 38(6): 1345–55PubMedCrossRef
214.
Zurück zum Zitat Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 1999; 58 Suppl. 2: 11–8CrossRef Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 1999; 58 Suppl. 2: 11–8CrossRef
215.
Zurück zum Zitat Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000; 44(9): 2233–41PubMedCrossRef Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000; 44(9): 2233–41PubMedCrossRef
216.
Zurück zum Zitat Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 2000; 44(10): 2595–9PubMedCrossRef Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 2000; 44(10): 2595–9PubMedCrossRef
217.
Zurück zum Zitat Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J Bacteriol 2002 Mar; 184(5): 1370–7PubMedCrossRef Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J Bacteriol 2002 Mar; 184(5): 1370–7PubMedCrossRef
218.
Zurück zum Zitat Kaatz GW, Seo SM. Inducible NorA-mediated multidrug resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1995 Dec; 39(12): 2650–5PubMedCrossRef Kaatz GW, Seo SM. Inducible NorA-mediated multidrug resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1995 Dec; 39(12): 2650–5PubMedCrossRef
219.
Zurück zum Zitat Fournier B, Truong-Bolduc QC, Zhang X, et al. A mutation in the 5' untranslated region increases stability of norAmRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J Bacteriol 2001 Apr; 183(7): 2367–71PubMedCrossRef Fournier B, Truong-Bolduc QC, Zhang X, et al. A mutation in the 5' untranslated region increases stability of norAmRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J Bacteriol 2001 Apr; 183(7): 2367–71PubMedCrossRef
220.
Zurück zum Zitat Kaatz GW, Seo SM, Foster TJ. Introduction of a norApromoter region mutation into the chromosome of a fluoroquinolone-susceptible strain of Staphylococcusaureususing plasmid integration. Antimicrob Agents Chemother 1999 Sep; 43(9): 2222–4PubMed Kaatz GW, Seo SM, Foster TJ. Introduction of a norApromoter region mutation into the chromosome of a fluoroquinolone-susceptible strain of Staphylococcusaureususing plasmid integration. Antimicrob Agents Chemother 1999 Sep; 43(9): 2222–4PubMed
221.
Zurück zum Zitat Kaatz GW, Seo SM, O'Brien L, et al. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcusaureus. Antimicrob Agents Chemother 2000 May; 44(5): 1404–6PubMedCrossRef Kaatz GW, Seo SM, O'Brien L, et al. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcusaureus. Antimicrob Agents Chemother 2000 May; 44(5): 1404–6PubMedCrossRef
222.
Zurück zum Zitat Munoz-Bellido JL, Alonzo Manzanares M, Martinez Andres JA, et al. Efflux pump-mediated quinolone resistance in Staphylococcusaureusstrains wild type for gyrA, gyrB, grlA, and norA. Antimicrob Agents Chemother 1999 Feb; 43(2): 354–6PubMed Munoz-Bellido JL, Alonzo Manzanares M, Martinez Andres JA, et al. Efflux pump-mediated quinolone resistance in Staphylococcusaureusstrains wild type for gyrA, gyrB, grlA, and norA. Antimicrob Agents Chemother 1999 Feb; 43(2): 354–6PubMed
223.
Zurück zum Zitat Piddock LJ, Jin YF, Webber MA, et al. Novel ciprofloxacin-resistant, nalidixic acid-susceptible mutant of Staphylococcus aureus. Antimicrob Agents Chemother 2002 Jul; 46(7): 2276–8PubMedCrossRef Piddock LJ, Jin YF, Webber MA, et al. Novel ciprofloxacin-resistant, nalidixic acid-susceptible mutant of Staphylococcus aureus. Antimicrob Agents Chemother 2002 Jul; 46(7): 2276–8PubMedCrossRef
224.
Zurück zum Zitat Noguchi N, Tamura M, Narui K, et al. Frequency and genetic characterization of multidrug-resistant mutants of Staphylococcus aureusafter selection with individual antiseptics and fluoroquinolones. Biol Pharm Bull 2002 Sep; 25(9): 1129–32PubMedCrossRef Noguchi N, Tamura M, Narui K, et al. Frequency and genetic characterization of multidrug-resistant mutants of Staphylococcus aureusafter selection with individual antiseptics and fluoroquinolones. Biol Pharm Bull 2002 Sep; 25(9): 1129–32PubMedCrossRef
225.
Zurück zum Zitat Ross JI, Eady EA, Cove JH, et al. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 1990 Jul; 4(7): 1207–14PubMedCrossRef Ross JI, Eady EA, Cove JH, et al. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 1990 Jul; 4(7): 1207–14PubMedCrossRef
226.
Zurück zum Zitat Ross JI, Eady EA, Cove JH, et al. Minimal functional system required for expression of erythromycin resistance by msrAin StaphylococcusaureusRN 4220. Gene 1996 Dec 12; 183(1–2): 143–8PubMedCrossRef Ross JI, Eady EA, Cove JH, et al. Minimal functional system required for expression of erythromycin resistance by msrAin StaphylococcusaureusRN 4220. Gene 1996 Dec 12; 183(1–2): 143–8PubMedCrossRef
227.
Zurück zum Zitat Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002 Feb 15; 34(4): 482–92PubMedCrossRef Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 2002 Feb 15; 34(4): 482–92PubMedCrossRef
228.
Zurück zum Zitat Schmitz FJ, Sadurski R, Kray A, et al. Prevalence of macrolide-resistance genes in Staphylococcusaureusand Enterococcus faeciumisolates from 24 European university hospitals. J Antimicrob Chemother 2000 Jun; 45(6): 891–4PubMedCrossRef Schmitz FJ, Sadurski R, Kray A, et al. Prevalence of macrolide-resistance genes in Staphylococcusaureusand Enterococcus faeciumisolates from 24 European university hospitals. J Antimicrob Chemother 2000 Jun; 45(6): 891–4PubMedCrossRef
229.
Zurück zum Zitat Schmitz FJ, Perdikouli M, Beeck A, et al. Molecular surveillance of macrolide, tetracycline and quinolone resistance mechanisms in 1191 clinical European Streptococcuspneumoniae isolates. Int J Antimicrob Agents 2001 Nov; 18(5): 433–6PubMedCrossRef Schmitz FJ, Perdikouli M, Beeck A, et al. Molecular surveillance of macrolide, tetracycline and quinolone resistance mechanisms in 1191 clinical European Streptococcuspneumoniae isolates. Int J Antimicrob Agents 2001 Nov; 18(5): 433–6PubMedCrossRef
230.
Zurück zum Zitat Broskey J, Coleman K, Gwynn MN, et al. Efflux and target mutations as quinolone resistance mechanisms in clinical isolates of Streptococcuspneumoniae. J Antimicrob Chemother 2000 Apr; 45 Suppl. 1: 95–9CrossRef Broskey J, Coleman K, Gwynn MN, et al. Efflux and target mutations as quinolone resistance mechanisms in clinical isolates of Streptococcuspneumoniae. J Antimicrob Chemother 2000 Apr; 45 Suppl. 1: 95–9CrossRef
231.
Zurück zum Zitat Bast DJ, Low DE, Duncan CL, et al. Fluoroquinolone resistance in clinical isolates of Streptococcuspneumoniae: contributions of type II topoisomerase mutations and efflux to levels of resistance. Antimicrob Agents Chemother 2000 Nov; 44(11): 3049–54PubMedCrossRef Bast DJ, Low DE, Duncan CL, et al. Fluoroquinolone resistance in clinical isolates of Streptococcuspneumoniae: contributions of type II topoisomerase mutations and efflux to levels of resistance. Antimicrob Agents Chemother 2000 Nov; 44(11): 3049–54PubMedCrossRef
232.
Zurück zum Zitat Brenwald NP, Gill MJ, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcuspneumoniae. Antimicrob Agents Chemother 1998 Aug; 42(8): 2032–5PubMed Brenwald NP, Gill MJ, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcuspneumoniae. Antimicrob Agents Chemother 1998 Aug; 42(8): 2032–5PubMed
233.
Zurück zum Zitat Baranova NN, Neyfakh AA. Apparent involvement of a multidrug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Jun; 41(6): 1396–8PubMed Baranova NN, Neyfakh AA. Apparent involvement of a multidrug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Jun; 41(6): 1396–8PubMed
234.
Zurück zum Zitat Zeller V, Janoir C, Kitzis MD, et al. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Sep; 41(9): 1973–8PubMed Zeller V, Janoir C, Kitzis MD, et al. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997 Sep; 41(9): 1973–8PubMed
235.
Zurück zum Zitat Marshall NJ, Piddock LJ. Antibacterial efflux systems. Microbiologia 1997 Sep; 13(3): 285–300PubMed Marshall NJ, Piddock LJ. Antibacterial efflux systems. Microbiologia 1997 Sep; 13(3): 285–300PubMed
236.
Zurück zum Zitat Piddock LJ, Jin YF, Everett MJ. Non-gyrA-mediated ciprofloxacin resistance in laboratory mutants of Streptococcuspneumoniae. J Antimicrob Chemother 1997 May; 39(5): 609–15PubMedCrossRef Piddock LJ, Jin YF, Everett MJ. Non-gyrA-mediated ciprofloxacin resistance in laboratory mutants of Streptococcuspneumoniae. J Antimicrob Chemother 1997 May; 39(5): 609–15PubMedCrossRef
237.
Zurück zum Zitat Piddock LJ, Johnson MM. Accumulation of 10 fluoroquinolones by wild-type or efflux mutant Streptococcuspneumoniae. Antimicrob Agents Chemother 2002 Mar; 46(3): 813–20PubMedCrossRef Piddock LJ, Johnson MM. Accumulation of 10 fluoroquinolones by wild-type or efflux mutant Streptococcuspneumoniae. Antimicrob Agents Chemother 2002 Mar; 46(3): 813–20PubMedCrossRef
238.
Zurück zum Zitat Piddock LJ, Johnson MM, Simjee S, et al. Expression of efflux pump gene pmrAin fluoroquinolone-resistant and -susceptible clinical isolates of Streptococcuspneumoniae. Antimicrob Agents Chemother 2002 Mar; 46(3): 808–12PubMedCrossRef Piddock LJ, Johnson MM, Simjee S, et al. Expression of efflux pump gene pmrAin fluoroquinolone-resistant and -susceptible clinical isolates of Streptococcuspneumoniae. Antimicrob Agents Chemother 2002 Mar; 46(3): 808–12PubMedCrossRef
239.
Zurück zum Zitat Pestova E, Millichap JJ, Siddiqui F, et al. Non-PmrA-mediated multidrug resistance in Streptococcuspneumoniae. J Antimicrob Chemother 2002 Mar; 49(3): 553–6PubMedCrossRef Pestova E, Millichap JJ, Siddiqui F, et al. Non-PmrA-mediated multidrug resistance in Streptococcuspneumoniae. J Antimicrob Chemother 2002 Mar; 49(3): 553–6PubMedCrossRef
240.
Zurück zum Zitat Kataja J, Seppala H, Skurnik M, et al. Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob Agents Chemother 1998 Jun; 42(6): 1493–4PubMed Kataja J, Seppala H, Skurnik M, et al. Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob Agents Chemother 1998 Jun; 42(6): 1493–4PubMed
241.
Zurück zum Zitat Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and p Syogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996 Aug; 40(8): 1817–24PubMed Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and p Syogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996 Aug; 40(8): 1817–24PubMed
242.
Zurück zum Zitat Widdowson CA, Klugman KP. Molecular mechanisms of resistance to commonly used non-betalactam drugs in Streptococcus pneumoniae. Semin Respir Infect 1999 Sep; 14(3): 255–68PubMed Widdowson CA, Klugman KP. Molecular mechanisms of resistance to commonly used non-betalactam drugs in Streptococcus pneumoniae. Semin Respir Infect 1999 Sep; 14(3): 255–68PubMed
243.
Zurück zum Zitat French GL. Enterococci and vancomycin resistance. Clin Infect Dis 1998 Aug; 27 Suppl. 1: S75–83PubMedCrossRef French GL. Enterococci and vancomycin resistance. Clin Infect Dis 1998 Aug; 27 Suppl. 1: S75–83PubMedCrossRef
244.
Zurück zum Zitat Moellering Jr RC. Emergence of Enterococcus as a significant pathogen. Clin Infect Dis 1992 Jun; 14(6): 1173–6PubMedCrossRef Moellering Jr RC. Emergence of Enterococcus as a significant pathogen. Clin Infect Dis 1992 Jun; 14(6): 1173–6PubMedCrossRef
245.
Zurück zum Zitat Hallgren A, Abednazari H, Ekdahl C, et al. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001 Jul; 48(1): 53–62PubMedCrossRef Hallgren A, Abednazari H, Ekdahl C, et al. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001 Jul; 48(1): 53–62PubMedCrossRef
246.
Zurück zum Zitat Neyfakh AA. The ostensible paradox of multidrug recognition. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 151–4PubMed Neyfakh AA. The ostensible paradox of multidrug recognition. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 151–4PubMed
247.
Zurück zum Zitat Godsey MH, Baranova NN, Neyfakh AA, et al. Crystal structure of MtaN, a global multidrug transporter gene activator. J Biol Chem 2001 Dec 14; 276(50): 47178–84PubMedCrossRef Godsey MH, Baranova NN, Neyfakh AA, et al. Crystal structure of MtaN, a global multidrug transporter gene activator. J Biol Chem 2001 Dec 14; 276(50): 47178–84PubMedCrossRef
248.
Zurück zum Zitat Heldwein EE, Brennan RG. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 2001 Jan 18; 409(6818): 378–82PubMedCrossRef Heldwein EE, Brennan RG. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 2001 Jan 18; 409(6818): 378–82PubMedCrossRef
249.
Zurück zum Zitat Neyfakh AA. The multidrug efflux transporter of Bacillussubtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob Agents Chemother 1992 Feb; 36(2): 484–5PubMedCrossRef Neyfakh AA. The multidrug efflux transporter of Bacillussubtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob Agents Chemother 1992 Feb; 36(2): 484–5PubMedCrossRef
250.
Zurück zum Zitat Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcuslactis. Biochim Biophys Acta 2002 Sep 10; 1555(1–3): 1–7PubMed Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcuslactis. Biochim Biophys Acta 2002 Sep 10; 1555(1–3): 1–7PubMed
251.
Zurück zum Zitat van Veen HW, Putman M, Margolles A, et al. Molecular pharmacological characterization of two multidrug transporters in Lactococcuslactis. Pharmacol Ther 2000 Mar; 85(3): 245–9PubMedCrossRef van Veen HW, Putman M, Margolles A, et al. Molecular pharmacological characterization of two multidrug transporters in Lactococcuslactis. Pharmacol Ther 2000 Mar; 85(3): 245–9PubMedCrossRef
252.
Zurück zum Zitat van Veen HW, Venema K, Bolhuis H, et al. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR 1. Proc Natl Acad Sci U S A 1996 Oct 1; 93(20): 10668–72PubMedCrossRef van Veen HW, Venema K, Bolhuis H, et al. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR 1. Proc Natl Acad Sci U S A 1996 Oct 1; 93(20): 10668–72PubMedCrossRef
253.
Zurück zum Zitat van Veen HW, Margolles A, Muller M, et al. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 2000 Jun 1; 19(11): 2503–14PubMedCrossRef van Veen HW, Margolles A, Muller M, et al. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 2000 Jun 1; 19(11): 2503–14PubMedCrossRef
254.
Zurück zum Zitat Poelarends GJ, Konings WN. The transmembrane domains of the ABC multidrug transporter LmrA form a cytoplasmic exposed, aqueous chamber within the membrane. J Biol Chem 2002 Nov 8; 277(45): 42891–8PubMedCrossRef Poelarends GJ, Konings WN. The transmembrane domains of the ABC multidrug transporter LmrA form a cytoplasmic exposed, aqueous chamber within the membrane. J Biol Chem 2002 Nov 8; 277(45): 42891–8PubMedCrossRef
255.
Zurück zum Zitat van Veen HW, Callaghan R, Soceneantu L, et al. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 1998 Jan 15; 391(6664): 291–5PubMedCrossRef van Veen HW, Callaghan R, Soceneantu L, et al. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 1998 Jan 15; 391(6664): 291–5PubMedCrossRef
256.
Zurück zum Zitat Hofmeyr JH, Rohwer JM, Snoep JL, et al. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcuslactis. Mol Biol Rep 2002; 29(1–2): 107–12PubMedCrossRef Hofmeyr JH, Rohwer JM, Snoep JL, et al. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcuslactis. Mol Biol Rep 2002; 29(1–2): 107–12PubMedCrossRef
257.
Zurück zum Zitat Putman M, Van Veen HW, Degener JE, et al. Antibiotic resistance: era of the multidrug pump. Mol Microbiol 2000 May; 36(3): 772–3PubMedCrossRef Putman M, Van Veen HW, Degener JE, et al. Antibiotic resistance: era of the multidrug pump. Mol Microbiol 2000 May; 36(3): 772–3PubMedCrossRef
258.
Zurück zum Zitat Putman M, Koole LA, van Veen HW, et al. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 1999 Oct 19; 38(42): 13900–5PubMedCrossRef Putman M, Koole LA, van Veen HW, et al. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 1999 Oct 19; 38(42): 13900–5PubMedCrossRef
259.
Zurück zum Zitat Putman M, van Veen HW, Degener JE, et al. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 2001 Oct; 147 (Pt 10): 2873–80PubMed Putman M, van Veen HW, Degener JE, et al. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 2001 Oct; 147 (Pt 10): 2873–80PubMed
260.
Zurück zum Zitat Dye C, Scheele S, Dolin P, et al. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO global surveillance and monitoring project. JAMA 1999; 282(7): 677–86 Dye C, Scheele S, Dolin P, et al. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO global surveillance and monitoring project. JAMA 1999; 282(7): 677–86
261.
Zurück zum Zitat Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 1994 Oct 15; 123(1–2): 11–8PubMedCrossRef Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 1994 Oct 15; 123(1–2): 11–8PubMedCrossRef
262.
Zurück zum Zitat Trias J, Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol 1994 Oct; 14(2): 283–90PubMedCrossRef Trias J, Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol 1994 Oct; 14(2): 283–90PubMedCrossRef
263.
Zurück zum Zitat Engelhardt H, Heinz C, Niederweis M. A tetrameric porin limits the cell wall permeability of Mycobacteriumsmegmatis. J Biol Chem 2002 Oct 4; 277(40): 37567–72PubMedCrossRef Engelhardt H, Heinz C, Niederweis M. A tetrameric porin limits the cell wall permeability of Mycobacteriumsmegmatis. J Biol Chem 2002 Oct 4; 277(40): 37567–72PubMedCrossRef
264.
265.
Zurück zum Zitat Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacteriumsmegmatismediated by LfrA, a multidrug efflux pump. J Bacteriol 1996 Jul; 178(13): 3791–5PubMed Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacteriumsmegmatismediated by LfrA, a multidrug efflux pump. J Bacteriol 1996 Jul; 178(13): 3791–5PubMed
266.
Zurück zum Zitat Sander P, De Rossi E, Boddinghaus B, et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol Lett 2000 Dec 1; 193(1): 19–23PubMedCrossRef Sander P, De Rossi E, Boddinghaus B, et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol Lett 2000 Dec 1; 193(1): 19–23PubMedCrossRef
267.
Zurück zum Zitat Wilson M, DeRisi J, Kristensen HH, et al. Exploring drug-induced alterations in gene expression in Mycobacteriumtuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 1999 Oct 26; 96(22): 12833–8PubMedCrossRef Wilson M, DeRisi J, Kristensen HH, et al. Exploring drug-induced alterations in gene expression in Mycobacteriumtuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 1999 Oct 26; 96(22): 12833–8PubMedCrossRef
268.
Zurück zum Zitat Viveiros M, Portugal I, Bettencourt R, et al. Isoniazid-induced transient high-level resistance in Mycobacteriumtuberculosis. Antimicrob Agents Chemother 2002 Sep; 46(9): 2804–10PubMedCrossRef Viveiros M, Portugal I, Bettencourt R, et al. Isoniazid-induced transient high-level resistance in Mycobacteriumtuberculosis. Antimicrob Agents Chemother 2002 Sep; 46(9): 2804–10PubMedCrossRef
269.
Zurück zum Zitat Zhang Y, Scorpio A, Nikaido H, et al. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacteriumtuberculosisto pyrazinamide. J Bacteriol 1999 Apr; 181(7): 2044–9PubMed Zhang Y, Scorpio A, Nikaido H, et al. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacteriumtuberculosisto pyrazinamide. J Bacteriol 1999 Apr; 181(7): 2044–9PubMed
270.
Zurück zum Zitat Schaller A, Guo M, Gisanrin O, et al. Escherichiacoligenes involved in resistance to pyrazinoic acid, the active component of the tuberculosis drug pyrazinamide. FEMS Microbiol Lett 2002 Jun 4; 211(2): 265–70PubMedCrossRef Schaller A, Guo M, Gisanrin O, et al. Escherichiacoligenes involved in resistance to pyrazinoic acid, the active component of the tuberculosis drug pyrazinamide. FEMS Microbiol Lett 2002 Jun 4; 211(2): 265–70PubMedCrossRef
271.
Zurück zum Zitat Piddock LJ, Williams KJ, Ricci V. Accumulation of rifampicin by Mycobacteriumaurum, Mycobacteriumsmegmatisand Mycobacterium tuberculosis. J Antimicrob Chemother 2000 Feb; 45(2): 159–65PubMedCrossRef Piddock LJ, Williams KJ, Ricci V. Accumulation of rifampicin by Mycobacteriumaurum, Mycobacteriumsmegmatisand Mycobacterium tuberculosis. J Antimicrob Chemother 2000 Feb; 45(2): 159–65PubMedCrossRef
272.
Zurück zum Zitat Hui J, Gordon N, Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother 1977 May; 11(5): 773–9PubMedCrossRef Hui J, Gordon N, Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother 1977 May; 11(5): 773–9PubMedCrossRef
273.
Zurück zum Zitat Li XZ, Wang YS, He ZN. Alteration of permeability of bacterial envelope barrier in rifamdin-resistant Mycobacteriumtuberculosis [in Chinese]. Hua Xi Yi Ke Da Xue Xue Bao 1988 Dec; 19(4): 388–91PubMed Li XZ, Wang YS, He ZN. Alteration of permeability of bacterial envelope barrier in rifamdin-resistant Mycobacteriumtuberculosis [in Chinese]. Hua Xi Yi Ke Da Xue Xue Bao 1988 Dec; 19(4): 388–91PubMed
274.
Zurück zum Zitat Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacteriumtuberculosis. FEMS Microbial Rev 2000; 24(4): 449–67CrossRef Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacteriumtuberculosis. FEMS Microbial Rev 2000; 24(4): 449–67CrossRef
275.
Zurück zum Zitat Kaur P, Russell J. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius. J Biol Chem 1998 Jul 10; 273(28): 17933–9PubMedCrossRef Kaur P, Russell J. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius. J Biol Chem 1998 Jul 10; 273(28): 17933–9PubMedCrossRef
276.
Zurück zum Zitat Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 1991 Oct 1; 88(19): 8553–7PubMedCrossRef Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 1991 Oct 1; 88(19): 8553–7PubMedCrossRef
277.
Zurück zum Zitat Banerjee SK, Bhatt K, Misra P, et al. Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacteriumsmegmatis. Mol Gen Genet 2000 Jan; 262(6): 949–56PubMedCrossRef Banerjee SK, Bhatt K, Misra P, et al. Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacteriumsmegmatis. Mol Gen Genet 2000 Jan; 262(6): 949–56PubMedCrossRef
278.
Zurück zum Zitat Bhatt K, Banerjee SK, Chakraborti PK. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacteriumsmegmatis. Eur J Biochem 2000 Jul; 267(13): 4028–32PubMedCrossRef Bhatt K, Banerjee SK, Chakraborti PK. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacteriumsmegmatis. Eur J Biochem 2000 Jul; 267(13): 4028–32PubMedCrossRef
279.
Zurück zum Zitat Reizer J, Reizer A, Saier Jr MH. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci 1992 Oct; 1(10): 1326–32PubMedCrossRef Reizer J, Reizer A, Saier Jr MH. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci 1992 Oct; 1(10): 1326–32PubMedCrossRef
280.
Zurück zum Zitat Ninio S, Rotem D, Schuldiner S. Functional analysis of novel multidrug transporters from human pathogens. J Biol Chem 2001 Dec 21; 276(51): 48250–6PubMed Ninio S, Rotem D, Schuldiner S. Functional analysis of novel multidrug transporters from human pathogens. J Biol Chem 2001 Dec 21; 276(51): 48250–6PubMed
281.
Zurück zum Zitat Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacteriumtuberculosis: 1998 update. Tuber Lung Dis 1998; 79(1): 3–29PubMedCrossRef Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacteriumtuberculosis: 1998 update. Tuber Lung Dis 1998; 79(1): 3–29PubMedCrossRef
282.
Zurück zum Zitat Zheleznova EE, Markham PN, Neyfakh AA, et al. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 1999 Feb 5; 96(3): 353–62PubMedCrossRef Zheleznova EE, Markham PN, Neyfakh AA, et al. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 1999 Feb 5; 96(3): 353–62PubMedCrossRef
283.
Zurück zum Zitat Vazquez-Laslop N, Markham PN, Neyfakh AA. Mechanism of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand-binding site. Biochemistry 1999 Dec 21; 38(51): 16925–31PubMedCrossRef Vazquez-Laslop N, Markham PN, Neyfakh AA. Mechanism of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand-binding site. Biochemistry 1999 Dec 21; 38(51): 16925–31PubMedCrossRef
284.
Zurück zum Zitat Schumacher MA, Miller MC, Grkovic S, et al. Structural mechanisms of QacR induction and multidrug recognition. Science 2001 Dec 7; 294(5549): 2158–63PubMedCrossRef Schumacher MA, Miller MC, Grkovic S, et al. Structural mechanisms of QacR induction and multidrug recognition. Science 2001 Dec 7; 294(5549): 2158–63PubMedCrossRef
285.
Zurück zum Zitat Schumacher MA, Brennan RG. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 2002 Aug; 45(4): 885–93PubMedCrossRef Schumacher MA, Brennan RG. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 2002 Aug; 45(4): 885–93PubMedCrossRef
286.
Zurück zum Zitat Neyfakh AA. Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 2002 Jun; 44(5): 1123–30PubMedCrossRef Neyfakh AA. Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 2002 Jun; 44(5): 1123–30PubMedCrossRef
287.
Zurück zum Zitat Vincent F, Spinelli S, Ramoni R, et al. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J Mol Biol 2000 Jun 30; 300(1): 127–39PubMedCrossRef Vincent F, Spinelli S, Ramoni R, et al. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J Mol Biol 2000 Jun 30; 300(1): 127–39PubMedCrossRef
288.
Zurück zum Zitat Murakami S, Nakashima R, Yamashita E, et al. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002 Oct 10; 419(6907): 587–93PubMedCrossRef Murakami S, Nakashima R, Yamashita E, et al. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002 Oct 10; 419(6907): 587–93PubMedCrossRef
289.
Zurück zum Zitat Fujihira E, Tamura N, Yamaguchi A. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichiacoli. J Biochem (Tokyo) 2002 Jan; 131(1): 145–51CrossRef Fujihira E, Tamura N, Yamaguchi A. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichiacoli. J Biochem (Tokyo) 2002 Jan; 131(1): 145–51CrossRef
290.
Zurück zum Zitat Gotoh N, Kusumi T, Tsujimoto H, et al. Topological analysis of an RND family transporter, MexD of Pseudomonasaeruginosa. FEBS Lett 1999 Sep 10; 458(1): 32–6PubMedCrossRef Gotoh N, Kusumi T, Tsujimoto H, et al. Topological analysis of an RND family transporter, MexD of Pseudomonasaeruginosa. FEBS Lett 1999 Sep 10; 458(1): 32–6PubMedCrossRef
291.
Zurück zum Zitat Guan L, Ehrmann M, Yoneyama H, et al. Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA,B-OprM extrusion pump in Pseudomonasaeruginosa. J Biol Chem 1999 Apr 9; 274(15): 10517–22PubMedCrossRef Guan L, Ehrmann M, Yoneyama H, et al. Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA,B-OprM extrusion pump in Pseudomonasaeruginosa. J Biol Chem 1999 Apr 9; 274(15): 10517–22PubMedCrossRef
292.
Zurück zum Zitat Yoneyama H, Ocaktan A, Gotoh N, et al. Subunit swapping in the Mex-extrusion pumps in Pseudomonasaeruginosa. Biochem Biophys Res Commun 1998 Mar 27; 244(3): 898–902PubMedCrossRef Yoneyama H, Ocaktan A, Gotoh N, et al. Subunit swapping in the Mex-extrusion pumps in Pseudomonasaeruginosa. Biochem Biophys Res Commun 1998 Mar 27; 244(3): 898–902PubMedCrossRef
293.
Zurück zum Zitat Tikhonova EB, Wang Q, Zgurskaya HI. Chimeric analysis of the multicomponent multidrug efflux transporters from gramnegative bacteria. J Bacteriol 2002 Dec; 184(23): 6499–507PubMedCrossRef Tikhonova EB, Wang Q, Zgurskaya HI. Chimeric analysis of the multicomponent multidrug efflux transporters from gramnegative bacteria. J Bacteriol 2002 Dec; 184(23): 6499–507PubMedCrossRef
294.
Zurück zum Zitat Mao W, Warren MS, Black DS, et al. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonasaeruginosaare involved in substrate recognition. Mol Microbiol 2002 Nov; 46(3): 889–901PubMedCrossRef Mao W, Warren MS, Black DS, et al. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonasaeruginosaare involved in substrate recognition. Mol Microbiol 2002 Nov; 46(3): 889–901PubMedCrossRef
295.
Zurück zum Zitat Yu EW, McDermott G, Zgurskaya HI, et al. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 2003; 300(5621): 976–80PubMedCrossRef Yu EW, McDermott G, Zgurskaya HI, et al. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 2003; 300(5621): 976–80PubMedCrossRef
296.
Zurück zum Zitat Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichiacoli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185(19): 5657–64PubMedCrossRef Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichiacoli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185(19): 5657–64PubMedCrossRef
297.
Zurück zum Zitat Goldberg M, Pribyl T, Juhnke S, et al. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 1999 Sep 10; 274(37): 26065–70PubMedCrossRef Goldberg M, Pribyl T, Juhnke S, et al. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 1999 Sep 10; 274(37): 26065–70PubMedCrossRef
298.
Zurück zum Zitat Guan L, Nakae T. Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonasaeruginosa. J Bacteriol 2001 Mar; 183(5): 1734–9PubMedCrossRef Guan L, Nakae T. Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonasaeruginosa. J Bacteriol 2001 Mar; 183(5): 1734–9PubMedCrossRef
299.
Zurück zum Zitat Aires JR, Pechere JC, Van Delden C, et al. Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonasaeruginosa. Antimicrob Agents Chemother 2002 Jul; 46(7): 2169–73PubMedCrossRef Aires JR, Pechere JC, Van Delden C, et al. Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonasaeruginosa. Antimicrob Agents Chemother 2002 Jul; 46(7): 2169–73PubMedCrossRef
300.
Zurück zum Zitat Zgurskaya HI, Nikaido H. AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 1999 Jan 8; 285(1): 409–20PubMedCrossRef Zgurskaya HI, Nikaido H. AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 1999 Jan 8; 285(1): 409–20PubMedCrossRef
301.
Zurück zum Zitat Zgurskaya HI, Nikaido H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J Bacteriol 2000 Aug; 182(15): 4264–7PubMedCrossRef Zgurskaya HI, Nikaido H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J Bacteriol 2000 Aug; 182(15): 4264–7PubMedCrossRef
302.
Zurück zum Zitat Avila-Sakar AJ, Misaghi S, Wilson-Kubalek EM, et al. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J Struct Biol 2001 Oct; 136(1): 81–8PubMedCrossRef Avila-Sakar AJ, Misaghi S, Wilson-Kubalek EM, et al. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. J Struct Biol 2001 Oct; 136(1): 81–8PubMedCrossRef
303.
304.
Zurück zum Zitat Seiffer D, Klein JR, Plapp R. EnvC, a new lipoprotein of the cytoplasmic membrane of Escherichiacoli. FEMS Microbiol Lett 1993 Mar 1; 107(2–3): 175–8PubMedCrossRef Seiffer D, Klein JR, Plapp R. EnvC, a new lipoprotein of the cytoplasmic membrane of Escherichiacoli. FEMS Microbiol Lett 1993 Mar 1; 107(2–3): 175–8PubMedCrossRef
305.
Zurück zum Zitat Yoneyama H, Maseda H, Kamiguchi H, et al. Function of the membrane fusion protein, MexA, of the MexA,B-OprM efflux pump in Pseudomonasaeruginosawithout an anchoring membrane. J Biol Chem 2000 Feb 18; 275(7): 4628–34PubMedCrossRef Yoneyama H, Maseda H, Kamiguchi H, et al. Function of the membrane fusion protein, MexA, of the MexA,B-OprM efflux pump in Pseudomonasaeruginosawithout an anchoring membrane. J Biol Chem 2000 Feb 18; 275(7): 4628–34PubMedCrossRef
306.
Zurück zum Zitat Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 2000 Jul; 37(2): 219–25PubMedCrossRef Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 2000 Jul; 37(2): 219–25PubMedCrossRef
307.
Zurück zum Zitat Hwang J, Tai PC. Mutational analysis of CvaA in the highly conserved domain of the membrane fusion protein family. Curr Microbiol 1999 Oct; 39(4): 195–9PubMedCrossRef Hwang J, Tai PC. Mutational analysis of CvaA in the highly conserved domain of the membrane fusion protein family. Curr Microbiol 1999 Oct; 39(4): 195–9PubMedCrossRef
308.
Zurück zum Zitat Hwang J, Zhong X, Tai PC. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J Bacteriol 1997 Oct; 179(20): 6264–70PubMed Hwang J, Zhong X, Tai PC. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J Bacteriol 1997 Oct; 179(20): 6264–70PubMed
309.
Zurück zum Zitat Pimenta AL, Young J, Holland IB, et al. Antibody analysis of the localisation, expression and stability of HlyD, the MFP component of the E. colihaemolysin translocator. Mol Gen Genet 1999 Feb; 261(1): 122–32PubMedCrossRef Pimenta AL, Young J, Holland IB, et al. Antibody analysis of the localisation, expression and stability of HlyD, the MFP component of the E. colihaemolysin translocator. Mol Gen Genet 1999 Feb; 261(1): 122–32PubMedCrossRef
310.
Zurück zum Zitat Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000 Jun 22; 405(6789): 914–9PubMedCrossRef Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000 Jun 22; 405(6789): 914–9PubMedCrossRef
311.
Zurück zum Zitat Andersen C, Hughes C, Koronakis V. Chunnel vision: export and efflux through bacterial channel-tunnels. EMBO Rep 2000 Oct; 1(4): 313–8PubMedCrossRef Andersen C, Hughes C, Koronakis V. Chunnel vision: export and efflux through bacterial channel-tunnels. EMBO Rep 2000 Oct; 1(4): 313–8PubMedCrossRef
312.
Zurück zum Zitat Wong KK, Brinkman FS, Benz RS, et al. Evaluation of a structural model of Pseudomonasaeruginosaouter membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance. J Bacteriol 2001 Jan; 183(1): 367–74PubMedCrossRef Wong KK, Brinkman FS, Benz RS, et al. Evaluation of a structural model of Pseudomonasaeruginosaouter membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance. J Bacteriol 2001 Jan; 183(1): 367–74PubMedCrossRef
313.
Zurück zum Zitat Li XZ, Poole K. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonasaeruginosa. J Bacteriol 2001 Jan; 183(1): 12–27PubMedCrossRef Li XZ, Poole K. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonasaeruginosa. J Bacteriol 2001 Jan; 183(1): 12–27PubMedCrossRef
314.
Zurück zum Zitat Nakajima A, Sugimoto Y, Yoneyama H, et al. Localization of the outer membrane subunit OprM of resistance-nodulation-cell division family multicomponent efflux pump in Pseudomonas aeruginosa. J Biol Chem 2000 Sep 29; 275(39): 30064–8PubMedCrossRef Nakajima A, Sugimoto Y, Yoneyama H, et al. Localization of the outer membrane subunit OprM of resistance-nodulation-cell division family multicomponent efflux pump in Pseudomonas aeruginosa. J Biol Chem 2000 Sep 29; 275(39): 30064–8PubMedCrossRef
315.
Zurück zum Zitat Benz R, Maier E, Gentschev I. TolC of Escherichiacolifunctions as an outer membrane channel. Zentralbl Bakteriol 1993 Apr; 278(2–3): 187–96PubMedCrossRef Benz R, Maier E, Gentschev I. TolC of Escherichiacolifunctions as an outer membrane channel. Zentralbl Bakteriol 1993 Apr; 278(2–3): 187–96PubMedCrossRef
316.
Zurück zum Zitat Wong KK, Hancock RE. Insertion mutagenesis and membrane topology model of the Pseudomonasaeruginosaouter membrane protein OprM. J Bacteriol 2000 May; 182(9): 2402–10PubMedCrossRef Wong KK, Hancock RE. Insertion mutagenesis and membrane topology model of the Pseudomonasaeruginosaouter membrane protein OprM. J Bacteriol 2000 May; 182(9): 2402–10PubMedCrossRef
317.
Zurück zum Zitat Yoshihara E, Maseda H, Saito K. The outer membrane component of the multidrug efflux pump from Pseudomonasaeruginosa may be a gated channel. Eur J Biochem 2002 Oct; 269(19): 4738–45PubMedCrossRef Yoshihara E, Maseda H, Saito K. The outer membrane component of the multidrug efflux pump from Pseudomonasaeruginosa may be a gated channel. Eur J Biochem 2002 Oct; 269(19): 4738–45PubMedCrossRef
318.
Zurück zum Zitat Postle K. TonB protein and energy transduction between membranes. J Bioenerg Biomembr 1993 Dec; 25(6): 591–601PubMed Postle K. TonB protein and energy transduction between membranes. J Bioenerg Biomembr 1993 Dec; 25(6): 591–601PubMed
319.
Zurück zum Zitat Zhao Q, Li XZ, Mistry A, et al. Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1998 Sep; 42(9): 2225–31PubMed Zhao Q, Li XZ, Mistry A, et al. Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1998 Sep; 42(9): 2225–31PubMed
320.
Zurück zum Zitat Godoy P, Ramos-Gonzalez MI, Ramos JL. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putidaDOT-T1E. J Bacteriol 2001 Sep; 183(18): 5285–92PubMedCrossRef Godoy P, Ramos-Gonzalez MI, Ramos JL. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putidaDOT-T1E. J Bacteriol 2001 Sep; 183(18): 5285–92PubMedCrossRef
321.
Zurück zum Zitat Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, et al. Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 2002 Feb; 46(2): 561–5PubMedCrossRef Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, et al. Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 2002 Feb; 46(2): 561–5PubMedCrossRef
322.
Zurück zum Zitat Maseda H, Kitao M, Eda S, et al. A novel assembly process of the multicomponent xenobiotic efflux pump in Pseudomonas aeruginosa. Mol Microbiol 2002 Nov; 46(3): 677–86PubMedCrossRef Maseda H, Kitao M, Eda S, et al. A novel assembly process of the multicomponent xenobiotic efflux pump in Pseudomonas aeruginosa. Mol Microbiol 2002 Nov; 46(3): 677–86PubMedCrossRef
323.
Zurück zum Zitat Helling RB, Janes BK, Kimball H, et al. Toxic waste disposal in Escherichiacoli. J Bacteriol 2002 Jul; 184(13): 3699–703PubMedCrossRef Helling RB, Janes BK, Kimball H, et al. Toxic waste disposal in Escherichiacoli. J Bacteriol 2002 Jul; 184(13): 3699–703PubMedCrossRef
324.
Zurück zum Zitat Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002 Dec; 66(4): 671–701PubMedCrossRef Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002 Dec; 66(4): 671–701PubMedCrossRef
325.
Zurück zum Zitat Ma D, Alberti M, Lynch C, et al. The local repressor AcrR plays a modulating role in the regulation of acrABgenes of Escherichia coliby global stress signals. Mol Microbiol 1996 Jan; 19(1): 101–12PubMedCrossRef Ma D, Alberti M, Lynch C, et al. The local repressor AcrR plays a modulating role in the regulation of acrABgenes of Escherichia coliby global stress signals. Mol Microbiol 1996 Jan; 19(1): 101–12PubMedCrossRef
326.
Zurück zum Zitat Orth P, Schnappinger D, Hillen W, et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 2000 Mar; 7(3): 215–9PubMedCrossRef Orth P, Schnappinger D, Hillen W, et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 2000 Mar; 7(3): 215–9PubMedCrossRef
327.
Zurück zum Zitat Orth P, Cordes F, Schnappinger D, et al. Conformational changes of the Tet repressor induced by tetracycline trapping. J Mol Biol 1998 Jun 5; 279(2): 439–47PubMedCrossRef Orth P, Cordes F, Schnappinger D, et al. Conformational changes of the Tet repressor induced by tetracycline trapping. J Mol Biol 1998 Jun 5; 279(2): 439–47PubMedCrossRef
328.
Zurück zum Zitat Bochner BR, Huang HC, Schieven GL, et al. Positive selection for loss of tetracycline resistance. J Bacteriol 1980 Aug; 143(2): 926–33PubMed Bochner BR, Huang HC, Schieven GL, et al. Positive selection for loss of tetracycline resistance. J Bacteriol 1980 Aug; 143(2): 926–33PubMed
329.
Zurück zum Zitat Masuda N, Sakagawa E, Ohya S, et al. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonasaeruginosa. Antimicrob Agents Chemother 2000 Sep; 44(9): 2242–6PubMedCrossRef Masuda N, Sakagawa E, Ohya S, et al. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonasaeruginosa. Antimicrob Agents Chemother 2000 Sep; 44(9): 2242–6PubMedCrossRef
330.
Zurück zum Zitat Duque E, Segura A, Mosqueda G, et al. Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonasputida. Mol Microbiol 2001 Feb; 39(4): 1100–6PubMedCrossRef Duque E, Segura A, Mosqueda G, et al. Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonasputida. Mol Microbiol 2001 Feb; 39(4): 1100–6PubMedCrossRef
331.
Zurück zum Zitat Lomovskaya O, Lewis K, Matin A. EmrR is a negative regulator of the Escherichiacolimultidrug resistance pump EmrAB. J Bacteriol 1995 May; 177(9): 2328–34PubMed Lomovskaya O, Lewis K, Matin A. EmrR is a negative regulator of the Escherichiacolimultidrug resistance pump EmrAB. J Bacteriol 1995 May; 177(9): 2328–34PubMed
332.
Zurück zum Zitat Lomovskaya O, Kawai F, Matin A. Differential regulation of the mcband emroperons of Escherichiacoli: role of mcbin multidrug resistance. Antimicrob Agents Chemother 1996 Apr; 40(4): 1050–2PubMed Lomovskaya O, Kawai F, Matin A. Differential regulation of the mcband emroperons of Escherichiacoli: role of mcbin multidrug resistance. Antimicrob Agents Chemother 1996 Apr; 40(4): 1050–2PubMed
333.
Zurück zum Zitat Relia M, Haas D. Resistance of PseudomonasaeruginosaPAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 1982 Aug; 22(2): 242–9CrossRef Relia M, Haas D. Resistance of PseudomonasaeruginosaPAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 1982 Aug; 22(2): 242–9CrossRef
334.
Zurück zum Zitat Adewoye L, Sutherland A, Srikumar R, et al. The MexR repressor of the MexAB-OprM multidrug efflux operon in Pseudomonasaeruginosa:characterization of mutations compromising activity. J Bacteriol 2002 Aug; 184(15): 4308–12PubMedCrossRef Adewoye L, Sutherland A, Srikumar R, et al. The MexR repressor of the MexAB-OprM multidrug efflux operon in Pseudomonasaeruginosa:characterization of mutations compromising activity. J Bacteriol 2002 Aug; 184(15): 4308–12PubMedCrossRef
335.
Zurück zum Zitat Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexRgene of the Pseudomonasaeruginosa chromosome. FEMS Microbiol Lett 1999 Oct 1; 179(1): 67–72PubMedCrossRef Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexRgene of the Pseudomonasaeruginosa chromosome. FEMS Microbiol Lett 1999 Oct 1; 179(1): 67–72PubMedCrossRef
336.
Zurück zum Zitat Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonasaeruginosa. Microb Drug Resist 1998 Winter; 4(4): 257–61PubMedCrossRef Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonasaeruginosa. Microb Drug Resist 1998 Winter; 4(4): 257–61PubMedCrossRef
337.
Zurück zum Zitat Evans K, Adewoye L, Poole K. MexR repressor of the MexAB-OprM multidrug efflux operon of Pseudomonasaeruginosa: identification of MexR binding sites in the MexA-MexR intergenic region. J Bacteriol 2001 Feb; 183(3): 807–12PubMedCrossRef Evans K, Adewoye L, Poole K. MexR repressor of the MexAB-OprM multidrug efflux operon of Pseudomonasaeruginosa: identification of MexR binding sites in the MexA-MexR intergenic region. J Bacteriol 2001 Feb; 183(3): 807–12PubMedCrossRef
338.
Zurück zum Zitat Lim D, Poole K, Strynadka NC. Crystal structure of the MexR repressor of the mexRAB-oprMmultidrug efflux operon of Pseudomonasaeruginosa. J Biol Chem 2002 Aug 9; 277(32): 29253–9PubMedCrossRef Lim D, Poole K, Strynadka NC. Crystal structure of the MexR repressor of the mexRAB-oprMmultidrug efflux operon of Pseudomonasaeruginosa. J Biol Chem 2002 Aug 9; 277(32): 29253–9PubMedCrossRef
339.
Zurück zum Zitat Alekshun MN, Levy SB, Mealy TR, et al. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Biol 2001 Aug; 8(8): 710–4PubMedCrossRef Alekshun MN, Levy SB, Mealy TR, et al. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Biol 2001 Aug; 8(8): 710–4PubMedCrossRef
340.
Zurück zum Zitat Cao L, Srikumar R, Poole K. Identification and characterization of nalCmultidrug-resistant isolates of Pseudomonasaeruginosa [abstract no. C1-430]. Abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Washington, DC; 2002 Sep 27–30, San Diego (CA), 29 Cao L, Srikumar R, Poole K. Identification and characterization of nalCmultidrug-resistant isolates of Pseudomonasaeruginosa [abstract no. C1-430]. Abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Washington, DC; 2002 Sep 27–30, San Diego (CA), 29
341.
Zurück zum Zitat Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 1992 Aug 5; 267(22): 15869–74PubMed Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 1992 Aug 5; 267(22): 15869–74PubMed
342.
Zurück zum Zitat Shiba T, Ishiguro K, Takemoto N, et al. Purification and characterization of the PseudomonasaeruginosaNfxB protein, the negative regulator of the nfxBgene. J Bacteriol 1995 Oct; 177(20): 5872–7PubMed Shiba T, Ishiguro K, Takemoto N, et al. Purification and characterization of the PseudomonasaeruginosaNfxB protein, the negative regulator of the nfxBgene. J Bacteriol 1995 Oct; 177(20): 5872–7PubMed
343.
Zurück zum Zitat Köhler T, Epp SF, Curty LK, et al. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonasaeruginosa. J Bacteriol 1999 Oct; 181(20): 6300–5PubMed Köhler T, Epp SF, Curty LK, et al. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonasaeruginosa. J Bacteriol 1999 Oct; 181(20): 6300–5PubMed
344.
Zurück zum Zitat Schell MA. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 1993; 47: 597–626PubMedCrossRef Schell MA. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 1993; 47: 597–626PubMedCrossRef
345.
Zurück zum Zitat Grkovic S, Brown MH, Roberts NJ, et al. QacR is a repressor protein that regulates expression of the Staphylococcusaureus multidrug efflux pump QacA. J Biol Chem 1998 Jul 17; 273(29): 18665–73PubMedCrossRef Grkovic S, Brown MH, Roberts NJ, et al. QacR is a repressor protein that regulates expression of the Staphylococcusaureus multidrug efflux pump QacA. J Biol Chem 1998 Jul 17; 273(29): 18665–73PubMedCrossRef
346.
Zurück zum Zitat Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69: 183–215PubMedCrossRef Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69: 183–215PubMedCrossRef
347.
Zurück zum Zitat Kieboom J, Dennis JJ, Zylstra GJ, et al. Active efflux of organic solvents by PseudomonasputidaS12 is induced by solvents. J Bacteriol 1998 Dec; 180(24): 6769–72PubMed Kieboom J, Dennis JJ, Zylstra GJ, et al. Active efflux of organic solvents by PseudomonasputidaS12 is induced by solvents. J Bacteriol 1998 Dec; 180(24): 6769–72PubMed
348.
Zurück zum Zitat Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the marregulon. Antimicrob Agents Chemother 1997 Oct; 41(10): 2067–75PubMed Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the marregulon. Antimicrob Agents Chemother 1997 Oct; 41(10): 2067–75PubMed
349.
Zurück zum Zitat Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to maroperator sequences. Proc Natl Acad Sci U S A 1995 Jun 6; 92(12): 5456–60PubMedCrossRef Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to maroperator sequences. Proc Natl Acad Sci U S A 1995 Jun 6; 92(12): 5456–60PubMedCrossRef
350.
Zurück zum Zitat Seoane AS, Levy SB. Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol 1995 Jun; 177(12): 3414–9PubMed Seoane AS, Levy SB. Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol 1995 Jun; 177(12): 3414–9PubMed
351.
Zurück zum Zitat Gallegos MT, Michan C, Ramos JL. The XylS/AraC family of regulators. Nucleic Acids Res 1993 Feb 25; 21(4): 807–10PubMedCrossRef Gallegos MT, Michan C, Ramos JL. The XylS/AraC family of regulators. Nucleic Acids Res 1993 Feb 25; 21(4): 807–10PubMedCrossRef
352.
Zurück zum Zitat Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichiacoliby constitutive expression of MarA. J Bacteriol 2000 Jun; 182(12): 3467–74PubMedCrossRef Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichiacoliby constitutive expression of MarA. J Bacteriol 2000 Jun; 182(12): 3467–74PubMedCrossRef
353.
Zurück zum Zitat Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichiacoli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996 Jan; 178(1): 306–8PubMed Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichiacoli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996 Jan; 178(1): 306–8PubMed
354.
Zurück zum Zitat Li H, Park JT. The periplasmic murein peptide-binding protein MppA is a negative regulator of multiple antibiotic resistance in Escherichiacoli. J Bacteriol 1999 Aug; 181(16): 4842–7PubMed Li H, Park JT. The periplasmic murein peptide-binding protein MppA is a negative regulator of multiple antibiotic resistance in Escherichiacoli. J Bacteriol 1999 Aug; 181(16): 4842–7PubMed
355.
Zurück zum Zitat Ma D, Cook DN, Alberti M, et al. Genes acrAand acrBencode a stress-induced efflux system of Escherichiacoli. Mol Microbiol 1995 Apr; 16(1): 45–55PubMedCrossRef Ma D, Cook DN, Alberti M, et al. Genes acrAand acrBencode a stress-induced efflux system of Escherichiacoli. Mol Microbiol 1995 Apr; 16(1): 45–55PubMedCrossRef
356.
Zurück zum Zitat McMurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrABproduces resistance to triclosan in laboratory and clinical strains of Escherichiacoli. FEMS Microbiol Lett 1998 Sep 15; 166(2): 305–9PubMedCrossRef McMurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrABproduces resistance to triclosan in laboratory and clinical strains of Escherichiacoli. FEMS Microbiol Lett 1998 Sep 15; 166(2): 305–9PubMedCrossRef
357.
Zurück zum Zitat White DG, Goldman JD, Demple B, et al. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robAin Escherichiacoli. J Bacteriol 1997 Oct; 179(19): 6122–6PubMed White DG, Goldman JD, Demple B, et al. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robAin Escherichiacoli. J Bacteriol 1997 Oct; 179(19): 6122–6PubMed
358.
Zurück zum Zitat Hidalgo E, Ding H, Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 1997 Jun; 22(6): 207–10PubMedCrossRef Hidalgo E, Ding H, Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 1997 Jun; 22(6): 207–10PubMedCrossRef
359.
Zurück zum Zitat Kwon HJ, Bennik MH, Demple B, etal. Crystal structure of the Escherichia coliRob transcription factor in complex with DNA. Nat Struct Biol 2000 May; 7(5): 424–30PubMedCrossRef Kwon HJ, Bennik MH, Demple B, etal. Crystal structure of the Escherichia coliRob transcription factor in complex with DNA. Nat Struct Biol 2000 May; 7(5): 424–30PubMedCrossRef
360.
Zurück zum Zitat Nakajima H, Kobayashi K, Kobayashi M, etal. Overexpression of the robAgene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 1995 Jun; 61(6): 2302–7PubMed Nakajima H, Kobayashi K, Kobayashi M, etal. Overexpression of the robAgene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 1995 Jun; 61(6): 2302–7PubMed
361.
Zurück zum Zitat Ariza RR, Li Z, Ringstad N, et al. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coliRob protein. J Bacteriol 1995 Apr; 177(7): 1655–61PubMed Ariza RR, Li Z, Ringstad N, et al. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coliRob protein. J Bacteriol 1995 Apr; 177(7): 1655–61PubMed
362.
Zurück zum Zitat Jair KW, Yu X, Skarstad K, et al. Transcriptional activation of promoters of the Superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 1996 May; 178(9): 2507–13PubMed Jair KW, Yu X, Skarstad K, et al. Transcriptional activation of promoters of the Superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 1996 May; 178(9): 2507–13PubMed
363.
Zurück zum Zitat Rosenberg EY, Bertenthal D, Nilles ML, et al. Bile salts and fatty acids induce the expression of Escherichia coliAcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 2003; 48(6): 1609–19PubMedCrossRef Rosenberg EY, Bertenthal D, Nilles ML, et al. Bile salts and fatty acids induce the expression of Escherichia coliAcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 2003; 48(6): 1609–19PubMedCrossRef
364.
Zurück zum Zitat Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coliK-12. J Bacteriol 1998 Feb; 180(4): 938–44PubMed Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coliK-12. J Bacteriol 1998 Feb; 180(4): 938–44PubMed
365.
Zurück zum Zitat Cohen SP, McMurry LM, Levy SB. marAlocus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988 Dec; 170(12): 5416–22PubMed Cohen SP, McMurry LM, Levy SB. marAlocus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988 Dec; 170(12): 5416–22PubMed
366.
Zurück zum Zitat Rosner JL, Chai TJ, Foulds J. Regulation of ompFporin expression by salicylate in Escherichia coli. J Bacteriol 1991 Sep; 173(18): 5631–8PubMed Rosner JL, Chai TJ, Foulds J. Regulation of ompFporin expression by salicylate in Escherichia coli. J Bacteriol 1991 Sep; 173(18): 5631–8PubMed
367.
Zurück zum Zitat Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with β-lactams in intact cells. J Bacteriol 1983 Jan; 153(1): 232–40PubMed Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with β-lactams in intact cells. J Bacteriol 1983 Jan; 153(1): 232–40PubMed
368.
Zurück zum Zitat Nikaido H, Rosenberg EY. Porin channels in Escherichiacoli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983 Jan; 153(1): 241–52PubMed Nikaido H, Rosenberg EY. Porin channels in Escherichiacoli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983 Jan; 153(1): 241–52PubMed
369.
Zurück zum Zitat Rahmati S, Yang S, Davidson AL, et al. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 2002 Feb; 43(3): 677–85PubMedCrossRef Rahmati S, Yang S, Davidson AL, et al. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 2002 Feb; 43(3): 677–85PubMedCrossRef
370.
Zurück zum Zitat George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiellapneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 1995 Aug; 141 (Pt 8): 1909–20PubMedCrossRef George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiellapneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 1995 Aug; 141 (Pt 8): 1909–20PubMedCrossRef
371.
Zurück zum Zitat Vaara M. Antibiotic-supersusceptible mutants of Escherichia coliand Salmonellatyphimurium. Antimicrob Agents Chemother 1993 Nov; 37(11): 2255–60PubMedCrossRef Vaara M. Antibiotic-supersusceptible mutants of Escherichia coliand Salmonellatyphimurium. Antimicrob Agents Chemother 1993 Nov; 37(11): 2255–60PubMedCrossRef
372.
Zurück zum Zitat Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coliK-12 to β-lactams. Antimicrob Agents Chemother 2000 May; 44(5): 1387–90PubMedCrossRef Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coliK-12 to β-lactams. Antimicrob Agents Chemother 2000 May; 44(5): 1387–90PubMedCrossRef
373.
Zurück zum Zitat Cho D, Blais J, Tangen K, et al. Prevalence of efflux pumpsamong clinical isolates of fluoroquinolone-resistant Pseudomonas aeruginosa[abstract no. 1267]. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1999 Sep 26–29; San Francisco (CA), 327 Cho D, Blais J, Tangen K, et al. Prevalence of efflux pumpsamong clinical isolates of fluoroquinolone-resistant Pseudomonas aeruginosa[abstract no. 1267]. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1999 Sep 26–29; San Francisco (CA), 327
374.
Zurück zum Zitat George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichiacoli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 1983 Aug; 155(2): 531–40PubMed George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichiacoli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 1983 Aug; 155(2): 531–40PubMed
375.
Zurück zum Zitat George AM, Levy SB. Gene in the major cotransduction gap of the Escherichia coliK-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 1983 Aug; 155(2): 541–8PubMed George AM, Levy SB. Gene in the major cotransduction gap of the Escherichia coliK-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 1983 Aug; 155(2): 541–8PubMed
376.
Zurück zum Zitat Russell AD. Do biocides select for antibiotic resistance? J Pharm Pharmacol 2000 Feb; 52(2): 227–33PubMedCrossRef Russell AD. Do biocides select for antibiotic resistance? J Pharm Pharmacol 2000 Feb; 52(2): 227–33PubMedCrossRef
377.
Zurück zum Zitat Cohen SP, Levy SB, Foulds J, et al. Salicylate induction of antibiotic resistance in Escherichia coli:activation of the mar operon and a mar-independent pathway. J Bacteriol 1993 Dec; 175(24): 7856–62PubMed Cohen SP, Levy SB, Foulds J, et al. Salicylate induction of antibiotic resistance in Escherichia coli:activation of the mar operon and a mar-independent pathway. J Bacteriol 1993 Dec; 175(24): 7856–62PubMed
378.
Zurück zum Zitat Sumita Y, Fukasawa M. Transient carbapenem resistance induced by salicylate in Pseudomonasaeruginosaassociated with suppression of outer membrane protein D2 synthesis. Antimicrob Agents Chemother 1993 Dec; 37(12): 2743–6PubMedCrossRef Sumita Y, Fukasawa M. Transient carbapenem resistance induced by salicylate in Pseudomonasaeruginosaassociated with suppression of outer membrane protein D2 synthesis. Antimicrob Agents Chemother 1993 Dec; 37(12): 2743–6PubMedCrossRef
379.
Zurück zum Zitat Burns JL, Clark DK. Salicylate-inducible antibiotic resistance in Pseudomonascepaciaassociated with absence of a poreforming outer membrane protein. Antimicrob Agents Chemother 1992 Oct; 36(10): 2280–5PubMedCrossRef Burns JL, Clark DK. Salicylate-inducible antibiotic resistance in Pseudomonascepaciaassociated with absence of a poreforming outer membrane protein. Antimicrob Agents Chemother 1992 Oct; 36(10): 2280–5PubMedCrossRef
380.
Zurück zum Zitat Domenico P, Hopkins T, Cunha BA. The effect of sodium salicylate on antibiotic susceptibility and synergy in Klebsiella pneumoniae. J Antimicrob Chemother 1990 Sep; 26(3): 343–51PubMedCrossRef Domenico P, Hopkins T, Cunha BA. The effect of sodium salicylate on antibiotic susceptibility and synergy in Klebsiella pneumoniae. J Antimicrob Chemother 1990 Sep; 26(3): 343–51PubMedCrossRef
381.
Zurück zum Zitat Schaller A, Sun Z, Yang Y, et al. Salicylate reduces susceptibility of Mycobacteriumtuberculosisto multiple antituberculosis drugs. Antimicrob Agents Chemother 2002 Aug; 46(8): 2636–9PubMedCrossRef Schaller A, Sun Z, Yang Y, et al. Salicylate reduces susceptibility of Mycobacteriumtuberculosisto multiple antituberculosis drugs. Antimicrob Agents Chemother 2002 Aug; 46(8): 2636–9PubMedCrossRef
382.
Zurück zum Zitat Price CT, O'Brien FG, Shelton BP, et al. Effects of salicylate and related compounds on fusidic acid MICs in Staphylococcus aureus. J Antimicrob Chemother 1999 Jul; 44(1): 57–64PubMedCrossRef Price CT, O'Brien FG, Shelton BP, et al. Effects of salicylate and related compounds on fusidic acid MICs in Staphylococcus aureus. J Antimicrob Chemother 1999 Jul; 44(1): 57–64PubMedCrossRef
383.
Zurück zum Zitat Gustafson JE, Candelaria PV, Fisher SA, et al. Growth in the presence of salicylate increases fluoroquinolone resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1999 Apr; 43(4): 990–2PubMed Gustafson JE, Candelaria PV, Fisher SA, et al. Growth in the presence of salicylate increases fluoroquinolone resistance in Staphylococcusaureus. Antimicrob Agents Chemother 1999 Apr; 43(4): 990–2PubMed
384.
Zurück zum Zitat Price CT, Kaatz GW, Gustafson JE. The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcusaureus. Int J Antimicrob Agents 2002 Sep; 20(3): 206–13PubMedCrossRef Price CT, Kaatz GW, Gustafson JE. The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcusaureus. Int J Antimicrob Agents 2002 Sep; 20(3): 206–13PubMedCrossRef
385.
Zurück zum Zitat Williams RJ, Livermore DM, Lindridge MA, et al. Mechanisms of β-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol 1984 Jun; 17(3): 283–93PubMedCrossRef Williams RJ, Livermore DM, Lindridge MA, et al. Mechanisms of β-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol 1984 Jun; 17(3): 283–93PubMedCrossRef
386.
Zurück zum Zitat Bert F, Lambert-Zechovsky N. Comparative distribution of resistance patterns and serotypes in Pseudomonasaeruginosa isolates from intensive care units and other wards. J Antimicrob Chemother 1996 Apr; 37(4): 809–13PubMedCrossRef Bert F, Lambert-Zechovsky N. Comparative distribution of resistance patterns and serotypes in Pseudomonasaeruginosa isolates from intensive care units and other wards. J Antimicrob Chemother 1996 Apr; 37(4): 809–13PubMedCrossRef
387.
Zurück zum Zitat Jakics EB, Iyobe S, Hirai K, et al. Occurrence of the nfxBtype mutation in clinical isolates of Pseudomonasaeruginosa. Antimicrob Agents Chemother 1992 Nov; 36(11): 2562–5PubMedCrossRef Jakics EB, Iyobe S, Hirai K, et al. Occurrence of the nfxBtype mutation in clinical isolates of Pseudomonasaeruginosa. Antimicrob Agents Chemother 1992 Nov; 36(11): 2562–5PubMedCrossRef
388.
Zurück zum Zitat Fukuda H, Hosaka M, Iyobe S, et al. nfxC-type quinolone resistance in a clinical isolate of Pseudomonasaeruginosa. Antimicrob Agents Chemother 1995 Mar; 39(3): 790–2PubMedCrossRef Fukuda H, Hosaka M, Iyobe S, et al. nfxC-type quinolone resistance in a clinical isolate of Pseudomonasaeruginosa. Antimicrob Agents Chemother 1995 Mar; 39(3): 790–2PubMedCrossRef
389.
Zurück zum Zitat Beinlich KL, Chuanchuen R, Schweizer HP. Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonasaeruginosa. FEMS Microbiol Lett 2001 May 1; 198(2): 129–34PubMedCrossRef Beinlich KL, Chuanchuen R, Schweizer HP. Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonasaeruginosa. FEMS Microbiol Lett 2001 May 1; 198(2): 129–34PubMedCrossRef
390.
Zurück zum Zitat Hoiby N. New antimicrobials in the management of cystic fibrosis. J Antimicrob Chemother 2002 Feb; 49(2): 235–8PubMedCrossRef Hoiby N. New antimicrobials in the management of cystic fibrosis. J Antimicrob Chemother 2002 Feb; 49(2): 235–8PubMedCrossRef
391.
Zurück zum Zitat Charvalos E, Tselentis Y, Hamzehpour MM, et al. Evidence for an efflux pump in multidrug-resistant Campylobacterjejuni. Antimicrob Agents Chemother 1995 Sep; 39(9): 2019–22PubMedCrossRef Charvalos E, Tselentis Y, Hamzehpour MM, et al. Evidence for an efflux pump in multidrug-resistant Campylobacterjejuni. Antimicrob Agents Chemother 1995 Sep; 39(9): 2019–22PubMedCrossRef
392.
Zurück zum Zitat Mazzariol A, Tokue Y, Kanegawa TM, et al. High-level fluoroquinolone-resistant clinical isolates of Escherichia colioverproduce multidrug efflux protein AcrA. Antimicrob Agents Chemother 2000 Dec; 44(12): 3441–3PubMedCrossRef Mazzariol A, Tokue Y, Kanegawa TM, et al. High-level fluoroquinolone-resistant clinical isolates of Escherichia colioverproduce multidrug efflux protein AcrA. Antimicrob Agents Chemother 2000 Dec; 44(12): 3441–3PubMedCrossRef
393.
Zurück zum Zitat Wang H, Dzink-Fox JL, Chen M, et al. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrRmutations. Antimicrob Agents Chemother 2001 May; 45(5): 1515–21PubMedCrossRef Wang H, Dzink-Fox JL, Chen M, et al. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrRmutations. Antimicrob Agents Chemother 2001 May; 45(5): 1515–21PubMedCrossRef
394.
Zurück zum Zitat George AM. Multidrug resistance in enteric and other gram-negative bacteria. FEMS Microbiol Lett 1996 May 15; 139(1): 1–10PubMedCrossRef George AM. Multidrug resistance in enteric and other gram-negative bacteria. FEMS Microbiol Lett 1996 May 15; 139(1): 1–10PubMedCrossRef
395.
Zurück zum Zitat Linde HJ, Notka F, Irtenkauf C, et al. Increase in MICs of ciprofloxacin invivoin two closely related clinical isolates of Enterobactercloacae. J Antimicrob Chemother 2002 Apr; 49(4): 625–30PubMedCrossRef Linde HJ, Notka F, Irtenkauf C, et al. Increase in MICs of ciprofloxacin invivoin two closely related clinical isolates of Enterobactercloacae. J Antimicrob Chemother 2002 Apr; 49(4): 625–30PubMedCrossRef
396.
Zurück zum Zitat Deguchi T, Kawamura T, Yasuda M, et al. Invivoselection of Klebsiellapneumoniaestrains with enhanced quinolone resistance during fluoroquinolone treatment of urinary tract infections. Antimicrob Agents Chemother 1997 Jul; 41(7): 1609–11PubMed Deguchi T, Kawamura T, Yasuda M, et al. Invivoselection of Klebsiellapneumoniaestrains with enhanced quinolone resistance during fluoroquinolone treatment of urinary tract infections. Antimicrob Agents Chemother 1997 Jul; 41(7): 1609–11PubMed
397.
Zurück zum Zitat del Mar Tavio M, Vila J, Ruiz J, et al. Decreased permeability and enhanced proton-dependent active efflux in the development of resistance to quinolones in Morganellamorganii. Int J Antimicrob Agents 2000 Mar; 14(2): 157–60PubMedCrossRef del Mar Tavio M, Vila J, Ruiz J, et al. Decreased permeability and enhanced proton-dependent active efflux in the development of resistance to quinolones in Morganellamorganii. Int J Antimicrob Agents 2000 Mar; 14(2): 157–60PubMedCrossRef
398.
Zurück zum Zitat Ishii H, Sato K, Hoshino K, et al. Active efflux of ofloxacin by a highly quinolone-resistant strain of Proteusvulgaris. J Antimicrob Chemother 1991 Dec; 28(6): 827–36PubMedCrossRef Ishii H, Sato K, Hoshino K, et al. Active efflux of ofloxacin by a highly quinolone-resistant strain of Proteusvulgaris. J Antimicrob Chemother 1991 Dec; 28(6): 827–36PubMedCrossRef
399.
Zurück zum Zitat Ishida H, Fuziwara H, Kaibori Y, et al. Cloning of multidrug resistance gene pqrAfrom Proteusvulgaris. Antimicrob Agents Chemother 1995 Feb; 39(2): 453–7PubMedCrossRef Ishida H, Fuziwara H, Kaibori Y, et al. Cloning of multidrug resistance gene pqrAfrom Proteusvulgaris. Antimicrob Agents Chemother 1995 Feb; 39(2): 453–7PubMedCrossRef
400.
Zurück zum Zitat Ghosh AS, Ahamed J, Chauhan KK, et al. Involvement of an efflux system in high-level fluoroquinolone resistance of Shigelladysenteriae. Biochem Biophys Res Commun 1998 Jan 6; 242(1): 54–6PubMedCrossRef Ghosh AS, Ahamed J, Chauhan KK, et al. Involvement of an efflux system in high-level fluoroquinolone resistance of Shigelladysenteriae. Biochem Biophys Res Commun 1998 Jan 6; 242(1): 54–6PubMedCrossRef
401.
Zurück zum Zitat Perez-Trallero E, Fernandez-Mazarrasa C, Garcia-Rey C, et al. Antimicrobial susceptibilities of 1,684 Streptococcus pneumoniae and 2,039 Streptococcus pyogenesisolates and their ecological relationships: results of a 1-year (1998–1999) multi-center surveillance study in Spain. Antimicrob Agents Chemother 2001 Dec; 45(12): 3334–40PubMedCrossRef Perez-Trallero E, Fernandez-Mazarrasa C, Garcia-Rey C, et al. Antimicrobial susceptibilities of 1,684 Streptococcus pneumoniae and 2,039 Streptococcus pyogenesisolates and their ecological relationships: results of a 1-year (1998–1999) multi-center surveillance study in Spain. Antimicrob Agents Chemother 2001 Dec; 45(12): 3334–40PubMedCrossRef
402.
Zurück zum Zitat Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 2002; 92 Suppl.: 65S–71SPubMedCrossRef Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 2002; 92 Suppl.: 65S–71SPubMedCrossRef
403.
Zurück zum Zitat Lambert RJ, Joynson J, Forbes B. The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonasaeruginosato some antibiotics and biocides. J Appl Microbiol 2001 Dec; 91(6): 972–84PubMedCrossRef Lambert RJ, Joynson J, Forbes B. The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonasaeruginosato some antibiotics and biocides. J Appl Microbiol 2001 Dec; 91(6): 972–84PubMedCrossRef
404.
Zurück zum Zitat Stickler DJ. Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 2002; 92 Suppl.: 163S–70SPubMedCrossRef Stickler DJ. Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 2002; 92 Suppl.: 163S–70SPubMedCrossRef
405.
Zurück zum Zitat Higgins CS, Murtough SM, Williamson E, et al. Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect 2001 Jun; 7(6): 308–15PubMedCrossRef Higgins CS, Murtough SM, Williamson E, et al. Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect 2001 Jun; 7(6): 308–15PubMedCrossRef
406.
Zurück zum Zitat Nakahara H, Asakawa M, Yonekura I, et al. Benzethonium chloride resistance in Pseudomonasaeruginosaisolated from clinical lesions. Zentralbl Bakteriol Mikrobiol Hyg [A] 1984 Aug; 257(3): 409–13 Nakahara H, Asakawa M, Yonekura I, et al. Benzethonium chloride resistance in Pseudomonasaeruginosaisolated from clinical lesions. Zentralbl Bakteriol Mikrobiol Hyg [A] 1984 Aug; 257(3): 409–13
407.
Zurück zum Zitat Nakahara H, Kozukue H. Isolation of chlorhexidine-resistant Pseudomonasaeruginosafrom clinical lesions. J Clin Microbiol 1982 Jan; 15(1): 166–8PubMed Nakahara H, Kozukue H. Isolation of chlorhexidine-resistant Pseudomonasaeruginosafrom clinical lesions. J Clin Microbiol 1982 Jan; 15(1): 166–8PubMed
408.
Zurück zum Zitat Block C, Furman M. Association between intensity of chlorhexidine use and micro-organisms of reduced susceptibility in a hospital environment. J Hosp Infect 2002 Jul; 51(3): 201–6PubMedCrossRef Block C, Furman M. Association between intensity of chlorhexidine use and micro-organisms of reduced susceptibility in a hospital environment. J Hosp Infect 2002 Jul; 51(3): 201–6PubMedCrossRef
409.
Zurück zum Zitat Fraise AP. Biocide abuse and antimicrobial resistance: a cause for concern? J Antimicrob Chemother 2002 Jan; 49(1): 11–2PubMedCrossRef Fraise AP. Biocide abuse and antimicrobial resistance: a cause for concern? J Antimicrob Chemother 2002 Jan; 49(1): 11–2PubMedCrossRef
410.
Zurück zum Zitat Skurray RA, Rouch DA, Lyon BR, et al. Multiresistant Staphylococcusaureus: genetics and evolution of epidemic Australian strains. J Antimicrob Chemother 1988 Apr; 21 Suppl. C: 19–39PubMedCrossRef Skurray RA, Rouch DA, Lyon BR, et al. Multiresistant Staphylococcusaureus: genetics and evolution of epidemic Australian strains. J Antimicrob Chemother 1988 Apr; 21 Suppl. C: 19–39PubMedCrossRef
411.
Zurück zum Zitat Lyon BR, Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 1987 Mar; 51(1): 88–134PubMed Lyon BR, Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 1987 Mar; 51(1): 88–134PubMed
412.
Zurück zum Zitat Join-Lambert OF, Michea-Hamzehpour M, Kohler T, et al. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonasaeruginosaacute pneumonia in rats. Antimicrob Agents Chemother 2001 Feb; 45(2): 571–6PubMedCrossRef Join-Lambert OF, Michea-Hamzehpour M, Kohler T, et al. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonasaeruginosaacute pneumonia in rats. Antimicrob Agents Chemother 2001 Feb; 45(2): 571–6PubMedCrossRef
413.
Zurück zum Zitat Köhler T, Michea-Hamzehpour M, Plesiat P, et al. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997 Nov; 41(11): 2540–3PubMed Köhler T, Michea-Hamzehpour M, Plesiat P, et al. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997 Nov; 41(11): 2540–3PubMed
414.
Zurück zum Zitat Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000 Aug; 31 Suppl. 2: S24–8PubMedCrossRef Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000 Aug; 31 Suppl. 2: S24–8PubMedCrossRef
415.
Zurück zum Zitat Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 2001 Sep 15; 33 Suppl. 3: S147-56 Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 2001 Sep 15; 33 Suppl. 3: S147-56
416.
Zurück zum Zitat Mamber SW, Kolek B, Brookshire KW, et al. Activity of quinolones in the Ames SalmonellaTA102 mutagenicity test and other bacterial genotoxicity assays. Antimicrob Agents Chemother 1993 Feb; 37(2): 213–7PubMedCrossRef Mamber SW, Kolek B, Brookshire KW, et al. Activity of quinolones in the Ames SalmonellaTA102 mutagenicity test and other bacterial genotoxicity assays. Antimicrob Agents Chemother 1993 Feb; 37(2): 213–7PubMedCrossRef
417.
Zurück zum Zitat Ysern P, Clerch B, Castano M, et al. Induction of SOSgenes in Escherichia coliand mutagenesis in Salmonellatyphimurium by fluoroquinolones. Mutagenesis 1990 Jan; 5(1): 63–6PubMedCrossRef Ysern P, Clerch B, Castano M, et al. Induction of SOSgenes in Escherichia coliand mutagenesis in Salmonellatyphimurium by fluoroquinolones. Mutagenesis 1990 Jan; 5(1): 63–6PubMedCrossRef
418.
Zurück zum Zitat Le Thomas I, Couetdic G, Clermont O, et al. Invivoselection of a target/efflux double mutant of Pseudomonasaeruginosaby ciprofloxacin therapy. J Antimicrob Chemother 2001 Oct; 48(4): 553–5PubMedCrossRef Le Thomas I, Couetdic G, Clermont O, et al. Invivoselection of a target/efflux double mutant of Pseudomonasaeruginosaby ciprofloxacin therapy. J Antimicrob Chemother 2001 Oct; 48(4): 553–5PubMedCrossRef
419.
Zurück zum Zitat Zhanel GG, Karlowsky JA, Saunders MH, et al. Development of multiple-antibiotic-resistant (Mar) mutants of Pseudomonas aeruginosaafter serial exposure to fluoroquinolones. Antimicrob Agents Chemother 1995 Feb; 39(2): 489–95PubMedCrossRef Zhanel GG, Karlowsky JA, Saunders MH, et al. Development of multiple-antibiotic-resistant (Mar) mutants of Pseudomonas aeruginosaafter serial exposure to fluoroquinolones. Antimicrob Agents Chemother 1995 Feb; 39(2): 489–95PubMedCrossRef
420.
Zurück zum Zitat Lomovskaya O, Lee A, Hoshino K, et al. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1999 Jun; 43(6): 1340–6PubMed Lomovskaya O, Lee A, Hoshino K, et al. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1999 Jun; 43(6): 1340–6PubMed
421.
Zurück zum Zitat Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000 Jun; 182(11): 3142–50PubMedCrossRef Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000 Jun; 182(11): 3142–50PubMedCrossRef
422.
Zurück zum Zitat Plesiat P, Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 1992 May; 6(10): 1323–33PubMedCrossRef Plesiat P, Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 1992 May; 6(10): 1323–33PubMedCrossRef
423.
Zurück zum Zitat Vaara M. The outer membrane as the penetration barrier against mupirocin in gram-negative enteric bacteria. J Antimicrob Chemother 1992 Feb; 29(2): 221–2PubMedCrossRef Vaara M. The outer membrane as the penetration barrier against mupirocin in gram-negative enteric bacteria. J Antimicrob Chemother 1992 Feb; 29(2): 221–2PubMedCrossRef
424.
Zurück zum Zitat Yethon JA, Gunn JS, Ernst RK, et al. Salmonellaenterica serovar typhimurium waaPmutants show increased susceptibility to polymyxin and loss of virulence invivo. Infect Immun 2000 Aug; 68(8): 4485–91PubMedCrossRef Yethon JA, Gunn JS, Ernst RK, et al. Salmonellaenterica serovar typhimurium waaPmutants show increased susceptibility to polymyxin and loss of virulence invivo. Infect Immun 2000 Aug; 68(8): 4485–91PubMedCrossRef
425.
Zurück zum Zitat Yethon JA, Heinrichs DE, Monteiro MA, et al. Involvement of waaY, waaQ, and waaPin the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 1998 Oct 9; 273(41): 26310–6PubMedCrossRef Yethon JA, Heinrichs DE, Monteiro MA, et al. Involvement of waaY, waaQ, and waaPin the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 1998 Oct 9; 273(41): 26310–6PubMedCrossRef
426.
Zurück zum Zitat Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992 Sep; 56(3): 395–411PubMed Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992 Sep; 56(3): 395–411PubMed
427.
Zurück zum Zitat Fralick JA, Burns-Keliher LL. Additive effect of tolCand rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coliK-12. J Bacteriol 1994 Oct; 176(20): 6404–6PubMed Fralick JA, Burns-Keliher LL. Additive effect of tolCand rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coliK-12. J Bacteriol 1994 Oct; 176(20): 6404–6PubMed
428.
Zurück zum Zitat Lucas CE, Hagman KE, Levin JC, et al. Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol 1995 Jun; 16(5): 1001–9PubMedCrossRef Lucas CE, Hagman KE, Levin JC, et al. Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol 1995 Jun; 16(5): 1001–9PubMedCrossRef
429.
Zurück zum Zitat Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia colidisplay active efflux of Ag+ and are deficient in porins. J Bacteriol 1997 Oct; 179(19): 6127–32PubMed Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia colidisplay active efflux of Ag+ and are deficient in porins. J Bacteriol 1997 Oct; 179(19): 6127–32PubMed
430.
Zurück zum Zitat Nikaido H, Normark S. Sensitivity of Escherichia colito various β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol 1987 Jul; 1(1): 29–36PubMedCrossRef Nikaido H, Normark S. Sensitivity of Escherichia colito various β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol 1987 Jul; 1(1): 29–36PubMedCrossRef
431.
Zurück zum Zitat Li XZ, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonasaeruginosa. J Antimicrob Chemother 2000 Apr; 45(4): 433–6PubMedCrossRef Li XZ, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonasaeruginosa. J Antimicrob Chemother 2000 Apr; 45(4): 433–6PubMedCrossRef
432.
Zurück zum Zitat Plesiat P, Aires JR, Godard C, et al. Use of steroids to monitor alterations in the outer membrane of Pseudomonasaeruginosa. J Bacteriol 1997 Nov; 179(22): 7004–10PubMed Plesiat P, Aires JR, Godard C, et al. Use of steroids to monitor alterations in the outer membrane of Pseudomonasaeruginosa. J Bacteriol 1997 Nov; 179(22): 7004–10PubMed
433.
Zurück zum Zitat Germ M, Yoshihara E, Yoneyama H, et al. Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonasaeruginosa. Biochem Biophys Res Commun 1999 Aug 2; 261(2): 452–5PubMedCrossRef Germ M, Yoshihara E, Yoneyama H, et al. Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonasaeruginosa. Biochem Biophys Res Commun 1999 Aug 2; 261(2): 452–5PubMedCrossRef
434.
Zurück zum Zitat Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonasaeruginosa:our worst nightmare? Clin Infect Dis 2002 Mar 1; 34(5): 634–40PubMedCrossRef Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonasaeruginosa:our worst nightmare? Clin Infect Dis 2002 Mar 1; 34(5): 634–40PubMedCrossRef
435.
Zurück zum Zitat Lakaye B, Dubus A, Lepage S, et al. When drug inactivation renders the target irrelevant to antibiotic resistance: a case story with β-lactams. Mol Microbiol 1999 Jan; 31(1): 89–101PubMedCrossRef Lakaye B, Dubus A, Lepage S, et al. When drug inactivation renders the target irrelevant to antibiotic resistance: a case story with β-lactams. Mol Microbiol 1999 Jan; 31(1): 89–101PubMedCrossRef
436.
Zurück zum Zitat Nakae T, Nakajima A, Ono T, et al. Resistance to β-lactam antibiotics in Pseudomonasaeruginosadue to interplay between the MexAB-OprM efflux pump and β-lactamase. Antimicrob Agents Chemother 1999 May; 43(5): 1301–3PubMed Nakae T, Nakajima A, Ono T, et al. Resistance to β-lactam antibiotics in Pseudomonasaeruginosadue to interplay between the MexAB-OprM efflux pump and β-lactamase. Antimicrob Agents Chemother 1999 May; 43(5): 1301–3PubMed
437.
Zurück zum Zitat Masuda N, Gotoh N, Ishii C, et al. Interplay between chromosomal β-lactamase and the MexAB-OprM efflux system in intrinsic resistance to β-lactams in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1999 Feb; 43(2): 400–2PubMed Masuda N, Gotoh N, Ishii C, et al. Interplay between chromosomal β-lactamase and the MexAB-OprM efflux system in intrinsic resistance to β-lactams in Pseudomonasaeruginosa. Antimicrob Agents Chemother 1999 Feb; 43(2): 400–2PubMed
438.
Zurück zum Zitat Srikumar R, Tsang E, Poole K. Contribution of the MexAB-OprM multidrug efflux system to the β-lactam resistance of penicillin-binding protein and β-lactamase-derepressed mutants of Pseudomonasaeruginosa. J Antimicrob Chemother 1999 Oct; 44(4): 537–40PubMedCrossRef Srikumar R, Tsang E, Poole K. Contribution of the MexAB-OprM multidrug efflux system to the β-lactam resistance of penicillin-binding protein and β-lactamase-derepressed mutants of Pseudomonasaeruginosa. J Antimicrob Chemother 1999 Oct; 44(4): 537–40PubMedCrossRef
439.
Zurück zum Zitat Li XZ, Zhamg L, McKay GA, et al. Role of the acetyltransferase AAC(6')-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonasmaltophilia. J Antimicrob Chemother 2003; 51(4): 803–11PubMedCrossRef Li XZ, Zhamg L, McKay GA, et al. Role of the acetyltransferase AAC(6')-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonasmaltophilia. J Antimicrob Chemother 2003; 51(4): 803–11PubMedCrossRef
440.
Zurück zum Zitat Kaatz GW, Seo SM. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcusaureus. Antimicrob Agents Chemother 1997 Dec; 41(12): 2733–7PubMed Kaatz GW, Seo SM. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcusaureus. Antimicrob Agents Chemother 1997 Dec; 41(12): 2733–7PubMed
441.
Zurück zum Zitat Nakajima A, Sugimoto Y, Yoneyama H, et al. High-level fluoroquinolone resistance in Pseudomonasaeruginosadue to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol Immunol 2002; 46(6): 391–5PubMed Nakajima A, Sugimoto Y, Yoneyama H, et al. High-level fluoroquinolone resistance in Pseudomonasaeruginosadue to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol Immunol 2002; 46(6): 391–5PubMed
442.
Zurück zum Zitat Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrRmutation is required for chromosomally mediated penicillin resistance in Neisseriagonorrkoeae. J Bacteriol 2002 Oct; 184(20): 5619–24PubMedCrossRef Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrRmutation is required for chromosomally mediated penicillin resistance in Neisseriagonorrkoeae. J Bacteriol 2002 Oct; 184(20): 5619–24PubMedCrossRef
443.
Zurück zum Zitat Maiti SN, Phillips OA, Micetich RG, et al. Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem 1998 Dec; 5(6): 441–56PubMed Maiti SN, Phillips OA, Micetich RG, et al. Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem 1998 Dec; 5(6): 441–56PubMed
444.
Zurück zum Zitat Chopra I. New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updat 2002 Aug 6; 5 (3–4): 119CrossRef Chopra I. New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updat 2002 Aug 6; 5 (3–4): 119CrossRef
445.
Zurück zum Zitat Nelson ML, Levy SB. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 1999 Jul; 43(7): 1719–24PubMed Nelson ML, Levy SB. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 1999 Jul; 43(7): 1719–24PubMed
446.
Zurück zum Zitat Nelson ML, Park BH, Levy SB. Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J Med Chem 1994 Apr 29; 37(9): 1355–61PubMedCrossRef Nelson ML, Park BH, Levy SB. Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J Med Chem 1994 Apr 29; 37(9): 1355–61PubMedCrossRef
447.
Zurück zum Zitat Rothstein DM, McGlynn M, Bernan V, et al. Detection of tetracyclines and efflux pump inhibitors. Antimicrob Agents Chemother 1993 Aug; 37(8): 1624–9PubMedCrossRef Rothstein DM, McGlynn M, Bernan V, et al. Detection of tetracyclines and efflux pump inhibitors. Antimicrob Agents Chemother 1993 Aug; 37(8): 1624–9PubMedCrossRef
448.
Zurück zum Zitat Nelson ML. Modulation of antibiotic efflux in bacteria. Curr Med Chem-Anti-Infective Agents 2002; 1(1): 35–54CrossRef Nelson ML. Modulation of antibiotic efflux in bacteria. Curr Med Chem-Anti-Infective Agents 2002; 1(1): 35–54CrossRef
449.
Zurück zum Zitat Hirata T, Wakatabe R, Nielsen J, et al. A novel compound, 1,1-dimethyl-5 (1-hydroxypropyl)-4,6,7-trimethylindan, is an effective inhibitor of the tet(K@#@)gene-encoded metal-tetracycline/ H+ antiporter of Staphylococcusaureus. FEBS Lett 1997 Jul 28; 412(2): 337–40PubMedCrossRef Hirata T, Wakatabe R, Nielsen J, et al. A novel compound, 1,1-dimethyl-5 (1-hydroxypropyl)-4,6,7-trimethylindan, is an effective inhibitor of the tet(K@#@)gene-encoded metal-tetracycline/ H+ antiporter of Staphylococcusaureus. FEBS Lett 1997 Jul 28; 412(2): 337–40PubMedCrossRef
450.
Zurück zum Zitat Hirata T, Wakatabe R, Nielsen J, et al. Screening of an inhibitor of the tetracycline efflux pump in a tetracycline-resistant clinical-isolate of Staphylococcusaureus743. Biol Pharm Bull 1998 Jul; 21(7): 678–81PubMedCrossRef Hirata T, Wakatabe R, Nielsen J, et al. Screening of an inhibitor of the tetracycline efflux pump in a tetracycline-resistant clinical-isolate of Staphylococcusaureus743. Biol Pharm Bull 1998 Jul; 21(7): 678–81PubMedCrossRef
451.
Zurück zum Zitat Barrett JF. MC-207110 Daiichi Seiyaku/Microcide Pharmaceuticals. Curr Opin Investig Drugs 2001 Feb; 2(2): 212–5PubMed Barrett JF. MC-207110 Daiichi Seiyaku/Microcide Pharmaceuticals. Curr Opin Investig Drugs 2001 Feb; 2(2): 212–5PubMed
452.
Zurück zum Zitat Ryan BM, Dougherty TJ, Beaulieu D, et al. Efflux in bacteria: what do we really know about it? Expert Opin Investig Drugs 2001 Aug; 10(8): 1409–22PubMedCrossRef Ryan BM, Dougherty TJ, Beaulieu D, et al. Efflux in bacteria: what do we really know about it? Expert Opin Investig Drugs 2001 Aug; 10(8): 1409–22PubMedCrossRef
453.
Zurück zum Zitat Lewis K. In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 247–54PubMed Lewis K. In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 247–54PubMed
454.
Zurück zum Zitat Wigler PW, Patterson FK. Inhibition of the multidrug resistance efflux pump. Biochim Biophys Acta 1993 Oct 29; 1154(2): 173–81PubMedCrossRef Wigler PW, Patterson FK. Inhibition of the multidrug resistance efflux pump. Biochim Biophys Acta 1993 Oct 29; 1154(2): 173–81PubMedCrossRef
455.
Zurück zum Zitat Martin SK, Oduola AM, Milhous WK. Reversal of chloroquine resistance in Plasmodiumfalciparumby verapamil. Science 1987 Feb 20; 235(4791): 899–901PubMedCrossRef Martin SK, Oduola AM, Milhous WK. Reversal of chloroquine resistance in Plasmodiumfalciparumby verapamil. Science 1987 Feb 20; 235(4791): 899–901PubMedCrossRef
456.
Zurück zum Zitat Cohn RC, Rudzienski L, Putnam RW. Verapamil-tobramycin synergy in Pseudomonascepaciabut not Pseudomonas aeruginosainvitro. Chemotherapy 1995 Sep–Oct; 41(5): 330–3PubMedCrossRef Cohn RC, Rudzienski L, Putnam RW. Verapamil-tobramycin synergy in Pseudomonascepaciabut not Pseudomonas aeruginosainvitro. Chemotherapy 1995 Sep–Oct; 41(5): 330–3PubMedCrossRef
457.
Zurück zum Zitat Brenwald NP, Gill MJ, Wise R. The effect of reserpine, an inhibitor of multi-drug efflux pumps, on the in-vitrosusceptibilities of fluoroquinolone-resistant strains of Streptococcus pneumoniaeto norfloxacin. J Antimicrob Chemother 1997 Sep; 40(3): 458–60PubMedCrossRef Brenwald NP, Gill MJ, Wise R. The effect of reserpine, an inhibitor of multi-drug efflux pumps, on the in-vitrosusceptibilities of fluoroquinolone-resistant strains of Streptococcus pneumoniaeto norfloxacin. J Antimicrob Chemother 1997 Sep; 40(3): 458–60PubMedCrossRef
458.
Zurück zum Zitat Gibbons S, Udo EE. The effect of reserpine, a modulator of multidrug efflux pumps, on the invitroactivity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus(MRSA) possessing the tet(K@#@)determinant. Phytother Res 2000 Mar; 14(2): 139–40PubMedCrossRef Gibbons S, Udo EE. The effect of reserpine, a modulator of multidrug efflux pumps, on the invitroactivity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus(MRSA) possessing the tet(K@#@)determinant. Phytother Res 2000 Mar; 14(2): 139–40PubMedCrossRef
459.
Zurück zum Zitat Beyer R, Pestova E, Millichap JJ, et al. A convenient assay for estimating the possible involvement of efflux of fluoroquino-lones by Streptococcus pneumoniaeand Staphylococcusaureus: evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux. Antimicrob Agents Chemother 2000 Mar; 44(3): 798–801PubMedCrossRef Beyer R, Pestova E, Millichap JJ, et al. A convenient assay for estimating the possible involvement of efflux of fluoroquino-lones by Streptococcus pneumoniaeand Staphylococcusaureus: evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux. Antimicrob Agents Chemother 2000 Mar; 44(3): 798–801PubMedCrossRef
460.
Zurück zum Zitat Markham PN, Westhaus E, Klyachko K, et al. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 1999 Oct; 43(10): 2404–8PubMed Markham PN, Westhaus E, Klyachko K, et al. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 1999 Oct; 43(10): 2404–8PubMed
461.
Zurück zum Zitat Neyfakh AA, Borsch CM, Kaatz GW. Fluoroquinolone resistance protein NorA of Staphylococcusaureusis a multidrug efflux transporter. Antimicrob Agents Chemother 1993 Jan; 37(1): 128–9PubMedCrossRef Neyfakh AA, Borsch CM, Kaatz GW. Fluoroquinolone resistance protein NorA of Staphylococcusaureusis a multidrug efflux transporter. Antimicrob Agents Chemother 1993 Jan; 37(1): 128–9PubMedCrossRef
462.
Zurück zum Zitat Stermitz FR, Lorenz P, Tawara JN, et al. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 2000 Feb 15; 97(4): 1433–7PubMedCrossRef Stermitz FR, Lorenz P, Tawara JN, et al. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 2000 Feb 15; 97(4): 1433–7PubMedCrossRef
463.
Zurück zum Zitat Renau TE, Leger R, Flamme EM, et al. Inhibitors of efflux pumps in Pseudomonasaeruginosapotentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 1999 Dec 2; 42(24): 4928–31PubMedCrossRef Renau TE, Leger R, Flamme EM, et al. Inhibitors of efflux pumps in Pseudomonasaeruginosapotentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 1999 Dec 2; 42(24): 4928–31PubMedCrossRef
464.
Zurück zum Zitat Renau TE, Leger R, Flamme EM, et al. Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonasaeruginosa. Bioorg Med Chem Lett 2001 Mar 12; 11(5): 663–7PubMedCrossRef Renau TE, Leger R, Flamme EM, et al. Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonasaeruginosa. Bioorg Med Chem Lett 2001 Mar 12; 11(5): 663–7PubMedCrossRef
465.
Zurück zum Zitat Lomovskaya O, Warren MS, Lee A, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonasaeruginosa:novel agents for combination therapy. Antimicrob Agents Chemother 2001 Jan; 45(1): 105–16PubMedCrossRef Lomovskaya O, Warren MS, Lee A, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonasaeruginosa:novel agents for combination therapy. Antimicrob Agents Chemother 2001 Jan; 45(1): 105–16PubMedCrossRef
466.
Zurück zum Zitat Griffith D, Lomovskaya O, Lee V, et al. Potentiation of levofloxacin by a broad-spectrum efflux inhibitor (EPI) in mouse models of infection caused by Pseudomonasaeruginosa [abstract no. 1268]. Abstracts of the 39th Interscience conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1999 Sep 26–29; San Francisco (CA), 327 Griffith D, Lomovskaya O, Lee V, et al. Potentiation of levofloxacin by a broad-spectrum efflux inhibitor (EPI) in mouse models of infection caused by Pseudomonasaeruginosa [abstract no. 1268]. Abstracts of the 39th Interscience conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1999 Sep 26–29; San Francisco (CA), 327
467.
Zurück zum Zitat Renau TE, Leger R, Yen R, et al. Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett 2002 Mar 11; 12(5): 763–6PubMedCrossRef Renau TE, Leger R, Yen R, et al. Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett 2002 Mar 11; 12(5): 763–6PubMedCrossRef
468.
Zurück zum Zitat Lee MD, Galazzo JL, Staley AL, et al. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 2001 Jan–Feb; 56(1–2): 81–5PubMedCrossRef Lee MD, Galazzo JL, Staley AL, et al. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 2001 Jan–Feb; 56(1–2): 81–5PubMedCrossRef
469.
Zurück zum Zitat Fukuda H, Hori S, Hiramatsu K. Antibacterial activity of gatifloxacin (AM-1155, CG5501, BMS-206584), a newly developed fluoroquinolone, against sequentially acquired quinolone-resistant mutants and the norAtransformant of Staphylococcus aureus. Antimicrob Agents Chemother 1998 Aug; 42(8): 1917–22PubMed Fukuda H, Hori S, Hiramatsu K. Antibacterial activity of gatifloxacin (AM-1155, CG5501, BMS-206584), a newly developed fluoroquinolone, against sequentially acquired quinolone-resistant mutants and the norAtransformant of Staphylococcus aureus. Antimicrob Agents Chemother 1998 Aug; 42(8): 1917–22PubMed
470.
Zurück zum Zitat Gootz TD, Zaniewski RP, Haskell SL, et al. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and gyrAand grlAmutants of Staphylococcusaureus. Antimicrob Agents Chemother 1999 Aug; 43(8): 1845–55PubMed Gootz TD, Zaniewski RP, Haskell SL, et al. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and gyrAand grlAmutants of Staphylococcusaureus. Antimicrob Agents Chemother 1999 Aug; 43(8): 1845–55PubMed
471.
Zurück zum Zitat Ince D, Hooper DC. Mechanisms and frequency of resistance to premafloxacin in Staphylococcusaureus: novel mutations suggest novel drug-target interactions. Antimicrob Agents Chemother 2000 Dec; 44(12): 3344–50PubMedCrossRef Ince D, Hooper DC. Mechanisms and frequency of resistance to premafloxacin in Staphylococcusaureus: novel mutations suggest novel drug-target interactions. Antimicrob Agents Chemother 2000 Dec; 44(12): 3344–50PubMedCrossRef
472.
Zurück zum Zitat Zhong P, Shortridge VD. The role of efflux in macrolide resistance. Drug Resist Updat 2000 Dec; 3(6): 325–9PubMedCrossRef Zhong P, Shortridge VD. The role of efflux in macrolide resistance. Drug Resist Updat 2000 Dec; 3(6): 325–9PubMedCrossRef
473.
Zurück zum Zitat Chu DT. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med Res Rev 1999 Nov; 19(6): 497–520PubMedCrossRef Chu DT. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med Res Rev 1999 Nov; 19(6): 497–520PubMedCrossRef
474.
Zurück zum Zitat Brennan L, Duignan J, Petitpas J, et al. CP-544372: MIC90 studies and killing kinetics against key respiratory tract pathogens [abstract no. F-124]. Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1998 Sep 24–27; San Diego (CA), 264 Brennan L, Duignan J, Petitpas J, et al. CP-544372: MIC90 studies and killing kinetics against key respiratory tract pathogens [abstract no. F-124]. Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC; 1998 Sep 24–27; San Diego (CA), 264
475.
Zurück zum Zitat Someya Y, Yamaguchi A, Sawai T. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Antimicrob Agents Chemother 1995 Jan; 39(1): 247–9PubMedCrossRef Someya Y, Yamaguchi A, Sawai T. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Antimicrob Agents Chemother 1995 Jan; 39(1): 247–9PubMedCrossRef
476.
Zurück zum Zitat Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 1973 Aug; 70(8): 2276–80PubMedCrossRef Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 1973 Aug; 70(8): 2276–80PubMedCrossRef
477.
Zurück zum Zitat Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994 Apr 15; 264(5157): 375–82PubMedCrossRef Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994 Apr 15; 264(5157): 375–82PubMedCrossRef
478.
Zurück zum Zitat Davies J. Another look at antibiotic resistance: 1991 Fred Griffith Review Lecture. J Gen Microbiol 1992 Aug; 138 (Pt 8): 1553–9PubMedCrossRef Davies J. Another look at antibiotic resistance: 1991 Fred Griffith Review Lecture. J Gen Microbiol 1992 Aug; 138 (Pt 8): 1553–9PubMedCrossRef
479.
Zurück zum Zitat Marshall CG, Lessard IA, Park I, et al. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 1998 Sep; 42(9): 2215–20PubMed Marshall CG, Lessard IA, Park I, et al. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 1998 Sep; 42(9): 2215–20PubMed
480.
Zurück zum Zitat Krulwich TA, Jin J, Guffanti AA, et al. Functions of tetracycline efflux proteins that do not involve tetracycline. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 237–46PubMed Krulwich TA, Jin J, Guffanti AA, et al. Functions of tetracycline efflux proteins that do not involve tetracycline. J Mol Microbiol Biotechnol 2001 Apr; 3(2): 237–46PubMed
481.
Zurück zum Zitat Wang W, Guffanti AA, Wei Y, et al. Two types of Bacillus subtilisTetA(L @#@)deletion strains reveal the physiological importance of TetA(L @#@)in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J Bacteriol 2000 Apr; 182(8): 2088–95PubMedCrossRef Wang W, Guffanti AA, Wei Y, et al. Two types of Bacillus subtilisTetA(L @#@)deletion strains reveal the physiological importance of TetA(L @#@)in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J Bacteriol 2000 Apr; 182(8): 2088–95PubMedCrossRef
Metadaten
Titel
Efflux-Mediated Drug Resistance in Bacteria
verfasst von
Xian-Zhi Li
Dr Hiroshi Nikaido
Publikationsdatum
01.01.2004
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 2/2004
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200464020-00004

Weitere Artikel der Ausgabe 2/2004

Drugs 2/2004 Zur Ausgabe

Adis Drug Evaluation

Atomoxetine

Therapy In Practice

Restless Legs Syndrome