Skip to main content
Erschienen in: Drugs 13/2005

01.09.2005 | Leading Article

Emerging Drug Targets for Antiretroviral Therapy

verfasst von: Dr Jacqueline D. Reeves, Andrew J. Piefer

Erschienen in: Drugs | Ausgabe 13/2005

Einloggen, um Zugang zu erhalten

Abstract

Current targets for antiretroviral therapy (ART) include the viral enzymes reverse transcriptase and protease. The use of a combination of inhibitors targeting these enzymes can reduce viral load for a prolonged period and delay disease progression. However, complications of ART, including the emergence of viruses resistant to current drugs, are driving the development of new antiretroviral agents targeting not only the reverse transcriptase and protease enzymes but novel targets as well. Indeed, enfuvirtide, an inhibitor targeting the viral envelope protein (Env) was recently approved for use in combination therapy in individuals not responding to current antiretroviral regimens.
Emerging drug targets for ART include: (i) inhibitors that directly or indirectly target Env; (ii) the HIV enzyme integrase; and (iii) inhibitors of maturation that target the substrate of the protease enzyme. Env mediates entry of HIV into target cells via a multistep process that presents three distinct targets for inhibition by viral and cellular-specific agents. First, attachment of virions to the cell surface via nonspecific interactions and CD4 binding can be blocked by inhibitors that include cyanovirin-N, cyclotriazadisulfonamide analogues, PRO 2000, TNX 355 and PRO 542. In addition, BMS 806 can block CD4-induced conformational changes. Secondly, Env interactions with the co-receptor molecules can be targeted by CCR5 antagonists including SCH-D, maraviroc (UK 427857) and aplaviroc GW 873140), and the CXCR4 antagonist AMD 070. Thirdly, fusion of viral and cellular membranes can be inhibited by peptides such as enfuvirtide and tifuvirtide (T 1249). The development of entry inhibitors has been rapid, with an increasing number entering clinical trials. Moreover, some entry inhibitors are also being evaluated as candidate microbicides to prevent mucosal transmission of HIV.
The integrase enzyme facilitates the integration of viral DNA into the host cell genome. The uniqueness and specificity of this reaction makes integrase an attractive drug target. However, integrase inhibitors have been slow to reach clinical development, although recent contenders, including L 870810, show promise. Inhibitors that target viral maturation via a unique mode of action, such as PA 457, also have potential. In addition, recent advances in our understanding of cellular pathways involved in the life cycle of HIV have also identified novel targets that may have potential for future antiretroviral intervention, including interactions between the cellular proteins APOBEC3G and TSG101, and the viral proteins Vif and p6, respectively.
In summary, a number of antiretroviral agents in development make HIV entry, integration and maturation emerging drug targets. A multifaceted approach to ART, using combinations of inhibitors that target different steps of the viral life cycle, has the best potential for long-term control of HIV infection. Furthermore, the development of microbicides targeting HIV holds promise for reducing HIV transmission events.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat UNAIDS. 2004 Report on the global AIDS epidemic: executive summary. Geneva: UNAIDS, 2004: 1–21 UNAIDS. 2004 Report on the global AIDS epidemic: executive summary. Geneva: UNAIDS, 2004: 1–21
2.
Zurück zum Zitat Sharma PL, Nurpeisov V, Hernandez-Santiago B, et al. Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Curr Top Med Chem 2004; 4(9): 895–919PubMedCrossRef Sharma PL, Nurpeisov V, Hernandez-Santiago B, et al. Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Curr Top Med Chem 2004; 4(9): 895–919PubMedCrossRef
3.
Zurück zum Zitat Ruane PJ, DeJesus E. New nucleoside/nucleotide backbone options: a review of recent studies. J Acquir Immune Defic Syndr 2004; 37: S21–9PubMedCrossRef Ruane PJ, DeJesus E. New nucleoside/nucleotide backbone options: a review of recent studies. J Acquir Immune Defic Syndr 2004; 37: S21–9PubMedCrossRef
4.
Zurück zum Zitat Balzarini J. Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 2004; 4(9): 921–44PubMedCrossRef Balzarini J. Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 2004; 4(9): 921–44PubMedCrossRef
5.
Zurück zum Zitat Rodriguez-Barrios F, Gago F. HIV protease inhibition: limited recent progress and advances in understanding current pitfalls. Curr Top Med Chem 2004; 4(9): 991–1007PubMedCrossRef Rodriguez-Barrios F, Gago F. HIV protease inhibition: limited recent progress and advances in understanding current pitfalls. Curr Top Med Chem 2004; 4(9): 991–1007PubMedCrossRef
6.
Zurück zum Zitat Wynn GH, Zapor MJ, Smith BH, et al. Antiretrovirals, part 1: overview, history, and focus on protease inhibitors. Psychosomatics 2004; 45(3): 262–70PubMedCrossRef Wynn GH, Zapor MJ, Smith BH, et al. Antiretrovirals, part 1: overview, history, and focus on protease inhibitors. Psychosomatics 2004; 45(3): 262–70PubMedCrossRef
7.
Zurück zum Zitat Gulick RM, Meibohm A, Havlir D, et al. Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine, and lamivudine. AIDS 2003; 17(16): 2345–9PubMedCrossRef Gulick RM, Meibohm A, Havlir D, et al. Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine, and lamivudine. AIDS 2003; 17(16): 2345–9PubMedCrossRef
8.
Zurück zum Zitat Hicks C, King MS, Gulick RM, et al. Long-term safety and durable antiretroviral activity of lopinavir/ritonavir in treatment-naive patients: 4 year follow-up study. AIDS 2004; 18(5): 775–9PubMedCrossRef Hicks C, King MS, Gulick RM, et al. Long-term safety and durable antiretroviral activity of lopinavir/ritonavir in treatment-naive patients: 4 year follow-up study. AIDS 2004; 18(5): 775–9PubMedCrossRef
9.
Zurück zum Zitat Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less: AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997; 337(11): 725–33PubMedCrossRef Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less: AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997; 337(11): 725–33PubMedCrossRef
10.
Zurück zum Zitat Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337(11): 734–9PubMedCrossRef Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337(11): 734–9PubMedCrossRef
11.
Zurück zum Zitat Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection: HIV Outpatient Study Investigators. N Engl J Med 1998; 338(13): 853–60PubMedCrossRef Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection: HIV Outpatient Study Investigators. N Engl J Med 1998; 338(13): 853–60PubMedCrossRef
12.
Zurück zum Zitat Weinstock HS, Zaidi I, Heneine W, et al. The epidemiology of antiretroviral drug resistance among drug-naive HIV-1-infected persons in 10 US cities. J Infect Dis 2004; 189(12): 2174–80PubMedCrossRef Weinstock HS, Zaidi I, Heneine W, et al. The epidemiology of antiretroviral drug resistance among drug-naive HIV-1-infected persons in 10 US cities. J Infect Dis 2004; 189(12): 2174–80PubMedCrossRef
13.
Zurück zum Zitat Hammer SM, Pedneault L. Antiretroviral resistance testing comes of age. Antivir Ther 2000; 5(1): 23–6PubMed Hammer SM, Pedneault L. Antiretroviral resistance testing comes of age. Antivir Ther 2000; 5(1): 23–6PubMed
14.
Zurück zum Zitat Wegner SA, Brodine SK, Mascola JR, et al. Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naive HIV-1 infected US military personnel. AIDS 2000; 14(8): 1009–15PubMedCrossRef Wegner SA, Brodine SK, Mascola JR, et al. Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naive HIV-1 infected US military personnel. AIDS 2000; 14(8): 1009–15PubMedCrossRef
15.
Zurück zum Zitat Little SJ, Holte S, Routy JP, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002; 347(6): 385–94PubMedCrossRef Little SJ, Holte S, Routy JP, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002; 347(6): 385–94PubMedCrossRef
16.
Zurück zum Zitat Greenberg M, Cammack N, Salgo M, et al. HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol 2004; 14(5): 321–37PubMedCrossRef Greenberg M, Cammack N, Salgo M, et al. HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol 2004; 14(5): 321–37PubMedCrossRef
17.
Zurück zum Zitat Moore JP, Doms RW. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A 2003; 100(19): 10598–602PubMedCrossRef Moore JP, Doms RW. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A 2003; 100(19): 10598–602PubMedCrossRef
18.
Zurück zum Zitat De Clercq E. HIV-chemotherapy and -prophylaxis: new drugs, leads and approaches. Int J Biochem Cell Biol 2004; 36(9): 1800–22PubMedCrossRef De Clercq E. HIV-chemotherapy and -prophylaxis: new drugs, leads and approaches. Int J Biochem Cell Biol 2004; 36(9): 1800–22PubMedCrossRef
19.
Zurück zum Zitat Dayam R, Neamati N. Small-molecule HIV-1 integrase inhibitors: the 2001–2002 update. Curr Pharm Des 2003; 9(22): 1789–802PubMedCrossRef Dayam R, Neamati N. Small-molecule HIV-1 integrase inhibitors: the 2001–2002 update. Curr Pharm Des 2003; 9(22): 1789–802PubMedCrossRef
20.
Zurück zum Zitat Tomkowicz B, Collman RG. HIV-1 entry inhibitors: closing the front door. Expert Opin Ther Targets 2004; 8(2): 65–78PubMedCrossRef Tomkowicz B, Collman RG. HIV-1 entry inhibitors: closing the front door. Expert Opin Ther Targets 2004; 8(2): 65–78PubMedCrossRef
21.
Zurück zum Zitat D’Cruz OJ, Uckun FM. Clinical development of microbicides for the prevention of HIV infection. Curr Pharm Des 2004; 10(3): 315–36PubMedCrossRef D’Cruz OJ, Uckun FM. Clinical development of microbicides for the prevention of HIV infection. Curr Pharm Des 2004; 10(3): 315–36PubMedCrossRef
22.
Zurück zum Zitat Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 2003; 1(1): 25–34PubMedCrossRef Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 2003; 1(1): 25–34PubMedCrossRef
23.
Zurück zum Zitat Pierson TC, Doms RW, Pohlmann S. Prospects of HIV-1 entry inhibitors as novel therapeutics. Rev Med Virol 2004; 14(4): 255–70PubMedCrossRef Pierson TC, Doms RW, Pohlmann S. Prospects of HIV-1 entry inhibitors as novel therapeutics. Rev Med Virol 2004; 14(4): 255–70PubMedCrossRef
24.
Zurück zum Zitat Doms RW, Moore JP. HIV-1 membrane fusion: targets of opportunity. J Cell Biol 2000; 151(2): F9–14PubMedCrossRef Doms RW, Moore JP. HIV-1 membrane fusion: targets of opportunity. J Cell Biol 2000; 151(2): F9–14PubMedCrossRef
26.
Zurück zum Zitat Ugolini S, Mondor I, Sattentau QJ. HIV-1 attachment: another look. Trends Microbiol 1999; 7(4): 144–9PubMedCrossRef Ugolini S, Mondor I, Sattentau QJ. HIV-1 attachment: another look. Trends Microbiol 1999; 7(4): 144–9PubMedCrossRef
27.
Zurück zum Zitat Baribaud F, Pohlmann S, Doms RW. The role of DC-SIGN and DC-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 2001; 286(1): 1–6PubMedCrossRef Baribaud F, Pohlmann S, Doms RW. The role of DC-SIGN and DC-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 2001; 286(1): 1–6PubMedCrossRef
28.
Zurück zum Zitat Reeves JD, Doms RW. The role of chemokine receptors in HIV infection of host cells. In: Bradshaw RA, Dennis EA, editors. Handbook of cell signaling. New York: Academic Press, 2003: 191–6CrossRef Reeves JD, Doms RW. The role of chemokine receptors in HIV infection of host cells. In: Bradshaw RA, Dennis EA, editors. Handbook of cell signaling. New York: Academic Press, 2003: 191–6CrossRef
29.
Zurück zum Zitat Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657–700PubMedCrossRef Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657–700PubMedCrossRef
30.
Zurück zum Zitat Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89(2): 263–73PubMedCrossRef Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89(2): 263–73PubMedCrossRef
31.
Zurück zum Zitat Weissenhorn W, Dessen A, Harrison SC, et al. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387(6631): 426–30PubMedCrossRef Weissenhorn W, Dessen A, Harrison SC, et al. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387(6631): 426–30PubMedCrossRef
32.
Zurück zum Zitat Melikyan GB, Markosyan RM, Hemmati H, et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000; 151(2): 413–23PubMedCrossRef Melikyan GB, Markosyan RM, Hemmati H, et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000; 151(2): 413–23PubMedCrossRef
33.
Zurück zum Zitat Kuhmann SE, Platt EJ, Kozak SL, et al. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 2000; 74(15): 7005–15PubMedCrossRef Kuhmann SE, Platt EJ, Kozak SL, et al. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 2000; 74(15): 7005–15PubMedCrossRef
34.
Zurück zum Zitat Labrosse B, Labernardiere JL, Dam E, et al. Baseline susceptibility of primary human immunodeficiency virus type 1 to entry inhibitors. J Virol 2003; 77(2): 1610–3PubMedCrossRef Labrosse B, Labernardiere JL, Dam E, et al. Baseline susceptibility of primary human immunodeficiency virus type 1 to entry inhibitors. J Virol 2003; 77(2): 1610–3PubMedCrossRef
35.
Zurück zum Zitat Reeves JD, Gallo SA, Ahmad N, et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 2002; 99(25): 16249–54PubMedCrossRef Reeves JD, Gallo SA, Ahmad N, et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 2002; 99(25): 16249–54PubMedCrossRef
36.
Zurück zum Zitat Reeves JD, Miamidian JL, Biscone MJ, et al. Impact of mutations in the coreceptor binding site on human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J Virol 2004; 78(10): 5476–85PubMedCrossRef Reeves JD, Miamidian JL, Biscone MJ, et al. Impact of mutations in the coreceptor binding site on human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J Virol 2004; 78(10): 5476–85PubMedCrossRef
37.
Zurück zum Zitat Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 2005; 79(8): 4991–9PubMedCrossRef Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 2005; 79(8): 4991–9PubMedCrossRef
38.
Zurück zum Zitat Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000; 74(18): 8358–67PubMedCrossRef Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000; 74(18): 8358–67PubMedCrossRef
39.
Zurück zum Zitat Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75(18): 8605–14PubMedCrossRef Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75(18): 8605–14PubMedCrossRef
40.
Zurück zum Zitat Parkin NT, Hellmann NS, Whitcomb JM, et al. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrob Agents Chemother 2004; 48(2): 437–43PubMedCrossRef Parkin NT, Hellmann NS, Whitcomb JM, et al. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrob Agents Chemother 2004; 48(2): 437–43PubMedCrossRef
41.
Zurück zum Zitat Callahan LN, Phelan M, Mallinson M, et al. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J Virol 1991; 65(3): 1543–50PubMed Callahan LN, Phelan M, Mallinson M, et al. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J Virol 1991; 65(3): 1543–50PubMed
42.
Zurück zum Zitat Moulard M, Lortat-Jacob H, Mondor I, et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol 2000; 74(4): 1948–60PubMedCrossRef Moulard M, Lortat-Jacob H, Mondor I, et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol 2000; 74(4): 1948–60PubMedCrossRef
43.
Zurück zum Zitat Esser MT, Mori T, Mondor I, et al. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol 1999; 73(5): 4360–71PubMed Esser MT, Mori T, Mondor I, et al. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol 1999; 73(5): 4360–71PubMed
44.
Zurück zum Zitat Botos I, O’Keefe BR, Shenoy SR, et al. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 2002; 277(37): 34336–42PubMedCrossRef Botos I, O’Keefe BR, Shenoy SR, et al. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 2002; 277(37): 34336–42PubMedCrossRef
45.
Zurück zum Zitat Dey B, Lerner DL, Lusso P, et al. Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 2000; 74(10): 4562–9PubMedCrossRef Dey B, Lerner DL, Lusso P, et al. Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 2000; 74(10): 4562–9PubMedCrossRef
46.
Zurück zum Zitat Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41(7): 1521–30PubMed Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41(7): 1521–30PubMed
47.
Zurück zum Zitat Turpin JA. Considerations and development of topical microbicides to inhibit the sexual transmission of HIV. Expert Opin Investig Drugs 2002; 11(8): 1077–97PubMedCrossRef Turpin JA. Considerations and development of topical microbicides to inhibit the sexual transmission of HIV. Expert Opin Investig Drugs 2002; 11(8): 1077–97PubMedCrossRef
48.
Zurück zum Zitat Dumonceaux J, Nisole S, Chanel C, et al. Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4-independent entry phenotype. J Virol 1998; 72(1): 512–9PubMed Dumonceaux J, Nisole S, Chanel C, et al. Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4-independent entry phenotype. J Virol 1998; 72(1): 512–9PubMed
49.
Zurück zum Zitat Kolchinsky P, Mirzabekov T, Farzan M, et al. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999; 73(10): 8120–6PubMed Kolchinsky P, Mirzabekov T, Farzan M, et al. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999; 73(10): 8120–6PubMed
50.
Zurück zum Zitat LaBranche CC, Hoffman TL, Romano J, et al. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J Virol 1999; 73(12): 10310–9PubMed LaBranche CC, Hoffman TL, Romano J, et al. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J Virol 1999; 73(12): 10310–9PubMed
51.
Zurück zum Zitat Endres MJ, Clapham PR, Marsh M, et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 1996; 87(4): 745–56PubMedCrossRef Endres MJ, Clapham PR, Marsh M, et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 1996; 87(4): 745–56PubMedCrossRef
52.
Zurück zum Zitat Reeves JD, McKnight A, Potempa S, et al. CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 1997; 231(1): 130–4PubMedCrossRef Reeves JD, McKnight A, Potempa S, et al. CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 1997; 231(1): 130–4PubMedCrossRef
53.
Zurück zum Zitat Bhattacharya J, Peters PJ, Clapham PR. CD4-independent infection of HIV and SIV: implications for envelope conformation and cell tropism in vivo. AIDS 2003; 17 Suppl. 4: S35–43PubMedCrossRef Bhattacharya J, Peters PJ, Clapham PR. CD4-independent infection of HIV and SIV: implications for envelope conformation and cell tropism in vivo. AIDS 2003; 17 Suppl. 4: S35–43PubMedCrossRef
54.
Zurück zum Zitat Reeves JD, Doms RW. Human immunodeficiency virus type 2. J Gen Virol 2002; 83 (Pt 6): 1253–65PubMed Reeves JD, Doms RW. Human immunodeficiency virus type 2. J Gen Virol 2002; 83 (Pt 6): 1253–65PubMed
55.
Zurück zum Zitat Reeves JD, Hibbitts S, Simmons G, et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999; 73(9): 7795–804PubMed Reeves JD, Hibbitts S, Simmons G, et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999; 73(9): 7795–804PubMed
56.
Zurück zum Zitat Edwards TG, Hoffman TL, Baribaud F, et al. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 2001; 75(11): 5230–9PubMedCrossRef Edwards TG, Hoffman TL, Baribaud F, et al. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 2001; 75(11): 5230–9PubMedCrossRef
57.
Zurück zum Zitat Hoffman TL, LaBranche CC, Zhang W, et al. Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc Natl Acad Sci U S A 1999; 96(11): 6359–64PubMedCrossRef Hoffman TL, LaBranche CC, Zhang W, et al. Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc Natl Acad Sci U S A 1999; 96(11): 6359–64PubMedCrossRef
58.
Zurück zum Zitat Vermeire K, Bell TW, Choi HJ, et al. The anti-HIV potency of cyclotriazadisulfonamide analogs is directly correlated with their ability to down-modulate the CD4 receptor. Mol Pharmacol 2003; 63(1): 203–10PubMedCrossRef Vermeire K, Bell TW, Choi HJ, et al. The anti-HIV potency of cyclotriazadisulfonamide analogs is directly correlated with their ability to down-modulate the CD4 receptor. Mol Pharmacol 2003; 63(1): 203–10PubMedCrossRef
59.
Zurück zum Zitat Vermeire K, Zhang Y, Princen K, et al. CADA inhibits human immunodeficiency virus and human herpesvirus 7 replication by down-modulation of the cellular CD4 receptor. Virology 2002; 302(2): 342–53PubMedCrossRef Vermeire K, Zhang Y, Princen K, et al. CADA inhibits human immunodeficiency virus and human herpesvirus 7 replication by down-modulation of the cellular CD4 receptor. Virology 2002; 302(2): 342–53PubMedCrossRef
60.
Zurück zum Zitat Vermeire K, Schols D. Specific CD4 down-modulating compounds with potent anti-HIV activity. J Leukoc Biol 2003; 74(5): 667–75PubMedCrossRef Vermeire K, Schols D. Specific CD4 down-modulating compounds with potent anti-HIV activity. J Leukoc Biol 2003; 74(5): 667–75PubMedCrossRef
61.
Zurück zum Zitat Vermeire K, Schols D, Bell TW. CD4 down-modulating compounds with potent anti-HIV activity. Curr Pharm Des 2004; 10(15): 1795–803PubMedCrossRef Vermeire K, Schols D, Bell TW. CD4 down-modulating compounds with potent anti-HIV activity. Curr Pharm Des 2004; 10(15): 1795–803PubMedCrossRef
62.
Zurück zum Zitat Rusconi S, Moonis M, Merrill DP, et al. Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. Antimicrob Agents Chemother 1996; 40(1): 234–6PubMed Rusconi S, Moonis M, Merrill DP, et al. Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. Antimicrob Agents Chemother 1996; 40(1): 234–6PubMed
63.
Zurück zum Zitat Reimann KA, Lin W, Bixler S, et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retroviruses 1997; 13(11): 933–43PubMedCrossRef Reimann KA, Lin W, Bixler S, et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retroviruses 1997; 13(11): 933–43PubMedCrossRef
64.
Zurück zum Zitat Burkly LC, Olson D, Shapiro R, et al. Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody: dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J Immunol 1992; 149(5): 1779–87PubMed Burkly LC, Olson D, Shapiro R, et al. Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody: dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J Immunol 1992; 149(5): 1779–87PubMed
65.
Zurück zum Zitat Moore JP, Sattentau QJ, Klasse PJ, et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992; 66(8): 4784–93PubMed Moore JP, Sattentau QJ, Klasse PJ, et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992; 66(8): 4784–93PubMed
66.
Zurück zum Zitat Kuritzkes DR, Jacobson J, Powderly WG, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004; 189(2): 286–91PubMedCrossRef Kuritzkes DR, Jacobson J, Powderly WG, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004; 189(2): 286–91PubMedCrossRef
67.
Zurück zum Zitat Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11(5): 533–9PubMedCrossRef Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11(5): 533–9PubMedCrossRef
68.
Zurück zum Zitat Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995; 69(11): 6609–17PubMed Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995; 69(11): 6609–17PubMed
69.
Zurück zum Zitat Jacobson JM, Israel RJ, Lowy I, et al. Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Chemother 2004; 48(2): 423–9PubMedCrossRef Jacobson JM, Israel RJ, Lowy I, et al. Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Chemother 2004; 48(2): 423–9PubMedCrossRef
70.
Zurück zum Zitat Jacobson JM, Lowy I, Fletcher CV, et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000; 182(1): 326–9PubMedCrossRef Jacobson JM, Lowy I, Fletcher CV, et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000; 182(1): 326–9PubMedCrossRef
71.
Zurück zum Zitat Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000; 182(6): 1774–9 Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000; 182(6): 1774–9
72.
Zurück zum Zitat Guo Q, Ho HT, Dicker I, et al. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 2003; 77(19): 10528–36PubMedCrossRef Guo Q, Ho HT, Dicker I, et al. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 2003; 77(19): 10528–36PubMedCrossRef
73.
Zurück zum Zitat Lin PF, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci U S A 2003; 100(19): 11013–8PubMedCrossRef Lin PF, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci U S A 2003; 100(19): 11013–8PubMedCrossRef
74.
Zurück zum Zitat Madani N, Perdigoto AL, Srinivasan K, et al. Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and 155. J Virol 2004; 78(7): 3742–52PubMedCrossRef Madani N, Perdigoto AL, Srinivasan K, et al. Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and 155. J Virol 2004; 78(7): 3742–52PubMedCrossRef
75.
Zurück zum Zitat Si Z, Madani N, Cox JM, et al. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci U S A 2004; 101(14): 5036–41PubMedCrossRef Si Z, Madani N, Cox JM, et al. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci U S A 2004; 101(14): 5036–41PubMedCrossRef
76.
Zurück zum Zitat McKnight A, Weiss RA. Blocking the docking of HIV-1. Proc Natl Acad Sci U S A 2003; 100(19): 10581–2PubMedCrossRef McKnight A, Weiss RA. Blocking the docking of HIV-1. Proc Natl Acad Sci U S A 2003; 100(19): 10581–2PubMedCrossRef
77.
Zurück zum Zitat Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996; 2(11): 1240–3PubMedCrossRef Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996; 2(11): 1240–3PubMedCrossRef
78.
Zurück zum Zitat Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382(6593): 722–5PubMedCrossRef Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382(6593): 722–5PubMedCrossRef
79.
Zurück zum Zitat Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86(3): 367–77PubMedCrossRef Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86(3): 367–77PubMedCrossRef
80.
Zurück zum Zitat Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene: Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273(5283): 1856–62PubMedCrossRef Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene: Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273(5283): 1856–62PubMedCrossRef
81.
Zurück zum Zitat Connor RI, Sheridan KE, Ceradini D, et al. Change in coreceptor use coreceptor use correlates with disease progression in HIV-1 infected individuals. J Exp Med 1997; 185(4): 621–8PubMedCrossRef Connor RI, Sheridan KE, Ceradini D, et al. Change in coreceptor use coreceptor use correlates with disease progression in HIV-1 infected individuals. J Exp Med 1997; 185(4): 621–8PubMedCrossRef
82.
Zurück zum Zitat Moyle GJ, Wildfire A, Mandalia S, et al. Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Infect Dis 2005; 191(6): 866–72PubMedCrossRef Moyle GJ, Wildfire A, Mandalia S, et al. Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Infect Dis 2005; 191(6): 866–72PubMedCrossRef
83.
Zurück zum Zitat Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263): 872–7PubMedCrossRef Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263): 872–7PubMedCrossRef
84.
Zurück zum Zitat Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73PubMedCrossRef Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73PubMedCrossRef
85.
Zurück zum Zitat Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85(7): 1149–58PubMedCrossRef Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85(7): 1149–58PubMedCrossRef
86.
Zurück zum Zitat Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270): 1955–8PubMedCrossRef Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270): 1955–8PubMedCrossRef
87.
Zurück zum Zitat Trkola A, Dragic T, Arthos J, et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–7PubMedCrossRef Trkola A, Dragic T, Arthos J, et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–7PubMedCrossRef
88.
Zurück zum Zitat Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381(6584): 661–6PubMedCrossRef Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381(6584): 661–6PubMedCrossRef
89.
Zurück zum Zitat Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7): 1135–48PubMedCrossRef Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7): 1135–48PubMedCrossRef
90.
Zurück zum Zitat Wu L, Gerard NP, Wyatt R, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–83PubMedCrossRef Wu L, Gerard NP, Wyatt R, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–83PubMedCrossRef
91.
Zurück zum Zitat Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270(5243): 1811–5PubMedCrossRef Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270(5243): 1811–5PubMedCrossRef
92.
Zurück zum Zitat Paxton WA, Martin SR, Tse D, et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 1996; 2(4): 412–7PubMedCrossRef Paxton WA, Martin SR, Tse D, et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 1996; 2(4): 412–7PubMedCrossRef
93.
Zurück zum Zitat Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382(6594): 829–33PubMedCrossRef Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382(6594): 829–33PubMedCrossRef
94.
Zurück zum Zitat Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382(6594): 833–5PubMedCrossRef Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382(6594): 833–5PubMedCrossRef
95.
Zurück zum Zitat Mack M, Luckow B, Nelson PJ, et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 1998; 187(8): 1215–24PubMedCrossRef Mack M, Luckow B, Nelson PJ, et al. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 1998; 187(8): 1215–24PubMedCrossRef
96.
Zurück zum Zitat Simmons G, Clapham PR, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276(5310): 276–9PubMedCrossRef Simmons G, Clapham PR, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276(5310): 276–9PubMedCrossRef
97.
Zurück zum Zitat Shaheen F, Collman RG. Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis 2004; 17(1): 7–16PubMedCrossRef Shaheen F, Collman RG. Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis 2004; 17(1): 7–16PubMedCrossRef
98.
Zurück zum Zitat Kazmierski W, Bifulco N, Yang H, et al. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg Med Chem 2003; 11(13): 2663–76PubMedCrossRef Kazmierski W, Bifulco N, Yang H, et al. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg Med Chem 2003; 11(13): 2663–76PubMedCrossRef
99.
Zurück zum Zitat Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 1999; 96(10): 5698–703PubMedCrossRef Baba M, Nishimura O, Kanzaki N, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 1999; 96(10): 5698–703PubMedCrossRef
100.
Zurück zum Zitat Dragic T, Trkola A, Thompson DA, et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR 5. Proc Natl Acad Sci U S A 2000; 97(10): 5639–44PubMedCrossRef Dragic T, Trkola A, Thompson DA, et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR 5. Proc Natl Acad Sci U S A 2000; 97(10): 5639–44PubMedCrossRef
101.
Zurück zum Zitat Tsamis F, Gavrilov S, Kajumo F, et al. Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J Virol 2003; 77(9): 5201–8PubMedCrossRef Tsamis F, Gavrilov S, Kajumo F, et al. Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J Virol 2003; 77(9): 5201–8PubMedCrossRef
102.
Zurück zum Zitat Strizki JM, Xu S, Wagner NE, et al. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98(22): 12718–23PubMedCrossRef Strizki JM, Xu S, Wagner NE, et al. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98(22): 12718–23PubMedCrossRef
103.
Zurück zum Zitat Tremblay CL, Giguel F, Kollmann C, et al. Anti-human immunodeficiency virus interactions of SCH-C (SCH 351125), a CCR5 Antagonist, with other antiretroviral agents in vitro. Antimicrob Agents Chemother 2002; 46(5): 1336–9PubMedCrossRef Tremblay CL, Giguel F, Kollmann C, et al. Anti-human immunodeficiency virus interactions of SCH-C (SCH 351125), a CCR5 Antagonist, with other antiretroviral agents in vitro. Antimicrob Agents Chemother 2002; 46(5): 1336–9PubMedCrossRef
104.
Zurück zum Zitat Reynes J, Rouzie R, Kanouni T, et al. SCH C: safety and antiviral effects of a CCR5 receptor antagonist in HIV-1 infected subjects [abstract]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA) Reynes J, Rouzie R, Kanouni T, et al. SCH C: safety and antiviral effects of a CCR5 receptor antagonist in HIV-1 infected subjects [abstract]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)
105.
Zurück zum Zitat Schurmann D, Rouzier R, Nougarede R, et al. Antiviral activity of a CCR5 receptor antagonist [abstract no. 140LB]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA) Schurmann D, Rouzier R, Nougarede R, et al. Antiviral activity of a CCR5 receptor antagonist [abstract no. 140LB]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA)
106.
Zurück zum Zitat Tagat JR, McCombie SW, Nazareno D, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors: IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-[2-methoxy-1 (R)-4-(trifluoromethyl)phenyl]ethyl-3 (S)-methyl-1-piperazinyl]-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 2004; 47(10): 2405–8 Tagat JR, McCombie SW, Nazareno D, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors: IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-[2-methoxy-1 (R)-4-(trifluoromethyl)phenyl]ethyl-3 (S)-methyl-1-piperazinyl]-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 2004; 47(10): 2405–8
107.
Zurück zum Zitat Maeda K, Nakata H, Koh Y, et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 2004; 78(16): 8654–62PubMedCrossRef Maeda K, Nakata H, Koh Y, et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 2004; 78(16): 8654–62PubMedCrossRef
108.
Zurück zum Zitat Lalezari J, Thompson M, Kumar P, et al. 873140, a novel CCR5 antagonist: antiviral activity and safety during short-term monotherapy in HIV-infected adults [abstract no. 114]. 44th ICAAC; 2004 Oct 30–Nov 2; Washington, DC Lalezari J, Thompson M, Kumar P, et al. 873140, a novel CCR5 antagonist: antiviral activity and safety during short-term monotherapy in HIV-infected adults [abstract no. 114]. 44th ICAAC; 2004 Oct 30–Nov 2; Washington, DC
109.
Zurück zum Zitat Dorr P, Macartney M, Rickett G, et al. UK-427,857, a novel small molecule HIV entry inhibitor is a specific antagonist of the chemokine receptor CCR5 [abstract no. 12]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA) Dorr P, Macartney M, Rickett G, et al. UK-427,857, a novel small molecule HIV entry inhibitor is a specific antagonist of the chemokine receptor CCR5 [abstract no. 12]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)
110.
Zurück zum Zitat Westby M, Smith-Burchnell C, Mori J, et al. In vitro escape of R5 primary isolates from the CCR5 antagonist, UK-427,857, is difficult and involves continued use of the CCR5 receptor [abstract]. Antivir Ther 2004; 9(4): S10 Westby M, Smith-Burchnell C, Mori J, et al. In vitro escape of R5 primary isolates from the CCR5 antagonist, UK-427,857, is difficult and involves continued use of the CCR5 receptor [abstract]. Antivir Ther 2004; 9(4): S10
111.
Zurück zum Zitat Pozniak AL, Fatkenheuer G, Johnson M, et al. Effect of short term monotherapy with UK-427,857 on viral load in HIV-infected patients [abstract no. H-443]. 43rd Interscience Conference on Antiviral Agents and Chemotherapy; 2003 Sep 14–17; Chicago (IL) Pozniak AL, Fatkenheuer G, Johnson M, et al. Effect of short term monotherapy with UK-427,857 on viral load in HIV-infected patients [abstract no. H-443]. 43rd Interscience Conference on Antiviral Agents and Chemotherapy; 2003 Sep 14–17; Chicago (IL)
112.
Zurück zum Zitat Mosier DE, Picchio GR, Gulizia RJ, et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 1999; 73(5): 3544–50PubMed Mosier DE, Picchio GR, Gulizia RJ, et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 1999; 73(5): 3544–50PubMed
113.
Zurück zum Zitat Kuhmann SE, Pugach P, Kunstman KJ, et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78(6): 2790–807PubMedCrossRef Kuhmann SE, Pugach P, Kunstman KJ, et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78(6): 2790–807PubMedCrossRef
114.
Zurück zum Zitat Trkola A, Kuhmann SE, Strizki JM, et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A 2002; 99(1): 395–400PubMedCrossRef Trkola A, Kuhmann SE, Strizki JM, et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A 2002; 99(1): 395–400PubMedCrossRef
115.
Zurück zum Zitat Wolinsky SM, Veazey RS, Kunstman KJ, et al. Effect of a CCR5 inhibitor on viral loads in macaques dual-infected with R5 and X4 primate immunodeficiency viruses. Virology 2004; 328(1): 19–29PubMedCrossRef Wolinsky SM, Veazey RS, Kunstman KJ, et al. Effect of a CCR5 inhibitor on viral loads in macaques dual-infected with R5 and X4 primate immunodeficiency viruses. Virology 2004; 328(1): 19–29PubMedCrossRef
116.
Zurück zum Zitat Westby M, Whitcomb J, Huang W, et al. Predominance of CXCR4 utilising variants in a non-responsive dual tropic patient receiving the CCR5 antagonist UK-427,857 [abstract no. 538]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA) Westby M, Whitcomb J, Huang W, et al. Predominance of CXCR4 utilising variants in a non-responsive dual tropic patient receiving the CCR5 antagonist UK-427,857 [abstract no. 538]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA)
117.
Zurück zum Zitat Schols D. HIV co-receptors as targets for antiviral therapy. Curr Top Med Chem 2004; 4(9): 883–93PubMedCrossRef Schols D. HIV co-receptors as targets for antiviral therapy. Curr Top Med Chem 2004; 4(9): 883–93PubMedCrossRef
118.
Zurück zum Zitat Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393(6685): 591–4PubMedCrossRef Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393(6685): 591–4PubMedCrossRef
119.
Zurück zum Zitat Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393(6685): 595–9PubMedCrossRef Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393(6685): 595–9PubMedCrossRef
120.
121.
Zurück zum Zitat De Clercq E, Yamamoto N, Pauwels R, et al. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 1994; 38(4): 668–74PubMedCrossRef De Clercq E, Yamamoto N, Pauwels R, et al. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 1994; 38(4): 668–74PubMedCrossRef
122.
Zurück zum Zitat Donzella GA, Schols D, Lin SW, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 coreceptor. Nat Med 1998; 4(1): 72–7PubMedCrossRef Donzella GA, Schols D, Lin SW, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 coreceptor. Nat Med 1998; 4(1): 72–7PubMedCrossRef
123.
Zurück zum Zitat Schols D, Struyf S, Van Damme J, et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186(8): 1383–8PubMedCrossRef Schols D, Struyf S, Van Damme J, et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186(8): 1383–8PubMedCrossRef
124.
Zurück zum Zitat Schols D, Este JA, Henson G, et al. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res 1997; 35(3): 147–56PubMedCrossRef Schols D, Este JA, Henson G, et al. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res 1997; 35(3): 147–56PubMedCrossRef
125.
Zurück zum Zitat Hendrix CW, Flexner C, MacFarland RT, et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44(6): 1667–73PubMedCrossRef Hendrix CW, Flexner C, MacFarland RT, et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44(6): 1667–73PubMedCrossRef
126.
Zurück zum Zitat Schols D, Claes S, De Clercq E, et al. AMD-3100, a CXCR4 antagonist, reduced HIV viral load and X4 virus levels in humans [abstract no. 2]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA) Schols D, Claes S, De Clercq E, et al. AMD-3100, a CXCR4 antagonist, reduced HIV viral load and X4 virus levels in humans [abstract no. 2]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)
127.
Zurück zum Zitat Fransen S, Huang W, Toma J, et al. Suppression of X4-and dual-tropic HIV-1 variants during a short course of monotherapy with the CXCR4 antagonist AMD 3100 [abstract]. Antivir Ther 2004; 9: S11 Fransen S, Huang W, Toma J, et al. Suppression of X4-and dual-tropic HIV-1 variants during a short course of monotherapy with the CXCR4 antagonist AMD 3100 [abstract]. Antivir Ther 2004; 9: S11
128.
Zurück zum Zitat Schols D, Claes S, Hatse S, et al. Anti-HIV activity profile of AMD070, an orally bioavailable CXCR4 antagonist H [abstract no. 563]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA) Schols D, Claes S, Hatse S, et al. Anti-HIV activity profile of AMD070, an orally bioavailable CXCR4 antagonist H [abstract no. 563]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)
129.
Zurück zum Zitat Stone N, Dunaway S, Flexner C, et al. Biologic activity of an orally bioavailable CXCR4 antagonist in human subjects [abstract no. TuPeB4475]. XV International AIDS Conference; 2004 Jul 11–16; Bangkok Stone N, Dunaway S, Flexner C, et al. Biologic activity of an orally bioavailable CXCR4 antagonist in human subjects [abstract no. TuPeB4475]. XV International AIDS Conference; 2004 Jul 11–16; Bangkok
130.
Zurück zum Zitat Miralles D. Needle-free administration of enfuvirtide with Biojector™ 2000 (B2000) demonstrates pharmacokinetic bioequivalence to standard needle administration. HIV, DART: Frontiers in Drug Development for AntiRetroviral Therapies; 2004 Dec 12–16; Montego Bay Miralles D. Needle-free administration of enfuvirtide with Biojector™ 2000 (B2000) demonstrates pharmacokinetic bioequivalence to standard needle administration. HIV, DART: Frontiers in Drug Development for AntiRetroviral Therapies; 2004 Dec 12–16; Montego Bay
131.
Zurück zum Zitat Chen CH, Matthews TJ, McDanal CB, et al. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 1995; 69(6): 3771–7PubMed Chen CH, Matthews TJ, McDanal CB, et al. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 1995; 69(6): 3771–7PubMed
132.
Zurück zum Zitat He Y, Vassell R, Zaitseva M, et al. Peptides trap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 2003; 77(3): 1666–71PubMedCrossRef He Y, Vassell R, Zaitseva M, et al. Peptides trap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 2003; 77(3): 1666–71PubMedCrossRef
133.
Zurück zum Zitat Gallo SA, Puri A, Blumenthal R. HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 2001; 40(41): 12231–6PubMedCrossRef Gallo SA, Puri A, Blumenthal R. HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 2001; 40(41): 12231–6PubMedCrossRef
134.
Zurück zum Zitat Yuan W, Craig S, Si Z, et al. CD4-induced T-20 binding to human immunodeficiency virus type 1 gp120 blocks interaction with the CXCR4 coreceptor. J Virol 2004; 78(10): 5448–57PubMedCrossRef Yuan W, Craig S, Si Z, et al. CD4-induced T-20 binding to human immunodeficiency virus type 1 gp120 blocks interaction with the CXCR4 coreceptor. J Virol 2004; 78(10): 5448–57PubMedCrossRef
135.
Zurück zum Zitat Lalezari JP, Henry K, O’Hearn M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348(22): 2175–85PubMedCrossRef Lalezari JP, Henry K, O’Hearn M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348(22): 2175–85PubMedCrossRef
136.
Zurück zum Zitat Lazzarin A, Clotet B, Cooper D, et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348(22): 2186–95PubMedCrossRef Lazzarin A, Clotet B, Cooper D, et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348(22): 2186–95PubMedCrossRef
137.
Zurück zum Zitat Miller MD, Hazuda DJ. HIV resistance to the fusion inhibitor enfuvirtide: mechanisms and clinical implications. Drug Resist Updat 2004; 7(2): 89–95PubMedCrossRef Miller MD, Hazuda DJ. HIV resistance to the fusion inhibitor enfuvirtide: mechanisms and clinical implications. Drug Resist Updat 2004; 7(2): 89–95PubMedCrossRef
138.
Zurück zum Zitat Greenberg ML, Cammack N. Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 2004 Aug; 54(2): 333–40PubMedCrossRef Greenberg ML, Cammack N. Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 2004 Aug; 54(2): 333–40PubMedCrossRef
139.
Zurück zum Zitat Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72(2): 986–93PubMed Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72(2): 986–93PubMed
140.
Zurück zum Zitat Xu L, Pozniak A, Wildfire A, et al. Evolution of HR1 and HR2 mutations in HIV-1 gp41 associated with long-term enfuvirtide therapy [abstract no. 659]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA) Xu L, Pozniak A, Wildfire A, et al. Evolution of HR1 and HR2 mutations in HIV-1 gp41 associated with long-term enfuvirtide therapy [abstract no. 659]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA)
141.
Zurück zum Zitat Baldwin CE, Sanders RW, Deng Y, et al. Emergence of a drug-dependent human immunodeficiency virus type 1 variant during therapy with the T20 fusion inhibitor. J Virol 2004; 78(22): 12428–37PubMedCrossRef Baldwin CE, Sanders RW, Deng Y, et al. Emergence of a drug-dependent human immunodeficiency virus type 1 variant during therapy with the T20 fusion inhibitor. J Virol 2004; 78(22): 12428–37PubMedCrossRef
142.
Zurück zum Zitat Poveda E, Rodes B, Toro C, et al. Evolution of the gp41 env region in HIV-infected patients receiving T-20, a fusion inhibitor. AIDS 2002; 16(14): 1959–61PubMedCrossRef Poveda E, Rodes B, Toro C, et al. Evolution of the gp41 env region in HIV-infected patients receiving T-20, a fusion inhibitor. AIDS 2002; 16(14): 1959–61PubMedCrossRef
143.
Zurück zum Zitat Menzo S, Castagna A, Monachetti A, et al. Genotype and phenotype patterns of human immunodeficiency virus type 1 resistance to enfuvirtide during long-term treatment. Antimicrob Agents Chemother 2004; 48(9): 3253–9PubMedCrossRef Menzo S, Castagna A, Monachetti A, et al. Genotype and phenotype patterns of human immunodeficiency virus type 1 resistance to enfuvirtide during long-term treatment. Antimicrob Agents Chemother 2004; 48(9): 3253–9PubMedCrossRef
144.
Zurück zum Zitat Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78(9): 4628–37PubMedCrossRef Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78(9): 4628–37PubMedCrossRef
145.
Zurück zum Zitat Marcelin AG, Reynes J, Yerly S, et al. Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. AIDS 2004; 18(9): 1340–2PubMedCrossRef Marcelin AG, Reynes J, Yerly S, et al. Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. AIDS 2004; 18(9): 1340–2PubMedCrossRef
146.
Zurück zum Zitat Greenberg ML, Davison D, Jin L, et al. In vitro antiviral activity of T-1249 a second generation fusion inhibitor [abstract]. Antivir Ther 2002; 7 Suppl. 1: S10 Greenberg ML, Davison D, Jin L, et al. In vitro antiviral activity of T-1249 a second generation fusion inhibitor [abstract]. Antivir Ther 2002; 7 Suppl. 1: S10
147.
Zurück zum Zitat Miralles GD, Lalezari JP, Bellos N, et al. T-1249 demonstrates potent antiviral activity over 10 day dosing in most patients who have failed a regimen containing enfuvirtide (ENF): planned interim analysis of T1249-102, a phase I/II study [abstract no. 141b]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA) Miralles GD, Lalezari JP, Bellos N, et al. T-1249 demonstrates potent antiviral activity over 10 day dosing in most patients who have failed a regimen containing enfuvirtide (ENF): planned interim analysis of T1249-102, a phase I/II study [abstract no. 141b]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)
148.
Zurück zum Zitat Tremblay CL, Kollmann C, Giguel F, et al. Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. J Acquir Immune Defic Syndr 2000; 25(2): 99–102PubMedCrossRef Tremblay CL, Kollmann C, Giguel F, et al. Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. J Acquir Immune Defic Syndr 2000; 25(2): 99–102PubMedCrossRef
149.
Zurück zum Zitat Nagashima KA, Thompson DA, Rosenfield SI, et al. Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183(7): 1121–5PubMedCrossRef Nagashima KA, Thompson DA, Rosenfield SI, et al. Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183(7): 1121–5PubMedCrossRef
150.
Zurück zum Zitat Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189(6): 1075–83PubMedCrossRef Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189(6): 1075–83PubMedCrossRef
151.
Zurück zum Zitat Root MJ, Steger HK. HIV-1 gp41 as a target for viral entry inhibition. Curr Pharm Des 2004; 10(15): 1805–25PubMedCrossRef Root MJ, Steger HK. HIV-1 gp41 as a target for viral entry inhibition. Curr Pharm Des 2004; 10(15): 1805–25PubMedCrossRef
152.
Zurück zum Zitat Moore JP, Shattock RJ. Preventing HIV-1 sexual transmission: not sexy enough science, or no benefit to the bottom line? J Antimicrob Chemother 2003; 52(6): 890–2PubMedCrossRef Moore JP, Shattock RJ. Preventing HIV-1 sexual transmission: not sexy enough science, or no benefit to the bottom line? J Antimicrob Chemother 2003; 52(6): 890–2PubMedCrossRef
153.
154.
Zurück zum Zitat Davis CW, Doms RW. HIV transmission: closing all the doors. J Exp Med 2004; 199(8): 1037–40PubMedCrossRef Davis CW, Doms RW. HIV transmission: closing all the doors. J Exp Med 2004; 199(8): 1037–40PubMedCrossRef
155.
Zurück zum Zitat Hu Q, Frank I, Williams V, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med 2004; 199(8): 1065–75PubMedCrossRef Hu Q, Frank I, Williams V, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med 2004; 199(8): 1065–75PubMedCrossRef
156.
Zurück zum Zitat Tsai CC, Emau P, Jiang Y, et al. Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques. AIDS Res Hum Retroviruses 2003; 19(7): 535–41PubMedCrossRef Tsai CC, Emau P, Jiang Y, et al. Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques. AIDS Res Hum Retroviruses 2003; 19(7): 535–41PubMedCrossRef
157.
Zurück zum Zitat Tsai CC, Emau P, Jiang Y, et al. Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models. AIDS Res Hum Retroviruses 2004; 20(1): 11–8PubMedCrossRef Tsai CC, Emau P, Jiang Y, et al. Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models. AIDS Res Hum Retroviruses 2004; 20(1): 11–8PubMedCrossRef
158.
Zurück zum Zitat Weber J, Nunn A, O’Connor T, et al. ‘Chemical condoms’ for the prevention of HIV infection: evaluation of novel agents against SHIV (89.6PD) in vitro and in vivo. AIDS 2001; 15(12): 1563–8PubMedCrossRef Weber J, Nunn A, O’Connor T, et al. ‘Chemical condoms’ for the prevention of HIV infection: evaluation of novel agents against SHIV (89.6PD) in vitro and in vivo. AIDS 2001; 15(12): 1563–8PubMedCrossRef
159.
Zurück zum Zitat Van Damme L, Wright A, Depraetere K, et al. A phase I study of a novel potential intravaginal microbicide, PRO 2000, in healthy sexually inactive women. Sex Transm Infect 2000; 76(2): 126–30PubMedCrossRef Van Damme L, Wright A, Depraetere K, et al. A phase I study of a novel potential intravaginal microbicide, PRO 2000, in healthy sexually inactive women. Sex Transm Infect 2000; 76(2): 126–30PubMedCrossRef
160.
Zurück zum Zitat Mayer KH, Karim SA, Kelly C, et al. Safety and tolerability of vaginal PRO 2000 gel in sexually active HIV-uninfected and abstinent HIV-infected women. AIDS 2003; 17(3): 321–9PubMedCrossRef Mayer KH, Karim SA, Kelly C, et al. Safety and tolerability of vaginal PRO 2000 gel in sexually active HIV-uninfected and abstinent HIV-infected women. AIDS 2003; 17(3): 321–9PubMedCrossRef
161.
Zurück zum Zitat Lederman MM, Veazey RS, Offord R, et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 2004; 306(5695): 485–7PubMedCrossRef Lederman MM, Veazey RS, Offord R, et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 2004; 306(5695): 485–7PubMedCrossRef
162.
Zurück zum Zitat Veazey RS, Klasse PJ, Ketas TJ, et al. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J Exp Med 2003; 198(10): 1551–62PubMedCrossRef Veazey RS, Klasse PJ, Ketas TJ, et al. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J Exp Med 2003; 198(10): 1551–62PubMedCrossRef
163.
Zurück zum Zitat Burton DR, Pyati J, Koduri R, et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994; 266(5187): 1024–7PubMedCrossRef Burton DR, Pyati J, Koduri R, et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994; 266(5187): 1024–7PubMedCrossRef
164.
Zurück zum Zitat Veazey RS, Shattock RJ, Pope M, et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 2003; 9(3): 343–6PubMedCrossRef Veazey RS, Shattock RJ, Pope M, et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 2003; 9(3): 343–6PubMedCrossRef
165.
Zurück zum Zitat Haren L, Ton-Hoang B, Chandler M. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 1999; 53: 245–81PubMedCrossRef Haren L, Ton-Hoang B, Chandler M. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 1999; 53: 245–81PubMedCrossRef
166.
Zurück zum Zitat Condra JH, Miller MD, Hazuda DJ, et al. Potential new therapies for the treatment of HIV-1 infection. Annu Rev Med 2002; 53: 541–55PubMedCrossRef Condra JH, Miller MD, Hazuda DJ, et al. Potential new therapies for the treatment of HIV-1 infection. Annu Rev Med 2002; 53: 541–55PubMedCrossRef
167.
Zurück zum Zitat Daniel R, Greger JG, Katz RA, et al. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 2004; 78(16): 8573–81PubMedCrossRef Daniel R, Greger JG, Katz RA, et al. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 2004; 78(16): 8573–81PubMedCrossRef
168.
Zurück zum Zitat Li L, Olvera JM, Yoder KE, et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001; 20(12): 3272–81PubMedCrossRef Li L, Olvera JM, Yoder KE, et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001; 20(12): 3272–81PubMedCrossRef
169.
Zurück zum Zitat Farnet CM, Haseltine WA. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 1991; 65(4): 1910–5PubMed Farnet CM, Haseltine WA. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 1991; 65(4): 1910–5PubMed
170.
Zurück zum Zitat Bowerman B, Brown PO, Bishop JM, et al. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 1989; 3(4): 469–78PubMedCrossRef Bowerman B, Brown PO, Bishop JM, et al. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 1989; 3(4): 469–78PubMedCrossRef
171.
Zurück zum Zitat Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 1997; 71(7): 5382–90PubMed Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 1997; 71(7): 5382–90PubMed
172.
Zurück zum Zitat Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMG I (Y) protein for function of preintegration complexes in vitro. Cell 1997; 88(4): 483–92PubMedCrossRef Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMG I (Y) protein for function of preintegration complexes in vitro. Cell 1997; 88(4): 483–92PubMedCrossRef
173.
Zurück zum Zitat Lin CW, Engelman A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J Virol 2003; 77(8): 5030–6PubMedCrossRef Lin CW, Engelman A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J Virol 2003; 77(8): 5030–6PubMedCrossRef
174.
Zurück zum Zitat Hindmarsh P, Ridky T, Reeves R, et al. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro. J Virol 1999; 73(4): 2994–3003PubMed Hindmarsh P, Ridky T, Reeves R, et al. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro. J Virol 1999; 73(4): 2994–3003PubMed
175.
Zurück zum Zitat Chen H, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci U S A 1998; 95(26): 15270–4PubMedCrossRef Chen H, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci U S A 1998; 95(26): 15270–4PubMedCrossRef
176.
Zurück zum Zitat Grobler JA, Stillmock K, Hu B, et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A 2002; 99(10): 6661–6PubMedCrossRef Grobler JA, Stillmock K, Hu B, et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A 2002; 99(10): 6661–6PubMedCrossRef
177.
Zurück zum Zitat Hazuda DJ, Anthony NJ, Gomez RP, et al. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci U S A 2004; 101(31): 11233–8PubMedCrossRef Hazuda DJ, Anthony NJ, Gomez RP, et al. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci U S A 2004; 101(31): 11233–8PubMedCrossRef
178.
Zurück zum Zitat Hazuda DJ, Young SD, Guare JP, et al. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 2004; 305(5683): 528–32PubMedCrossRef Hazuda DJ, Young SD, Guare JP, et al. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 2004; 305(5683): 528–32PubMedCrossRef
179.
Zurück zum Zitat Hazuda DJ, Felock P, Witmer M, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000; 287(5453): 646–50PubMedCrossRef Hazuda DJ, Felock P, Witmer M, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000; 287(5453): 646–50PubMedCrossRef
180.
Zurück zum Zitat Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother 2001; 45(4): 1225–30PubMedCrossRef Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother 2001; 45(4): 1225–30PubMedCrossRef
181.
Zurück zum Zitat Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A 2003; 100(23): 13555–60PubMedCrossRef Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A 2003; 100(23): 13555–60PubMedCrossRef
182.
Zurück zum Zitat Zhou J, Chen CH, Aiken C. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-3′,3′-dimethylsuccinyl-betulinic acid. Retrovirology 2004; 1(1): 15PubMedCrossRef Zhou J, Chen CH, Aiken C. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-3′,3′-dimethylsuccinyl-betulinic acid. Retrovirology 2004; 1(1): 15PubMedCrossRef
183.
Zurück zum Zitat Liang C, Hu J, Russell RS, et al. Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J Virol 2002; 76(22): 11729–37PubMedCrossRef Liang C, Hu J, Russell RS, et al. Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J Virol 2002; 76(22): 11729–37PubMedCrossRef
184.
Zurück zum Zitat Stoye JP. Fv1, the mouse retrovirus resistance gene. Rev Sci Tech 1998; 17(1): 269–77PubMed Stoye JP. Fv1, the mouse retrovirus resistance gene. Rev Sci Tech 1998; 17(1): 269–77PubMed
185.
Zurück zum Zitat Kozak CA, Chakraborti A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 1996; 225(2): 300–5PubMedCrossRef Kozak CA, Chakraborti A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 1996; 225(2): 300–5PubMedCrossRef
186.
Zurück zum Zitat Towers G, Bock M, Martin S, et al. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 2000; 97(22): 12295–9PubMedCrossRef Towers G, Bock M, Martin S, et al. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 2000; 97(22): 12295–9PubMedCrossRef
187.
Zurück zum Zitat Best S, Le Tissier P, Towers G, et al. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 1996; 382(6594): 826–9PubMedCrossRef Best S, Le Tissier P, Towers G, et al. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 1996; 382(6594): 826–9PubMedCrossRef
188.
Zurück zum Zitat Bieniasz PD. Restriction factors: a defense against retroviral infection. Trends Microbiol 2003; 11(6): 286–91PubMedCrossRef Bieniasz PD. Restriction factors: a defense against retroviral infection. Trends Microbiol 2003; 11(6): 286–91PubMedCrossRef
189.
Zurück zum Zitat Cowan S, Hatziioannou T, Cunningham T, et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci U S A 2002; 99(18): 11914–9PubMedCrossRef Cowan S, Hatziioannou T, Cunningham T, et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci U S A 2002; 99(18): 11914–9PubMedCrossRef
190.
Zurück zum Zitat Besnier C, Takeuchi Y, Towers G. Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 2002; 99(18): 11920–5PubMedCrossRef Besnier C, Takeuchi Y, Towers G. Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 2002; 99(18): 11920–5PubMedCrossRef
191.
Zurück zum Zitat Stremlau M, Owens CM, Perron MJ, et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427(6977): 848–53PubMedCrossRef Stremlau M, Owens CM, Perron MJ, et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427(6977): 848–53PubMedCrossRef
193.
Zurück zum Zitat Hatziioannou T, Perez-Caballero D, Yang A, et al. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci U S A 2004; 101(29): 10774–9PubMedCrossRef Hatziioannou T, Perez-Caballero D, Yang A, et al. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci U S A 2004; 101(29): 10774–9PubMedCrossRef
194.
Zurück zum Zitat Yap MW, Nisole S, Lynch C, et al. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 2004; 101(29): 10786–91PubMedCrossRef Yap MW, Nisole S, Lynch C, et al. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 2004; 101(29): 10786–91PubMedCrossRef
195.
Zurück zum Zitat Keckesova Z, Ylinen LM, Towers GJ. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 2004; 101(29): 10780–5PubMedCrossRef Keckesova Z, Ylinen LM, Towers GJ. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 2004; 101(29): 10780–5PubMedCrossRef
196.
Zurück zum Zitat Fisher AG, Ensoli B, Ivanoff L, et al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 1987; 237(4817): 888–93PubMedCrossRef Fisher AG, Ensoli B, Ivanoff L, et al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 1987; 237(4817): 888–93PubMedCrossRef
197.
Zurück zum Zitat Strebel K, Daugherty D, Clouse K, et al. The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 1987; 328(6132): 728–30PubMedCrossRef Strebel K, Daugherty D, Clouse K, et al. The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 1987; 328(6132): 728–30PubMedCrossRef
198.
Zurück zum Zitat von Schwedler U, Song J, Aiken C, et al. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993; 67(8): 4945–55 von Schwedler U, Song J, Aiken C, et al. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993; 67(8): 4945–55
199.
Zurück zum Zitat Gabuzda DH, Lawrence K, Langhoff E, et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 1992; 66(11): 6489–95PubMed Gabuzda DH, Lawrence K, Langhoff E, et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 1992; 66(11): 6489–95PubMed
200.
Zurück zum Zitat Simon JH, Gaddis NC, Fouchier RA, et al. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 1998; 4(12): 1397–400PubMedCrossRef Simon JH, Gaddis NC, Fouchier RA, et al. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 1998; 4(12): 1397–400PubMedCrossRef
201.
Zurück zum Zitat Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418(6898): 646–50PubMedCrossRef Sheehy AM, Gaddis NC, Choi JD, et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002; 418(6898): 646–50PubMedCrossRef
202.
Zurück zum Zitat Luo K, Liu B, Xiao Z, et al. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 2004; 78(21): 11841–52PubMedCrossRef Luo K, Liu B, Xiao Z, et al. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 2004; 78(21): 11841–52PubMedCrossRef
203.
Zurück zum Zitat Schafer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 2004; 328(2): 163–8PubMedCrossRef Schafer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 2004; 328(2): 163–8PubMedCrossRef
204.
Zurück zum Zitat Zhang H, Yang B, Pomerantz RJ, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003; 424(6944): 94–8PubMedCrossRef Zhang H, Yang B, Pomerantz RJ, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003; 424(6944): 94–8PubMedCrossRef
205.
Zurück zum Zitat Mangeat B, Turelli P, Caron G, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003; 424(6944): 99–103PubMedCrossRef Mangeat B, Turelli P, Caron G, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003; 424(6944): 99–103PubMedCrossRef
206.
Zurück zum Zitat Harris RS, Bishop KN, Sheehy AM, et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003; 113(6): 803–9PubMedCrossRef Harris RS, Bishop KN, Sheehy AM, et al. DNA deamination mediates innate immunity to retroviral infection. Cell 2003; 113(6): 803–9PubMedCrossRef
207.
Zurück zum Zitat Lecossier D, Bouchonnet F, Clavel F, et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 2003; 300(5622): 1112PubMedCrossRef Lecossier D, Bouchonnet F, Clavel F, et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 2003; 300(5622): 1112PubMedCrossRef
208.
Zurück zum Zitat Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9(11): 1404–7PubMedCrossRef Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9(11): 1404–7PubMedCrossRef
209.
Zurück zum Zitat Yu X, Yu Y, Liu B, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003; 302(5647): 1056–60PubMedCrossRef Yu X, Yu Y, Liu B, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003; 302(5647): 1056–60PubMedCrossRef
210.
Zurück zum Zitat Garnis JE, von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001; 107(1): 55–65CrossRef Garnis JE, von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001; 107(1): 55–65CrossRef
211.
Zurück zum Zitat VerPlank L, Bouamr F, LaGrassa TJ, et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55 (Gag). Proc Natl Acad Sci U S A 2001; 98(14): 7724–9PubMedCrossRef VerPlank L, Bouamr F, LaGrassa TJ, et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55 (Gag). Proc Natl Acad Sci U S A 2001; 98(14): 7724–9PubMedCrossRef
212.
Zurück zum Zitat von Schwedler UK, Stuchell M, Muller B, et al. The protein network of HIV budding. Cell 2003; 114(6): 701–13CrossRef von Schwedler UK, Stuchell M, Muller B, et al. The protein network of HIV budding. Cell 2003; 114(6): 701–13CrossRef
213.
Zurück zum Zitat Stuchell MD, Garrus JE, Muller B, et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem 2004; 279(34): 36059–71PubMedCrossRef Stuchell MD, Garrus JE, Muller B, et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem 2004; 279(34): 36059–71PubMedCrossRef
214.
Zurück zum Zitat Stack B, Calistri A, Craig S, et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003; 114(6): 689–99CrossRef Stack B, Calistri A, Craig S, et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003; 114(6): 689–99CrossRef
215.
Zurück zum Zitat Martin-Serrano J, Yarovoy A, Perez-Caballero D, et al. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 2003; 100(21): 12414–9PubMedCrossRef Martin-Serrano J, Yarovoy A, Perez-Caballero D, et al. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 2003; 100(21): 12414–9PubMedCrossRef
216.
Zurück zum Zitat Schubert U, Ott DE, Chertova EN, et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 2000; 97(24): 13057–62PubMedCrossRef Schubert U, Ott DE, Chertova EN, et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 2000; 97(24): 13057–62PubMedCrossRef
217.
Zurück zum Zitat Ott DE, Coren LV, Copeland TD, et al. Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 1998; 72(4): 2962–8PubMed Ott DE, Coren LV, Copeland TD, et al. Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 1998; 72(4): 2962–8PubMed
218.
Zurück zum Zitat Goff A, Ehrlich LS, Cohen SN, et al. Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release. J Virol 2003; 77(17): 9173–82PubMedCrossRef Goff A, Ehrlich LS, Cohen SN, et al. Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release. J Virol 2003; 77(17): 9173–82PubMedCrossRef
219.
Zurück zum Zitat Gottlinger HG, Dorfman T, Cohen EA, et al. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sci U S A 1993; 90(15): 7381–5PubMedCrossRef Gottlinger HG, Dorfman T, Cohen EA, et al. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sci U S A 1993; 90(15): 7381–5PubMedCrossRef
220.
Zurück zum Zitat Sakai H, Tokunaga K, Kawamura M, et al. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J Gen Virol 1995; 76 (Pt 11): 2717–22PubMedCrossRef Sakai H, Tokunaga K, Kawamura M, et al. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J Gen Virol 1995; 76 (Pt 11): 2717–22PubMedCrossRef
221.
Zurück zum Zitat Geraghty RJ, Talbot KJ, Callahan M, et al. Cell type-dependence for Vpu function. J Med Primatol 1994; 23(2–3): 146–50PubMedCrossRef Geraghty RJ, Talbot KJ, Callahan M, et al. Cell type-dependence for Vpu function. J Med Primatol 1994; 23(2–3): 146–50PubMedCrossRef
222.
Zurück zum Zitat Varthakavi V, Smith RM, Bour SP, et al. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A 2003; 100(25): 15154–9PubMedCrossRef Varthakavi V, Smith RM, Bour SP, et al. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A 2003; 100(25): 15154–9PubMedCrossRef
Metadaten
Titel
Emerging Drug Targets for Antiretroviral Therapy
verfasst von
Dr Jacqueline D. Reeves
Andrew J. Piefer
Publikationsdatum
01.09.2005
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 13/2005
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200565130-00002

Weitere Artikel der Ausgabe 13/2005

Drugs 13/2005 Zur Ausgabe

Adis Drug Evaluation

Sulfasalazine

Current Opinion

Medication Errors