Skip to main content
Erschienen in: Sports Medicine 9/2005

01.09.2005 | Review Article

Physical Activity in the Prevention and Amelioration of Osteoporosis in Women

Interaction of Mechanical, Hormonal and Dietary Factors

verfasst von: Dr Katarina T. Borer

Erschienen in: Sports Medicine | Ausgabe 9/2005

Einloggen, um Zugang zu erhalten

Abstract

Osteoporosis is a serious health problem that diminishes quality of life and levies a financial burden on those who fear and experience bone fractures. Physical activity as a way to prevent osteoporosis is based on evidence that it can regulate bone maintenance and stimulate bone formation including the accumulation of mineral, in addition to strengthening muscles, improving balance, and thus reducing the overall risk of falls and fractures. Currently, our understanding of how to use exercise effectively in the prevention of osteoporosis is incomplete. It is uncertain whether exercise will help accumulate more overall peak bone mass during childhood, adolescence and young adulthood. Also, the consistent effectiveness of exercise to increase bone mass, or at least arrest the loss of bone mass after menopause, is also in question. Within this framework, section 1 introduces mechanical characteristics of bones to assist the reader in understanding their responses to physical activity.
Section 2 reviews hormonal, nutritional and mechanical factors necessary for the growth of bones in length, width and mineral content that produce peak bone mass in the course of childhood and adolescence using a large sample of healthy Caucasian girls and female adolescents for reference. Effectiveness of exercise is evaluated throughout using absolute changes in bone with the underlying assumption that useful exercise should produce changes that approximate or exceed the absolute magnitude of bone parameters in a healthy reference population. Physical activity increases growth in width and mineral content of bones in girls and adolescent females, particularly when it is initiated before puberty, carried out in volumes and at intensities seen in athletes, and accompanied by adequate caloric and calcium intakes. Similar increases are seen in young women following the termination of statural growth in response to athletic training, but not to more limited levels of physical activity characteristic of longitudinal training studies. After 9–12 months of regular exercise, young adult women often show very small benefits to bone health, possibly because of large subject attrition rates, inadequate exercise intensity, duration or frequency, or because at this stage of life accumulation of bone mass may be at its natural peak. The important influence of hormones as well as dietary and specific nutrient abundance on bone growth and health are emphasised, and premature bone loss associated with dietary restriction and estradiol withdrawal in exercise-induced amenorrhoea is described.
In section 3, the same assessment is applied to the effects of physical activity in postmenopausal women. Studies of postmenopausal women are presented from the perspective of limitations of the capacity of the skeleton to adapt to mechanical stress of exercise due to altered hormonal status and inadequate intake of specific nutrients. After menopause, effectiveness of exercise to increase bone mineral depends heavily on adequate availability of dietary calcium. Relatively infrequent evidence that physical activity prevents bone loss or increases bone mineral after menopause may be a consequence of inadequate calcium availability or low intensity of exercise in training studies. Several studies with postmenopausal women show modest increases in bone mineral toward the norm seen in a healthy population in response to high-intensity training. Physical activities continue to stimulate increases in bone diameter throughout the lifespan. These exercise-stimulated increases in bone diameter diminish the risk of fractures by mechanically counteracting the thinning of bones and increases in bone porosity.
Seven principles of bone adaptation to mechanical stress are reviewed in section 4 to suggest how exercise by human subjects could be made more effective. They posit that exercise should: (i) be dynamic, not static; (ii) exceed a threshold intensity; (iii) exceed a threshold strain frequency; (iv) be relatively brief but intermittent; (v) impose an unusual loading pattern on the bones; (vi) be supported by unlimited nutrient energy; and (vii) include adequate calcium and cholecalciferol (vitamin D3) availability.
Literatur
1.
Zurück zum Zitat World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. Geneva: World Health Organization, 1994 World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. Geneva: World Health Organization, 1994
2.
Zurück zum Zitat Bone Health and Osteoporosis: a report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Office of the Surgeon General, 2004 Bone Health and Osteoporosis: a report of the Surgeon General. Rockville (MD): US Department of Health and Human Services, Office of the Surgeon General, 2004
3.
Zurück zum Zitat Ray NF, Chan JK, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 2003; 12: 24–35CrossRef Ray NF, Chan JK, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 2003; 12: 24–35CrossRef
4.
Zurück zum Zitat Newton-John HF, Morgan DB. Osteoporosis: disease or senescence? Lancet 1968; I: 232–3CrossRef Newton-John HF, Morgan DB. Osteoporosis: disease or senescence? Lancet 1968; I: 232–3CrossRef
5.
Zurück zum Zitat Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. JAMA 1941; 116: 2465–74CrossRef Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. JAMA 1941; 116: 2465–74CrossRef
6.
Zurück zum Zitat Riis BJ, Hansen MA, Jensen AM, et al. Low bone mass and fast bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone 1996; 19: 9–12PubMedCrossRef Riis BJ, Hansen MA, Jensen AM, et al. Low bone mass and fast bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone 1996; 19: 9–12PubMedCrossRef
7.
Zurück zum Zitat Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994; 9: 1503–14PubMedCrossRef Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994; 9: 1503–14PubMedCrossRef
8.
Zurück zum Zitat Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med 1998; 27: 798–807PubMedCrossRef Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med 1998; 27: 798–807PubMedCrossRef
9.
Zurück zum Zitat Snow CM, Shaw JM, Matkin CC. Physical activity and risk for osteoporosis. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. New York: Academic Press, 1996: 511–28 Snow CM, Shaw JM, Matkin CC. Physical activity and risk for osteoporosis. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. New York: Academic Press, 1996: 511–28
10.
Zurück zum Zitat Snow-Harter C, Marcus R. Exercise, bone mineral density, and osteoporosis. Exerc Sport Sci Rev 1992; 7: 1291–6 Snow-Harter C, Marcus R. Exercise, bone mineral density, and osteoporosis. Exerc Sport Sci Rev 1992; 7: 1291–6
11.
Zurück zum Zitat Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 2000; 67: 10–8PubMedCrossRef Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 2000; 67: 10–8PubMedCrossRef
12.
Zurück zum Zitat Ham AW. Histology. 7th ed. Philadelphia (PA): Lippincott, 1974: 417 Ham AW. Histology. 7th ed. Philadelphia (PA): Lippincott, 1974: 417
13.
Zurück zum Zitat Mosekilde L. Age-related changes in vertebral trabecular bone architecture -assessed by a new method. Bone 1988; 9: 247–50PubMedCrossRef Mosekilde L. Age-related changes in vertebral trabecular bone architecture -assessed by a new method. Bone 1988; 9: 247–50PubMedCrossRef
14.
Zurück zum Zitat Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald, 1892 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald, 1892
15.
16.
Zurück zum Zitat Wahner HW, Dunn WL, Riggs BL. Assessment of bone mineral, part 1. J Nucl Med 1984; 25: 1134–41PubMed Wahner HW, Dunn WL, Riggs BL. Assessment of bone mineral, part 1. J Nucl Med 1984; 25: 1134–41PubMed
17.
Zurück zum Zitat Jee WSS. Integrated bone tissue physiology: anatomy and physiology. In: Cowan SC, editor. Bone mechanics handbook. 2nd ed. Boca Raton (FL): CRC Press, 2001: 1–68 Jee WSS. Integrated bone tissue physiology: anatomy and physiology. In: Cowan SC, editor. Bone mechanics handbook. 2nd ed. Boca Raton (FL): CRC Press, 2001: 1–68
18.
Zurück zum Zitat Nottestadt SY, Baumel JJ, Kimmel DB, et al. The proportion of trabecular bone in human vertebrae. J Bone Miner Res 1987; 2: 221–2CrossRef Nottestadt SY, Baumel JJ, Kimmel DB, et al. The proportion of trabecular bone in human vertebrae. J Bone Miner Res 1987; 2: 221–2CrossRef
19.
Zurück zum Zitat Schlenker RA, Von Seggen WW. The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implication for in vivo bone mass measurements. Calcif Tissue Int 1994; 308: 1543–4 Schlenker RA, Von Seggen WW. The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implication for in vivo bone mass measurements. Calcif Tissue Int 1994; 308: 1543–4
20.
Zurück zum Zitat Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 1982; 70: 716–23PubMedCrossRef Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 1982; 70: 716–23PubMedCrossRef
21.
Zurück zum Zitat Abramson AS. Bone disturbances in injuries to the spinal chord and cauda equina (paraplegia): their prevention by ambulation. J Bone Joint Surg 1948; 30A: 982–7 Abramson AS. Bone disturbances in injuries to the spinal chord and cauda equina (paraplegia): their prevention by ambulation. J Bone Joint Surg 1948; 30A: 982–7
22.
Zurück zum Zitat Donaldson CL, Hulley SB, Vogel JM, et al. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19: 1071–84PubMedCrossRef Donaldson CL, Hulley SB, Vogel JM, et al. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19: 1071–84PubMedCrossRef
23.
Zurück zum Zitat Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 1983; 64: 537–40PubMed Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 1983; 64: 537–40PubMed
24.
25.
Zurück zum Zitat Prince RL, Price RI, Ho S. Forearm bone loss in hemiplegia: a model for the study of immobilization osteoporosis. J Bone Miner Res 1988; 3: 305–10PubMedCrossRef Prince RL, Price RI, Ho S. Forearm bone loss in hemiplegia: a model for the study of immobilization osteoporosis. J Bone Miner Res 1988; 3: 305–10PubMedCrossRef
26.
Zurück zum Zitat Rambaut PC, Dietlein LF, Vogel JM, et al. Comparative study of two direct methods of bone mineral measurement. Aerosp Med 1972; 43: 646–50PubMed Rambaut PC, Dietlein LF, Vogel JM, et al. Comparative study of two direct methods of bone mineral measurement. Aerosp Med 1972; 43: 646–50PubMed
27.
Zurück zum Zitat Stewart AF, Adler M, Byers CM, et al. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 1982; 306: 1136–40PubMedCrossRef Stewart AF, Adler M, Byers CM, et al. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 1982; 306: 1136–40PubMedCrossRef
28.
Zurück zum Zitat Whedon GD. Disuse osteoporosis: physiological aspects. Calcif Tissue Int 1984; 36 Suppl. 1: S146–50CrossRef Whedon GD. Disuse osteoporosis: physiological aspects. Calcif Tissue Int 1984; 36 Suppl. 1: S146–50CrossRef
29.
Zurück zum Zitat Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997; 20: 547–51PubMedCrossRef Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997; 20: 547–51PubMedCrossRef
30.
Zurück zum Zitat LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration spaceflight. J Bone Miner Res 1976; 11 Suppl. 1: 567 LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration spaceflight. J Bone Miner Res 1976; 11 Suppl. 1: 567
31.
Zurück zum Zitat Mack PB, LaChance PA, Vose GP, et al. Bone demineralization of foot and hand of Gemini-Titan IV, V, and VII astronauts during orbital flight. Am J Roentgenol Radium Ther Nucl Med 1967; 100: 503–11PubMed Mack PB, LaChance PA, Vose GP, et al. Bone demineralization of foot and hand of Gemini-Titan IV, V, and VII astronauts during orbital flight. Am J Roentgenol Radium Ther Nucl Med 1967; 100: 503–11PubMed
32.
Zurück zum Zitat Vogel JM, Whittle MW. Bone mineral changes: the second manned Skylab mission. Aviat Space Environ Med 1976; 47: 396–400PubMed Vogel JM, Whittle MW. Bone mineral changes: the second manned Skylab mission. Aviat Space Environ Med 1976; 47: 396–400PubMed
33.
Zurück zum Zitat Bassett CA, Becker RO. Generation of electrical potentials by bone in response to mechanical stress. Science 1962; 137: 1063–4PubMedCrossRef Bassett CA, Becker RO. Generation of electrical potentials by bone in response to mechanical stress. Science 1962; 137: 1063–4PubMedCrossRef
34.
Zurück zum Zitat Burger EH, Klein-Nilend J. Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB J 1999; 13 Suppl.: S101–12 Burger EH, Klein-Nilend J. Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB J 1999; 13 Suppl.: S101–12
35.
Zurück zum Zitat Smit TH, Burger EH, Huyghe JM. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J Bone Miner Res 2002; 17: 2021–9PubMedCrossRef Smit TH, Burger EH, Huyghe JM. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J Bone Miner Res 2002; 17: 2021–9PubMedCrossRef
36.
Zurück zum Zitat Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton (FL): CRC Press, 1983 Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton (FL): CRC Press, 1983
37.
Zurück zum Zitat Marcus R. Normal and abnormal bone remodeling in man. Adv Intern Med 1987; 38: 129–41 Marcus R. Normal and abnormal bone remodeling in man. Adv Intern Med 1987; 38: 129–41
38.
Zurück zum Zitat Genant HK, Lang TF, Engelke K, et al. Advances in the noninvasive assessment of bone density, quality, and structure. Calcif Tissue Int 1996; 59 Suppl. 1: S10–5CrossRef Genant HK, Lang TF, Engelke K, et al. Advances in the noninvasive assessment of bone density, quality, and structure. Calcif Tissue Int 1996; 59 Suppl. 1: S10–5CrossRef
39.
Zurück zum Zitat Health and Public Policy Committee, American College of Physicians. Radiologic methods to evaluate bone mineral content. Ann Intern Med 1984; 100: 908–11 Health and Public Policy Committee, American College of Physicians. Radiologic methods to evaluate bone mineral content. Ann Intern Med 1984; 100: 908–11
40.
Zurück zum Zitat Dalsky GP, Stocke KS, Ehsani AA, et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 1988; 108: 824–8PubMed Dalsky GP, Stocke KS, Ehsani AA, et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 1988; 108: 824–8PubMed
41.
Zurück zum Zitat Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992; 24: 1190–4PubMed Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992; 24: 1190–4PubMed
42.
Zurück zum Zitat Nelson ME, Fisher EC, Dilmanian A, et al. A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 1991; 53: 1304–11PubMed Nelson ME, Fisher EC, Dilmanian A, et al. A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 1991; 53: 1304–11PubMed
43.
Zurück zum Zitat Pruitt LA, Jackson RD, Bartels RL, et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7: 179–85PubMedCrossRef Pruitt LA, Jackson RD, Bartels RL, et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7: 179–85PubMedCrossRef
44.
Zurück zum Zitat Sowers M, Galuska DA. Epidemiology of bone mass in premenopausal women. Epidemiol Rev 1993; 15: 374–98PubMed Sowers M, Galuska DA. Epidemiology of bone mass in premenopausal women. Epidemiol Rev 1993; 15: 374–98PubMed
45.
Zurück zum Zitat Haapasalo H, Sievanen H, Kannus P, et al. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 1996; 11: 864–72PubMedCrossRef Haapasalo H, Sievanen H, Kannus P, et al. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 1996; 11: 864–72PubMedCrossRef
46.
Zurück zum Zitat Sievanen H, Kannus P, Nieminen V, et al. Estimation of various mechanical characteristics of human bones using dual energy x-ray absorptiometry. Bone 1996; 18: 517–26CrossRef Sievanen H, Kannus P, Nieminen V, et al. Estimation of various mechanical characteristics of human bones using dual energy x-ray absorptiometry. Bone 1996; 18: 517–26CrossRef
47.
Zurück zum Zitat Genant HK, Gluer CC, Lotz JC. Gender differences in bone density, skeletal geometry, and fracture biomechanics. Radiology 1994; 190: 636–40PubMed Genant HK, Gluer CC, Lotz JC. Gender differences in bone density, skeletal geometry, and fracture biomechanics. Radiology 1994; 190: 636–40PubMed
48.
Zurück zum Zitat Carter DR, van der Meulen MCH, Beaupré GS. Skeletal development: Mechanical consequences of growth, aging, and disease. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. New York (NY): Academic Press, 1996: 333–50 Carter DR, van der Meulen MCH, Beaupré GS. Skeletal development: Mechanical consequences of growth, aging, and disease. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. New York (NY): Academic Press, 1996: 333–50
49.
Zurück zum Zitat Cann CE. Low-dose CT scanning for qualitative spinal mineral analysis. Radiology 1981; 140: 813–5PubMed Cann CE. Low-dose CT scanning for qualitative spinal mineral analysis. Radiology 1981; 140: 813–5PubMed
50.
Zurück zum Zitat Sievanen H, Koskue V, Rauhio A, et al. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 1998; 13: 871–82PubMedCrossRef Sievanen H, Koskue V, Rauhio A, et al. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 1998; 13: 871–82PubMedCrossRef
51.
Zurück zum Zitat Harrison JE, McNeill KG, Hitchman AJ, et al. Bone mineral measurement of central skeleton by neutron activation analysis for routine investigation of osteopenia. Invest Radiol 1979; 14: 27–34PubMedCrossRef Harrison JE, McNeill KG, Hitchman AJ, et al. Bone mineral measurement of central skeleton by neutron activation analysis for routine investigation of osteopenia. Invest Radiol 1979; 14: 27–34PubMedCrossRef
52.
Zurück zum Zitat Hazan G, Leichter I, Loewinger E, et al. Early detection of osteoporosis by Compton gamma ray spectroscopy. Phys Med Biol 1977; 22: 1073–84PubMedCrossRef Hazan G, Leichter I, Loewinger E, et al. Early detection of osteoporosis by Compton gamma ray spectroscopy. Phys Med Biol 1977; 22: 1073–84PubMedCrossRef
53.
Zurück zum Zitat Rhodes EC, Martin AD, Taunton JE, et al. Effects of one-year of resistance training on the relations between muscular strength and bone density in elderly women. Br J Sports Med 2000; 34: 18–22PubMedCrossRef Rhodes EC, Martin AD, Taunton JE, et al. Effects of one-year of resistance training on the relations between muscular strength and bone density in elderly women. Br J Sports Med 2000; 34: 18–22PubMedCrossRef
54.
Zurück zum Zitat Ayalon J, Simkin A, Leichter I, et al. Dynamic bone loading exercises for postmenopausal women: effect on the density of the distal radius. Arch Phys Med Rehabil 1987; 68: 280–3PubMed Ayalon J, Simkin A, Leichter I, et al. Dynamic bone loading exercises for postmenopausal women: effect on the density of the distal radius. Arch Phys Med Rehabil 1987; 68: 280–3PubMed
55.
Zurück zum Zitat Gerdhem P, Akesson K, Obrant KJ. Effect of previous and present physical activity on bone mass in elderly women. Osteoporos Int 2003; 14: 203–12CrossRef Gerdhem P, Akesson K, Obrant KJ. Effect of previous and present physical activity on bone mass in elderly women. Osteoporos Int 2003; 14: 203–12CrossRef
56.
Zurück zum Zitat Ringsberg KAM, Gardsell P, Johnell O, et al. The impact of long-term moderate physical activity on functional performance, bone mineral density and fracture incidence in elderly women. Gerontology 2001; 47: 15–20PubMedCrossRef Ringsberg KAM, Gardsell P, Johnell O, et al. The impact of long-term moderate physical activity on functional performance, bone mineral density and fracture incidence in elderly women. Gerontology 2001; 47: 15–20PubMedCrossRef
57.
Zurück zum Zitat Ulrich CM, Georgious CC, Snow-Harter CM, et al. Bone mineral density in mother-daughter pairs: relations to lifetime exercise, lifetime milk consumption, and calcium supplements. Am J Clin Nutr 1996; 63: 72–9PubMed Ulrich CM, Georgious CC, Snow-Harter CM, et al. Bone mineral density in mother-daughter pairs: relations to lifetime exercise, lifetime milk consumption, and calcium supplements. Am J Clin Nutr 1996; 63: 72–9PubMed
58.
Zurück zum Zitat Gleeson PB, Protas EJ, LeBlanc AD, et al. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 1990; 5: 153–8PubMedCrossRef Gleeson PB, Protas EJ, LeBlanc AD, et al. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 1990; 5: 153–8PubMedCrossRef
59.
Zurück zum Zitat Bassey EJ, Rothwell MC, Littlewood JJ, et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 1998; 13: 1805–13PubMedCrossRef Bassey EJ, Rothwell MC, Littlewood JJ, et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 1998; 13: 1805–13PubMedCrossRef
60.
Zurück zum Zitat Hawkins SA, Schroeder ET, Wiswell RA, et al. Eccentric muscle action increases site-specific osteogenic response. Med Sci Sports Exerc 1999; 31: 1287–92PubMedCrossRef Hawkins SA, Schroeder ET, Wiswell RA, et al. Eccentric muscle action increases site-specific osteogenic response. Med Sci Sports Exerc 1999; 31: 1287–92PubMedCrossRef
61.
Zurück zum Zitat Lohman T, Going S, Pamenter R, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10: 1015–24PubMedCrossRef Lohman T, Going S, Pamenter R, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10: 1015–24PubMedCrossRef
62.
Zurück zum Zitat Snow-Harter C, Bouxsein CM, Lewis BT, et al. Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 1990; 5: 589–95PubMedCrossRef Snow-Harter C, Bouxsein CM, Lewis BT, et al. Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 1990; 5: 589–95PubMedCrossRef
63.
Zurück zum Zitat Vuori I, Heinonen A, Sievanen H, et al. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif Tissue Int 1994; 55: 59–67PubMedCrossRef Vuori I, Heinonen A, Sievanen H, et al. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif Tissue Int 1994; 55: 59–67PubMedCrossRef
64.
Zurück zum Zitat Chow R, Harrison JE, Notarius C. Effect of two randomized exercise programmes on bone mass of healthy postmenopausal women. BMJ 1987; 295: 1441–4PubMedCrossRef Chow R, Harrison JE, Notarius C. Effect of two randomized exercise programmes on bone mass of healthy postmenopausal women. BMJ 1987; 295: 1441–4PubMedCrossRef
65.
Zurück zum Zitat Heinonen A, Oja P, Sievanen H, et al. Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res 1998; 13: 483–9PubMedCrossRef Heinonen A, Oja P, Sievanen H, et al. Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res 1998; 13: 483–9PubMedCrossRef
66.
Zurück zum Zitat Kemmler W, Engelke K, Weineck J, et al. The Erlangen fitness osteoporosis prevention study: a controlled exercise trial in early postmenopausal women with low bone density-First year results. Arch Phys Med Rehabil 2003; 84: 673–82PubMed Kemmler W, Engelke K, Weineck J, et al. The Erlangen fitness osteoporosis prevention study: a controlled exercise trial in early postmenopausal women with low bone density-First year results. Arch Phys Med Rehabil 2003; 84: 673–82PubMed
67.
Zurück zum Zitat Kerr D, Ackland T, Maslen B, et al. Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res 2001; 16: 175–81PubMedCrossRef Kerr D, Ackland T, Maslen B, et al. Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res 2001; 16: 175–81PubMedCrossRef
68.
Zurück zum Zitat Kerr D, Morton A, Dick I, et al. Exercise effects on the bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11: 218–25PubMedCrossRef Kerr D, Morton A, Dick I, et al. Exercise effects on the bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11: 218–25PubMedCrossRef
69.
Zurück zum Zitat Kohrt WM, Ehsani AA, Birge Jr SJ. Effects of exercise involving predominantly either joint-reaction ot ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997; 12: 1253–61PubMedCrossRef Kohrt WM, Ehsani AA, Birge Jr SJ. Effects of exercise involving predominantly either joint-reaction ot ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997; 12: 1253–61PubMedCrossRef
70.
Zurück zum Zitat Mandalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 2000; 66: 399–404CrossRef Mandalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 2000; 66: 399–404CrossRef
71.
Zurück zum Zitat Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial. JAMA 1994; 272: 1909–14PubMedCrossRef Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial. JAMA 1994; 272: 1909–14PubMedCrossRef
72.
Zurück zum Zitat Smith EL, Gilligan C, McAdam M, et al. Deterring bone loss by exercise intervention in premenopausal and postmenopausal women. Calcif Tissue Int 1989; 44: 312–21PubMedCrossRef Smith EL, Gilligan C, McAdam M, et al. Deterring bone loss by exercise intervention in premenopausal and postmenopausal women. Calcif Tissue Int 1989; 44: 312–21PubMedCrossRef
73.
Zurück zum Zitat Currey JD. Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int 2003; 14 Suppl. 5: S29–36 Currey JD. Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int 2003; 14 Suppl. 5: S29–36
74.
Zurück zum Zitat Gardsell P, Johnell O, Nilsson BE. Predicting fractures in women by using forearm bone densitometry. Calcif Tissue Int 1989; 44: 235–42PubMedCrossRef Gardsell P, Johnell O, Nilsson BE. Predicting fractures in women by using forearm bone densitometry. Calcif Tissue Int 1989; 44: 235–42PubMedCrossRef
75.
Zurück zum Zitat Karlsson MK, Duan Y, Ahlborg H, et al. Age, gender, and fragility fractures are associated with differences in quantitative ultrasound independent of bone mineral density. Bone 2001; 28: 118–22PubMedCrossRef Karlsson MK, Duan Y, Ahlborg H, et al. Age, gender, and fragility fractures are associated with differences in quantitative ultrasound independent of bone mineral density. Bone 2001; 28: 118–22PubMedCrossRef
76.
Zurück zum Zitat Seeman E. Periosteal bone formation: a neglected determinant of bone strength. N Engl J Med 2003; 349: 320–3PubMedCrossRef Seeman E. Periosteal bone formation: a neglected determinant of bone strength. N Engl J Med 2003; 349: 320–3PubMedCrossRef
77.
Zurück zum Zitat Hayes WC. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow WC, Hayes WC, editors. Basic orthopedic biomechanics. New York (NY): Raven Press, 1991: 93–142 Hayes WC. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow WC, Hayes WC, editors. Basic orthopedic biomechanics. New York (NY): Raven Press, 1991: 93–142
78.
Zurück zum Zitat van der Meulen MC, Beaupre GS, Carter DR. Mechanobiologic influences in long bone cross-sectional growth. Bone 1993; 14: 635–42PubMedCrossRef van der Meulen MC, Beaupre GS, Carter DR. Mechanobiologic influences in long bone cross-sectional growth. Bone 1993; 14: 635–42PubMedCrossRef
79.
Zurück zum Zitat Parfitt AM. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984; 36: 123–8CrossRef Parfitt AM. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984; 36: 123–8CrossRef
80.
Zurück zum Zitat Currey JD. How well are bones designed to resist fracture? J Bone Miner Res 2003; 18: 591–8PubMedCrossRef Currey JD. How well are bones designed to resist fracture? J Bone Miner Res 2003; 18: 591–8PubMedCrossRef
81.
Zurück zum Zitat Bell RH, Hawkins RJ. Stress fracture of the distal ulna. Clin Orthop 1986; 209: 169–71PubMed Bell RH, Hawkins RJ. Stress fracture of the distal ulna. Clin Orthop 1986; 209: 169–71PubMed
82.
Zurück zum Zitat Murakami Y. Stress fracture of the metacarpal in an adolescent tennis player. Am J Sports Med 1988; 16: 419–20PubMedCrossRef Murakami Y. Stress fracture of the metacarpal in an adolescent tennis player. Am J Sports Med 1988; 16: 419–20PubMedCrossRef
83.
Zurück zum Zitat Rettig AC, Beltz HF. Stress fracture of the humerus in an adolescent tennis tournament player. Am J Sports Med 1985; 13: 55–8PubMedCrossRef Rettig AC, Beltz HF. Stress fracture of the humerus in an adolescent tennis tournament player. Am J Sports Med 1985; 13: 55–8PubMedCrossRef
84.
Zurück zum Zitat Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int 2003; 14 Suppl. 3: S13–8 Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int 2003; 14 Suppl. 3: S13–8
85.
Zurück zum Zitat Ammann P, Rizzoli R, Meyer JM, et al. Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 1996; 6: 219–27PubMedCrossRef Ammann P, Rizzoli R, Meyer JM, et al. Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 1996; 6: 219–27PubMedCrossRef
86.
Zurück zum Zitat Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993; 14: 595–608PubMedCrossRef Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993; 14: 595–608PubMedCrossRef
87.
Zurück zum Zitat Riggs BL, Hodson SF, O’Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322: 802–9PubMedCrossRef Riggs BL, Hodson SF, O’Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322: 802–9PubMedCrossRef
88.
Zurück zum Zitat Van Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000; 15: 993–1000PubMedCrossRef Van Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000; 15: 993–1000PubMedCrossRef
89.
90.
Zurück zum Zitat Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001; 86: 32–8PubMedCrossRef Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001; 86: 32–8PubMedCrossRef
91.
Zurück zum Zitat Avioli LV. Significance of osteoporosis: a growing international health problem. Calcif Tissue Int 1991; 49S: S5–7CrossRef Avioli LV. Significance of osteoporosis: a growing international health problem. Calcif Tissue Int 1991; 49S: S5–7CrossRef
92.
Zurück zum Zitat Evans WJ, Campbell W. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 1993; 123: 465–8PubMed Evans WJ, Campbell W. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 1993; 123: 465–8PubMed
94.
Zurück zum Zitat Nevitt MC, Cummings ST, Kidd S, et al. Risk factors for recurrent nonsycopal falls: a prospective study. JAMA 1989; 261: 2663–8PubMedCrossRef Nevitt MC, Cummings ST, Kidd S, et al. Risk factors for recurrent nonsycopal falls: a prospective study. JAMA 1989; 261: 2663–8PubMedCrossRef
95.
Zurück zum Zitat Tinetti ME, Baker DI, McAvay G, et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 1994; 331: 821–7PubMedCrossRef Tinetti ME, Baker DI, McAvay G, et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 1994; 331: 821–7PubMedCrossRef
96.
Zurück zum Zitat Tinetti ME, Liu WL, Claus EB. Predictors and prognosis of inability to get up after falls among elderly persons. JAMA 1993; 269: 65–70PubMedCrossRef Tinetti ME, Liu WL, Claus EB. Predictors and prognosis of inability to get up after falls among elderly persons. JAMA 1993; 269: 65–70PubMedCrossRef
97.
Zurück zum Zitat Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med 1988; 319: 1701–7PubMedCrossRef Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med 1988; 319: 1701–7PubMedCrossRef
98.
Zurück zum Zitat Whipple RH, Wolfson LI, Amerman PM. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc 1987; 35: 13–20PubMed Whipple RH, Wolfson LI, Amerman PM. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc 1987; 35: 13–20PubMed
99.
Zurück zum Zitat Hui SL, Slemenda CW, Johnson Jr CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989; 111: 355–61PubMed Hui SL, Slemenda CW, Johnson Jr CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989; 111: 355–61PubMed
100.
Zurück zum Zitat Huopio J, Kroger H, Honkanen R, et al. Risk factors for perimenopausal fractures: a prospective study. Osteoporos Int 2000; 11: 219–27PubMedCrossRef Huopio J, Kroger H, Honkanen R, et al. Risk factors for perimenopausal fractures: a prospective study. Osteoporos Int 2000; 11: 219–27PubMedCrossRef
101.
Zurück zum Zitat Kanis JA, Delmas P, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 1997; 7: 390–406PubMedCrossRef Kanis JA, Delmas P, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 1997; 7: 390–406PubMedCrossRef
102.
Zurück zum Zitat Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 2000; 11: 192–202PubMedCrossRef Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 2000; 11: 192–202PubMedCrossRef
103.
Zurück zum Zitat Kroger H, Huopio J, Honkanen R, et al. Prediction of fracture risk using axial bone mineral density in perimenopausal population: a prospective study. J Bone Miner Res 1995; 10: 302–6PubMedCrossRef Kroger H, Huopio J, Honkanen R, et al. Prediction of fracture risk using axial bone mineral density in perimenopausal population: a prospective study. J Bone Miner Res 1995; 10: 302–6PubMedCrossRef
104.
Zurück zum Zitat Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9PubMedCrossRef Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9PubMedCrossRef
105.
Zurück zum Zitat Melton III LJ LJ, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8: 1227–33PubMedCrossRef Melton III LJ LJ, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8: 1227–33PubMedCrossRef
106.
Zurück zum Zitat Broe KE, Hannan MT, Kiely DK, et al. Predicting fractures using bone mineral density: prospective study of long-term care residents. Osteoporos Int 2000; 11: 765–71PubMedCrossRef Broe KE, Hannan MT, Kiely DK, et al. Predicting fractures using bone mineral density: prospective study of long-term care residents. Osteoporos Int 2000; 11: 765–71PubMedCrossRef
107.
Zurück zum Zitat Duppe H, Gardsell P, Nilsson B, et al. A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 1997; 60: 171–4PubMedCrossRef Duppe H, Gardsell P, Nilsson B, et al. A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 1997; 60: 171–4PubMedCrossRef
108.
Zurück zum Zitat Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993; 8: 1211–7PubMedCrossRef Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993; 8: 1211–7PubMedCrossRef
109.
Zurück zum Zitat Faulkner KG. Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 2000; 15: 183–7PubMedCrossRef Faulkner KG. Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 2000; 15: 183–7PubMedCrossRef
110.
Zurück zum Zitat Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993; 421: 72–5CrossRef Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993; 421: 72–5CrossRef
111.
Zurück zum Zitat Duan Y, Parfitt A, Seeman E. Vertebral bone mass, size and volumetric density in women with spinal fractures. J Bone Miner Res 1999; 14: 1796–802PubMedCrossRef Duan Y, Parfitt A, Seeman E. Vertebral bone mass, size and volumetric density in women with spinal fractures. J Bone Miner Res 1999; 14: 1796–802PubMedCrossRef
112.
Zurück zum Zitat Seeman E, Duan Y, Fong C, et al. Fracture site-specific deficits in bone size and volumetric density in women with spinal fractures. J Bone Miner Res 2001; 16: 120–7PubMedCrossRef Seeman E, Duan Y, Fong C, et al. Fracture site-specific deficits in bone size and volumetric density in women with spinal fractures. J Bone Miner Res 2001; 16: 120–7PubMedCrossRef
113.
Zurück zum Zitat Evans RA, Marel GM, Lancaster EK, et al. Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 1988; 109: 870–3PubMed Evans RA, Marel GM, Lancaster EK, et al. Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 1988; 109: 870–3PubMed
114.
Zurück zum Zitat Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989; 320: 554–8PubMedCrossRef Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989; 320: 554–8PubMedCrossRef
115.
Zurück zum Zitat Ahlborg HG, Johnell O, Turner CH, et al. Bone loss and bone size after menopause. N Engl J Med 2003; 349: 327–34PubMedCrossRef Ahlborg HG, Johnell O, Turner CH, et al. Bone loss and bone size after menopause. N Engl J Med 2003; 349: 327–34PubMedCrossRef
116.
Zurück zum Zitat Cooper C, Eriksson JG, Forsen T, et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 2000; 12: 623–9CrossRef Cooper C, Eriksson JG, Forsen T, et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 2000; 12: 623–9CrossRef
117.
Zurück zum Zitat Chan HH, Lau EM, Woo J, et al. Dietary calcium intake, physical activity and the risk of vertebral fracture in Chinese. Osteoporos Int 1997; 6: 228–32CrossRef Chan HH, Lau EM, Woo J, et al. Dietary calcium intake, physical activity and the risk of vertebral fracture in Chinese. Osteoporos Int 1997; 6: 228–32CrossRef
118.
Zurück zum Zitat Gregg EW, Cauley JA, Seeley DG, et al. Physical activity and osteoporotic fracture risk in older women. Ann Intern Med 1998; 129: 81–8PubMed Gregg EW, Cauley JA, Seeley DG, et al. Physical activity and osteoporotic fracture risk in older women. Ann Intern Med 1998; 129: 81–8PubMed
119.
Zurück zum Zitat Lord SR, Ward JA, Williams P, et al. The effects of community exercise program on fracture risk factors in older women. Osteoporos Int 1996; 6: 361–7PubMedCrossRef Lord SR, Ward JA, Williams P, et al. The effects of community exercise program on fracture risk factors in older women. Osteoporos Int 1996; 6: 361–7PubMedCrossRef
120.
Zurück zum Zitat Province MA, Hadley EC, Hornbrook MC, et al. The effects of exercise on falls in elderly patients. JAMA 1995; 273: 1341–7PubMedCrossRef Province MA, Hadley EC, Hornbrook MC, et al. The effects of exercise on falls in elderly patients. JAMA 1995; 273: 1341–7PubMedCrossRef
121.
Zurück zum Zitat Barnes GL, Kostenuik PJ, Gerstenfeld LC, et al. Growth factor regulation of fracture repair. J Bone Miner Res 1999; 14: 1805–15PubMedCrossRef Barnes GL, Kostenuik PJ, Gerstenfeld LC, et al. Growth factor regulation of fracture repair. J Bone Miner Res 1999; 14: 1805–15PubMedCrossRef
122.
Zurück zum Zitat Lushkey KL. Growth and development. In: Griffin JE, Ojeda SR, editors. Textbook of endocrine physiology. 1st ed. New York (NY): Oxford University Press, 1988: 209 Lushkey KL. Growth and development. In: Griffin JE, Ojeda SR, editors. Textbook of endocrine physiology. 1st ed. New York (NY): Oxford University Press, 1988: 209
123.
Zurück zum Zitat Marshall WA, Tanner JM. Puberty. In: Falkner F, Tanner JM, editors. Human growth: a comprehensive treatise. New York (NY): Plenum Press, 1986: 171–209 Marshall WA, Tanner JM. Puberty. In: Falkner F, Tanner JM, editors. Human growth: a comprehensive treatise. New York (NY): Plenum Press, 1986: 171–209
124.
Zurück zum Zitat Boyar RM, Katz J, Finkelstein JW, et al. Anorexia nervosa: Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med 1974; 291: 861–5PubMedCrossRef Boyar RM, Katz J, Finkelstein JW, et al. Anorexia nervosa: Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med 1974; 291: 861–5PubMedCrossRef
125.
Zurück zum Zitat Freedman DS, Khan LK, Serdula MK, et al. The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr 2003; 3: 3PubMedCrossRef Freedman DS, Khan LK, Serdula MK, et al. The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr 2003; 3: 3PubMedCrossRef
126.
Zurück zum Zitat Shalitin S, Phillip M. Role of obesity and leptin in the pubertal process and pubertal growth: a review. Int J Obes Relat Metab Disord 2003; 27: 869–74PubMedCrossRef Shalitin S, Phillip M. Role of obesity and leptin in the pubertal process and pubertal growth: a review. Int J Obes Relat Metab Disord 2003; 27: 869–74PubMedCrossRef
127.
Zurück zum Zitat Mauras N, Blizzard RM, Link K, et al. Augmentation of growth hormone secretion during puberty: evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab 1987; 64: 596–601PubMedCrossRef Mauras N, Blizzard RM, Link K, et al. Augmentation of growth hormone secretion during puberty: evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab 1987; 64: 596–601PubMedCrossRef
128.
Zurück zum Zitat Brook CG, Hindmarsh PC. The somatotropic axis in puberty. Endocrinol Metab Clin North Am 1992; 21: 767–82PubMed Brook CG, Hindmarsh PC. The somatotropic axis in puberty. Endocrinol Metab Clin North Am 1992; 21: 767–82PubMed
129.
Zurück zum Zitat Zachman M. Interrelations between growth hormone and sex hormones: physiological and therapeutic consequences. Horm Res 1992; 38 Suppl. 1: 1–8CrossRef Zachman M. Interrelations between growth hormone and sex hormones: physiological and therapeutic consequences. Horm Res 1992; 38 Suppl. 1: 1–8CrossRef
130.
Zurück zum Zitat Lloyd T, Chinchilli VM, Eggli DF, et al. Body composition development of adolescent white females the Penn State Young Women’s Health Study. Arch Pediatr Adolesc Med 1998; 152: 998–1002PubMed Lloyd T, Chinchilli VM, Eggli DF, et al. Body composition development of adolescent white females the Penn State Young Women’s Health Study. Arch Pediatr Adolesc Med 1998; 152: 998–1002PubMed
131.
Zurück zum Zitat Martin AD, Bailey DA, McKay HA, et al. Bone mineral and calcium accretion during puberty. Am J Clin Nutr 1997; 66: 611–5PubMed Martin AD, Bailey DA, McKay HA, et al. Bone mineral and calcium accretion during puberty. Am J Clin Nutr 1997; 66: 611–5PubMed
132.
Zurück zum Zitat McKay HA, Bailey DA, Mirwald RL, et al. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr 1998; 133: 682–7PubMedCrossRef McKay HA, Bailey DA, Mirwald RL, et al. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr 1998; 133: 682–7PubMedCrossRef
133.
Zurück zum Zitat Sundberg M, Gardsell P, Johnell O, et al. Pubertal bone growth in the femoral neck is predominantly characterized by increased bone size and not by increased bone density: a 4-year longitudinal study. Osteoporos Int 2003; 14: 548–58PubMedCrossRef Sundberg M, Gardsell P, Johnell O, et al. Pubertal bone growth in the femoral neck is predominantly characterized by increased bone size and not by increased bone density: a 4-year longitudinal study. Osteoporos Int 2003; 14: 548–58PubMedCrossRef
134.
Zurück zum Zitat Cadogan J, Blumsohn A, Barker ME, et al. A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res 1998; 13: 1602–12PubMedCrossRef Cadogan J, Blumsohn A, Barker ME, et al. A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res 1998; 13: 1602–12PubMedCrossRef
135.
Zurück zum Zitat Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123: 27–31PubMed Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123: 27–31PubMed
136.
Zurück zum Zitat Katzman DK, Bachrach LK, Carter DR, et al. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1991; 73: 1332–9PubMedCrossRef Katzman DK, Bachrach LK, Carter DR, et al. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1991; 73: 1332–9PubMedCrossRef
137.
Zurück zum Zitat Lu PW, Briody JN, Ogle GD, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994; 9: 1451–8PubMedCrossRef Lu PW, Briody JN, Ogle GD, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994; 9: 1451–8PubMedCrossRef
138.
Zurück zum Zitat Kröger H, Kotaniemi A, Kröger L, et al. Development of bone mass and bone density of the spine and femoral neck: a prospective study of 65 children and adolescents. Bone Miner 1993; 23: 171–82PubMedCrossRef Kröger H, Kotaniemi A, Kröger L, et al. Development of bone mass and bone density of the spine and femoral neck: a prospective study of 65 children and adolescents. Bone Miner 1993; 23: 171–82PubMedCrossRef
139.
Zurück zum Zitat Matković V, Jelić T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994; 93: 799–808PubMedCrossRef Matković V, Jelić T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994; 93: 799–808PubMedCrossRef
140.
Zurück zum Zitat Mølgaard C, Thomsen BL, Prentice A, et al. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 1997; 76: 9–15PubMedCrossRef Mølgaard C, Thomsen BL, Prentice A, et al. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 1997; 76: 9–15PubMedCrossRef
141.
142.
Zurück zum Zitat Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75: 1060–5PubMedCrossRef Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75: 1060–5PubMedCrossRef
143.
Zurück zum Zitat Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskachewan bone mineral accrual study. J Bone Miner Res 1999; 14: 1672–9PubMedCrossRef Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskachewan bone mineral accrual study. J Bone Miner Res 1999; 14: 1672–9PubMedCrossRef
144.
Zurück zum Zitat Tanner JM, Whitehouse RH. Clinical longitudinal standards for heights, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 1987; 51: 170–9CrossRef Tanner JM, Whitehouse RH. Clinical longitudinal standards for heights, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 1987; 51: 170–9CrossRef
145.
Zurück zum Zitat Nilsson O, Baron J. Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends Endocrinol Metab 2004; 15: 370–4PubMed Nilsson O, Baron J. Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends Endocrinol Metab 2004; 15: 370–4PubMed
146.
Zurück zum Zitat Hui SL, Wiske PS, Norton JA, et al. A prospective study of change in bone mass with age in postmenopausal women. J Chronic Dis 1982; 35: 715–25PubMedCrossRef Hui SL, Wiske PS, Norton JA, et al. A prospective study of change in bone mass with age in postmenopausal women. J Chronic Dis 1982; 35: 715–25PubMedCrossRef
147.
Zurück zum Zitat Uusi-Rasi K, Sievanen H, Vuori I, et al. Associations of physical activity and calcium intake with bone mass and size in healthy women of different ages. J Bone Miner Res 1998; 13: 133–42PubMedCrossRef Uusi-Rasi K, Sievanen H, Vuori I, et al. Associations of physical activity and calcium intake with bone mass and size in healthy women of different ages. J Bone Miner Res 1998; 13: 133–42PubMedCrossRef
148.
Zurück zum Zitat Krahl H, Michaelis U, Pieper H. -G, et al. Stimulation of bone growth through sports: a radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 1994; 22: 751–7PubMedCrossRef Krahl H, Michaelis U, Pieper H. -G, et al. Stimulation of bone growth through sports: a radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 1994; 22: 751–7PubMedCrossRef
149.
Zurück zum Zitat Haapasalo H, Kontulainen S, Sievanen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of tennis players. Bone 2000; 27: 351–7PubMedCrossRef Haapasalo H, Kontulainen S, Sievanen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of tennis players. Bone 2000; 27: 351–7PubMedCrossRef
150.
Zurück zum Zitat Gilsanz V, Boechat MI, Roe FF, et al. Gender differences in vertebral bone sizes in children and adolescents. Radiology 1994; 190: 673–7PubMed Gilsanz V, Boechat MI, Roe FF, et al. Gender differences in vertebral bone sizes in children and adolescents. Radiology 1994; 190: 673–7PubMed
151.
Zurück zum Zitat Lloyd T, Rollings N, Andon MB, et al. Determinants of bone density in young women -I: relationships among pubertal development, total body bone mass, and total body bone density in premenarcheal females. J Clin Endocrinol Metab 1992; 75: 383–7PubMedCrossRef Lloyd T, Rollings N, Andon MB, et al. Determinants of bone density in young women -I: relationships among pubertal development, total body bone mass, and total body bone density in premenarcheal females. J Clin Endocrinol Metab 1992; 75: 383–7PubMedCrossRef
152.
Zurück zum Zitat Bonjour JP, Theintz G, Buchs B, et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73: 555–63PubMedCrossRef Bonjour JP, Theintz G, Buchs B, et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73: 555–63PubMedCrossRef
153.
Zurück zum Zitat Abrams SA, O’Brien KO, Stuff JE. Changes in calcium kinetics associated with menarche. J Clin Endocrinol Metab 1996; 81: 2017–20PubMedCrossRef Abrams SA, O’Brien KO, Stuff JE. Changes in calcium kinetics associated with menarche. J Clin Endocrinol Metab 1996; 81: 2017–20PubMedCrossRef
154.
Zurück zum Zitat Thomas KA, Cook SD, Bennett JT, et al. Femoral neck and lumbar spine bone mineral densities in a normal population 3–20 years of age. J Pediatr Orthop 1991; 11: 48–58PubMedCrossRef Thomas KA, Cook SD, Bennett JT, et al. Femoral neck and lumbar spine bone mineral densities in a normal population 3–20 years of age. J Pediatr Orthop 1991; 11: 48–58PubMedCrossRef
155.
Zurück zum Zitat Gilsanz V, Gibbens DT, Carlson M, et al. Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int 1988; 43: 260–2PubMedCrossRef Gilsanz V, Gibbens DT, Carlson M, et al. Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int 1988; 43: 260–2PubMedCrossRef
156.
Zurück zum Zitat Shall S. Control of cell reproduction. Br Med Bull 1981; 37: 209–14PubMed Shall S. Control of cell reproduction. Br Med Bull 1981; 37: 209–14PubMed
157.
Zurück zum Zitat Karagiorgos A, Garcia JF, Brooks GA. Growth hormone response to continuous and intermittent exercise. Med Sci Sports 1979; 11: 302–7PubMed Karagiorgos A, Garcia JF, Brooks GA. Growth hormone response to continuous and intermittent exercise. Med Sci Sports 1979; 11: 302–7PubMed
158.
Zurück zum Zitat Borer K. Exercise endocrinology. Champaign (IL): Human Kinetics, 2003 Borer K. Exercise endocrinology. Champaign (IL): Human Kinetics, 2003
159.
Zurück zum Zitat Holmes SJ, Skalet SM. Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. Horm Res 1996; 45: 86–93PubMedCrossRef Holmes SJ, Skalet SM. Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. Horm Res 1996; 45: 86–93PubMedCrossRef
160.
Zurück zum Zitat Johansson G, Bengtsson BA. Growth hormone and the acquisition of bone mass. Horm Res 1997; 48 Suppl. 5: 72–7CrossRef Johansson G, Bengtsson BA. Growth hormone and the acquisition of bone mass. Horm Res 1997; 48 Suppl. 5: 72–7CrossRef
161.
Zurück zum Zitat Froesch ER, Schmid C, Schwandes J, et al. Actions of insulin-like growth factors. Am J Physiol 1985; 47: 443–67CrossRef Froesch ER, Schmid C, Schwandes J, et al. Actions of insulin-like growth factors. Am J Physiol 1985; 47: 443–67CrossRef
162.
Zurück zum Zitat Spagnoli A, Rosenfeld RG. Insulin-like growth factor binding proteins. Curr Opin Endocrinol Diabetes 1997; 4: 1–9CrossRef Spagnoli A, Rosenfeld RG. Insulin-like growth factor binding proteins. Curr Opin Endocrinol Diabetes 1997; 4: 1–9CrossRef
163.
Zurück zum Zitat Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone function in vitro and reduces bone fragility in vivo. J Endocrinol 2002; 175: 405–12PubMedCrossRef Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone function in vitro and reduces bone fragility in vivo. J Endocrinol 2002; 175: 405–12PubMedCrossRef
164.
Zurück zum Zitat Canalis E. Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 1980; 66: 709–19PubMedCrossRef Canalis E. Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 1980; 66: 709–19PubMedCrossRef
165.
Zurück zum Zitat Rodan SB, Weslowski G, Thomas K, et al. Growth stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 1987; 121: 1917–23PubMedCrossRef Rodan SB, Weslowski G, Thomas K, et al. Growth stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 1987; 121: 1917–23PubMedCrossRef
166.
Zurück zum Zitat Joyce ME, Jinguishi S, Bolander ME. Transforming growth factor-β in the regulation of fracture repair. Orthop Clin North Am 1990; 21: 199–209PubMed Joyce ME, Jinguishi S, Bolander ME. Transforming growth factor-β in the regulation of fracture repair. Orthop Clin North Am 1990; 21: 199–209PubMed
167.
Zurück zum Zitat Schmidt IU, Wakley GK, Turner RT. Effects of estrogen and progesterone on tibia histomorphometry in growing rats. Calcif Tissue Int 2000; 67: 47–52PubMedCrossRef Schmidt IU, Wakley GK, Turner RT. Effects of estrogen and progesterone on tibia histomorphometry in growing rats. Calcif Tissue Int 2000; 67: 47–52PubMedCrossRef
168.
Zurück zum Zitat Nilsson A, Ohlsson C, Isaksson OGP, et al. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr 1994; 48 Suppl. 1: S150–60 Nilsson A, Ohlsson C, Isaksson OGP, et al. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr 1994; 48 Suppl. 1: S150–60
169.
Zurück zum Zitat Kume K, Satomura K, Nishisho S, et al. Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002; 50: 159–69PubMedCrossRef Kume K, Satomura K, Nishisho S, et al. Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002; 50: 159–69PubMedCrossRef
170.
Zurück zum Zitat Scariano JK, Garry PJ, Montoya GD, et al. Serum leptin levels, bone mineral density and osteoblast alkaline phosphatase activity in elderly men and women. Mech Ageing Dev 2003; 124: 281–6PubMedCrossRef Scariano JK, Garry PJ, Montoya GD, et al. Serum leptin levels, bone mineral density and osteoblast alkaline phosphatase activity in elderly men and women. Mech Ageing Dev 2003; 124: 281–6PubMedCrossRef
171.
Zurück zum Zitat Dobing H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 1995; 136: 3632–8CrossRef Dobing H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 1995; 136: 3632–8CrossRef
172.
173.
Zurück zum Zitat Chen HL, Demiralp B, Schneider A, et al. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 2002; 277: 19374–81PubMedCrossRef Chen HL, Demiralp B, Schneider A, et al. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 2002; 277: 19374–81PubMedCrossRef
174.
Zurück zum Zitat Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. J Biol Chem 2003; 278: 50259–72PubMedCrossRef Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. J Biol Chem 2003; 278: 50259–72PubMedCrossRef
175.
Zurück zum Zitat Pereira RM, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 2001; 28: 484–90PubMedCrossRef Pereira RM, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 2001; 28: 484–90PubMedCrossRef
176.
Zurück zum Zitat Barnard R, Ng KW, Martin TJ, et al. Growth hormone (GH) receptors in clonal osteoblast-like cells mediate a mitogenic response to GH. Endocrinology 1991; 128: 1459–64PubMedCrossRef Barnard R, Ng KW, Martin TJ, et al. Growth hormone (GH) receptors in clonal osteoblast-like cells mediate a mitogenic response to GH. Endocrinology 1991; 128: 1459–64PubMedCrossRef
177.
Zurück zum Zitat Bando H, Zhang C, Takada Y, et al. Impaired secretion of growth hormone-releasing hormone, growth hormone and IGF-I in elderly men. Acta Endocrinol (Copenh) 1991; 124: 31–6 Bando H, Zhang C, Takada Y, et al. Impaired secretion of growth hormone-releasing hormone, growth hormone and IGF-I in elderly men. Acta Endocrinol (Copenh) 1991; 124: 31–6
178.
Zurück zum Zitat Clark RG, Jansson JO, Isaksson OGP, et al. Intravenous growth hormone: growth responses to patterned infusions in hypophysectomized rats. J Endocrinol 1985; 104: 53–61PubMedCrossRef Clark RG, Jansson JO, Isaksson OGP, et al. Intravenous growth hormone: growth responses to patterned infusions in hypophysectomized rats. J Endocrinol 1985; 104: 53–61PubMedCrossRef
179.
Zurück zum Zitat Isgaard J, Carlsson L, Isaksson OGP, et al. Pulsatile intravenous growth hormone (GH) infusion to hypophysectomized rat increases insulin-like growth factor I messenger ribonucleic acid in skeletal tissues more effectively than continuous GH infusion. Endocrinology 1988; 123: 2605–10PubMedCrossRef Isgaard J, Carlsson L, Isaksson OGP, et al. Pulsatile intravenous growth hormone (GH) infusion to hypophysectomized rat increases insulin-like growth factor I messenger ribonucleic acid in skeletal tissues more effectively than continuous GH infusion. Endocrinology 1988; 123: 2605–10PubMedCrossRef
180.
Zurück zum Zitat Isgaard J, Moller C, Isaksson OGP, et al. Regulation of insulin- like growth factor I messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology 1988; 122: 1515–20PubMedCrossRef Isgaard J, Moller C, Isaksson OGP, et al. Regulation of insulin- like growth factor I messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology 1988; 122: 1515–20PubMedCrossRef
181.
Zurück zum Zitat Maiter D, Underwood LE, Maes M, et al. Direct effect of intermittent and continuous growth hormone (GH) administration on serum somatomedin-C/insulin-like growth factor I and liver GH receptors in hypophysectomized rats. Endocrinology 1988; 123: 1053–9PubMedCrossRef Maiter D, Underwood LE, Maes M, et al. Direct effect of intermittent and continuous growth hormone (GH) administration on serum somatomedin-C/insulin-like growth factor I and liver GH receptors in hypophysectomized rats. Endocrinology 1988; 123: 1053–9PubMedCrossRef
182.
Zurück zum Zitat Schwander JC, Hauri C, et al. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 1983; 113: 297–305PubMedCrossRef Schwander JC, Hauri C, et al. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 1983; 113: 297–305PubMedCrossRef
183.
Zurück zum Zitat Hall K, Brandt J, Enberg G, et al. Immunoreactive somatomedin A in human serum. J Clin Endocrinol Metab 1979; 48: 271–8PubMedCrossRef Hall K, Brandt J, Enberg G, et al. Immunoreactive somatomedin A in human serum. J Clin Endocrinol Metab 1979; 48: 271–8PubMedCrossRef
184.
Zurück zum Zitat Amato G, Izzo GLA, Montagna G, et al. Low dose recombinant human growth hormone normalizes bone metabolism and cortical bone density and improves trabecular bone density in growth hormone deficient adults without causing adverse effects. Clin Endocrinol (Oxford) 1996; 45: 27–32CrossRef Amato G, Izzo GLA, Montagna G, et al. Low dose recombinant human growth hormone normalizes bone metabolism and cortical bone density and improves trabecular bone density in growth hormone deficient adults without causing adverse effects. Clin Endocrinol (Oxford) 1996; 45: 27–32CrossRef
185.
Zurück zum Zitat Bravenboer N, Holzmann P, De Boer H, et al. The effect of growth hormone (GH) on histomorphometric indices of bone structure and bone turnover in GH-deficient men. J Clin Endocrinol Metab 1997; 82: 1818–22PubMedCrossRef Bravenboer N, Holzmann P, De Boer H, et al. The effect of growth hormone (GH) on histomorphometric indices of bone structure and bone turnover in GH-deficient men. J Clin Endocrinol Metab 1997; 82: 1818–22PubMedCrossRef
186.
Zurück zum Zitat Wang DS, Sato K, Demura H, et al. Osteo-anabolic effects of human growth hormone with 22K- and 20K Daltons on human osteoblast-like cells. Endocr J 1999; 46: 125–32PubMedCrossRef Wang DS, Sato K, Demura H, et al. Osteo-anabolic effects of human growth hormone with 22K- and 20K Daltons on human osteoblast-like cells. Endocr J 1999; 46: 125–32PubMedCrossRef
187.
Zurück zum Zitat Boguszewski CL, Jansson C, Boguszewski MC, et al. Circulating non-22 kDa growth homone isoforms in healthy children of normal stature: relation to height, body mass and pubertal development. Eur J Endocrinol 1997; 137: 246–53PubMedCrossRef Boguszewski CL, Jansson C, Boguszewski MC, et al. Circulating non-22 kDa growth homone isoforms in healthy children of normal stature: relation to height, body mass and pubertal development. Eur J Endocrinol 1997; 137: 246–53PubMedCrossRef
188.
Zurück zum Zitat Boguszewski CL, Jansson C, Boguszewski MC, et al. Increased proportion of circulating non-22-kilodalton growth hormone isoforms in short children: a possible mechanism for growth failure. J Clin Endocrinol Metab 1997; 82: 2944–9PubMedCrossRef Boguszewski CL, Jansson C, Boguszewski MC, et al. Increased proportion of circulating non-22-kilodalton growth hormone isoforms in short children: a possible mechanism for growth failure. J Clin Endocrinol Metab 1997; 82: 2944–9PubMedCrossRef
189.
Zurück zum Zitat Kostenuik PJ, Harris J, Halloran BP, et al. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I. J Bone Miner Res 1999; 14: 21–31PubMedCrossRef Kostenuik PJ, Harris J, Halloran BP, et al. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I. J Bone Miner Res 1999; 14: 21–31PubMedCrossRef
190.
Zurück zum Zitat Nishida S, Yamaguchi A, Tanizawa T, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 1994; 15: 717–23PubMedCrossRef Nishida S, Yamaguchi A, Tanizawa T, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 1994; 15: 717–23PubMedCrossRef
191.
Zurück zum Zitat Hodsman AB, Fraher LJ, Ostbye T, et al. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Invest 1993; 91: 1138–48PubMedCrossRef Hodsman AB, Fraher LJ, Ostbye T, et al. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Invest 1993; 91: 1138–48PubMedCrossRef
192.
Zurück zum Zitat Schmidt IU, Dobnig H, Turner RT. Intermittent parathyroid hormone treatment increases osteoblast number, steady state messenger ribonucleic acid levels for osteocalcin, and bone formation in tibial metaphysis of hypophysectomized female rats. Endocrinology 1995; 136: 5127–34PubMedCrossRef Schmidt IU, Dobnig H, Turner RT. Intermittent parathyroid hormone treatment increases osteoblast number, steady state messenger ribonucleic acid levels for osteocalcin, and bone formation in tibial metaphysis of hypophysectomized female rats. Endocrinology 1995; 136: 5127–34PubMedCrossRef
193.
Zurück zum Zitat Onyia JE, Bidwell J, Herring J, et al. In vivo, human parathyroid hormone fragment (pPTH 1–34) transiently stimulates immediate early response gene expression, but not proliferation, in trabecular bone cells of young rats. Bone 1995; 17: 479–84PubMedCrossRef Onyia JE, Bidwell J, Herring J, et al. In vivo, human parathyroid hormone fragment (pPTH 1–34) transiently stimulates immediate early response gene expression, but not proliferation, in trabecular bone cells of young rats. Bone 1995; 17: 479–84PubMedCrossRef
194.
Zurück zum Zitat Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab 2004; 15: 60–5PubMedCrossRef Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab 2004; 15: 60–5PubMedCrossRef
195.
Zurück zum Zitat Ohlsson C, Bengtsson BA, Isaksson OG, et al. Growth hormone and bone. Endocr Rev 1998; 19: 55–79PubMedCrossRef Ohlsson C, Bengtsson BA, Isaksson OG, et al. Growth hormone and bone. Endocr Rev 1998; 19: 55–79PubMedCrossRef
196.
Zurück zum Zitat Russel-Aulet M, Shapiro B, Jaffe CA, et al. Peak bone mass in young healthy men is correlated with the magnitude of endogenous growth hormone secretion. J Clin Endocrinol Metab 1998; 83: 3463–8CrossRef Russel-Aulet M, Shapiro B, Jaffe CA, et al. Peak bone mass in young healthy men is correlated with the magnitude of endogenous growth hormone secretion. J Clin Endocrinol Metab 1998; 83: 3463–8CrossRef
197.
Zurück zum Zitat Mora S, Pitukcheewanont P, Nelson JC, et al. Serum levels of insulin-like growth factor I and the density, volume, and cross-sectional area of cortical bone in children. J Clin Endocrinol Metab 1999; 84: 2780–3PubMedCrossRef Mora S, Pitukcheewanont P, Nelson JC, et al. Serum levels of insulin-like growth factor I and the density, volume, and cross-sectional area of cortical bone in children. J Clin Endocrinol Metab 1999; 84: 2780–3PubMedCrossRef
198.
Zurück zum Zitat Nindl BC, Scoville CR, Sheehan KM, et al. Gender differences in regional body composition and somatotrophic influences of IGF-I and leptin. J Appl Physiol 2002; 92: 1611–8PubMed Nindl BC, Scoville CR, Sheehan KM, et al. Gender differences in regional body composition and somatotrophic influences of IGF-I and leptin. J Appl Physiol 2002; 92: 1611–8PubMed
199.
Zurück zum Zitat Sugimoto T, Nishiyama K, Kuribayashi F, et al. Serum levels of insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-2 and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 1997; 12: 1272–9PubMedCrossRef Sugimoto T, Nishiyama K, Kuribayashi F, et al. Serum levels of insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-2 and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 1997; 12: 1272–9PubMedCrossRef
200.
Zurück zum Zitat Johansson AG, Forslund A, Hambraeus L, et al. Growth hormone-dependent insulin-like growth factor binding protein is a major determinant of bone mineral density in healthy men. J Bone Miner Res 1994; 9: 915–21PubMedCrossRef Johansson AG, Forslund A, Hambraeus L, et al. Growth hormone-dependent insulin-like growth factor binding protein is a major determinant of bone mineral density in healthy men. J Bone Miner Res 1994; 9: 915–21PubMedCrossRef
201.
Zurück zum Zitat Koopmans SJ, de Boer SF, Sips HC, et al. Whole body and hepatic insulin action in normal, starved, and diabetic rats. Am J Physiol 1991; 260: E825–32 Koopmans SJ, de Boer SF, Sips HC, et al. Whole body and hepatic insulin action in normal, starved, and diabetic rats. Am J Physiol 1991; 260: E825–32
202.
Zurück zum Zitat Fichter MM, Pirke KM. Effect of experimental and pathological weight loss upon the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology 1986; 11: 295–305PubMedCrossRef Fichter MM, Pirke KM. Effect of experimental and pathological weight loss upon the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology 1986; 11: 295–305PubMedCrossRef
203.
Zurück zum Zitat Ketelslegers JM, Maiter D, Maes M, et al. Nutritional regulation of the growth hormone and insulin-like growth factor-binding proteins. Horm Res 1996; 45: 252–7PubMedCrossRef Ketelslegers JM, Maiter D, Maes M, et al. Nutritional regulation of the growth hormone and insulin-like growth factor-binding proteins. Horm Res 1996; 45: 252–7PubMedCrossRef
204.
Zurück zum Zitat Thissen J, Underwood LE, Ketelslegers JM. Regulation of insulin-like growth factor-I in starvation and injury. Nutr Rev 1999; 57: 167–76PubMedCrossRef Thissen J, Underwood LE, Ketelslegers JM. Regulation of insulin-like growth factor-I in starvation and injury. Nutr Rev 1999; 57: 167–76PubMedCrossRef
205.
Zurück zum Zitat Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during two day fast in normal men. J Clin Endocrinol Metab 1992; 74: 757–65PubMedCrossRef Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during two day fast in normal men. J Clin Endocrinol Metab 1992; 74: 757–65PubMedCrossRef
206.
Zurück zum Zitat Ho KY, Veldhuis JD, Johnson ML, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest 1988; 81: 968–75PubMedCrossRef Ho KY, Veldhuis JD, Johnson ML, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest 1988; 81: 968–75PubMedCrossRef
207.
Zurück zum Zitat Iranmanesh A, Veldhuis JD. Clinical pathophysiology of the somatotropic (GH) axis in adults. Endocrinol Metab Clin North Am 1992; 21: 783–816PubMed Iranmanesh A, Veldhuis JD. Clinical pathophysiology of the somatotropic (GH) axis in adults. Endocrinol Metab Clin North Am 1992; 21: 783–816PubMed
208.
Zurück zum Zitat Nørrelund H, Nair KS, Nielsen S, et al. The decisive role of free fatty acids for protein conservation during fasting in humans with and without growth hormone. J Clin Endocrinol Metab 2003; 88: 4371–8PubMedCrossRef Nørrelund H, Nair KS, Nielsen S, et al. The decisive role of free fatty acids for protein conservation during fasting in humans with and without growth hormone. J Clin Endocrinol Metab 2003; 88: 4371–8PubMedCrossRef
209.
Zurück zum Zitat Schmid C, Ernst M. Insulin-like growth factors. In: Gowen M, editor. Cytokines and bone metabolism. Boca Raton (FL): CRC Press, 1992: 229–65 Schmid C, Ernst M. Insulin-like growth factors. In: Gowen M, editor. Cytokines and bone metabolism. Boca Raton (FL): CRC Press, 1992: 229–65
210.
Zurück zum Zitat Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Intern Med 1985; 102: 158–63PubMed Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Intern Med 1985; 102: 158–63PubMed
211.
Zurück zum Zitat Zanker CL, Swaine IL. Relation between bone turnover, oestradiol, and energy balance in women distance runners. Br J Sports Med 1998; 32: 167–71PubMedCrossRef Zanker CL, Swaine IL. Relation between bone turnover, oestradiol, and energy balance in women distance runners. Br J Sports Med 1998; 32: 167–71PubMedCrossRef
212.
Zurück zum Zitat Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–5PubMedCrossRef Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–5PubMedCrossRef
213.
Zurück zum Zitat Maor G, Rochwerger M, Segev Y, et al. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002; 17: 1034–43PubMedCrossRef Maor G, Rochwerger M, Segev Y, et al. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002; 17: 1034–43PubMedCrossRef
214.
Zurück zum Zitat Gordeladze JO, Reseland JE. A unified model for the action of leptin on bone turnover. J Cell Biochem 2003; 88: 706–12PubMedCrossRef Gordeladze JO, Reseland JE. A unified model for the action of leptin on bone turnover. J Cell Biochem 2003; 88: 706–12PubMedCrossRef
215.
Zurück zum Zitat Grumbach MM. The neuroendocrinology of human puberty revisited. Horm Res 2002; 57 Suppl. 2: 2–14PubMedCrossRef Grumbach MM. The neuroendocrinology of human puberty revisited. Horm Res 2002; 57 Suppl. 2: 2–14PubMedCrossRef
216.
Zurück zum Zitat Thomas T, Burguera B. Is leptin the link between fat and bone mass? J Bone Miner Res 2002; 17: 1563–9PubMedCrossRef Thomas T, Burguera B. Is leptin the link between fat and bone mass? J Bone Miner Res 2002; 17: 1563–9PubMedCrossRef
217.
Zurück zum Zitat Van Aggel-Leijssen DPC, Van Bak MA, Tennenbaum R, et al. regulation of average 24h human plasma leptin level: the influence of exercise and physiological changes in energy balance. J Obes Relat Metab Disord 1999; 23: 151–8CrossRef Van Aggel-Leijssen DPC, Van Bak MA, Tennenbaum R, et al. regulation of average 24h human plasma leptin level: the influence of exercise and physiological changes in energy balance. J Obes Relat Metab Disord 1999; 23: 151–8CrossRef
218.
Zurück zum Zitat Kaufman BA, Warren MP, Dominguez JE, et al. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. J Clin Endocrinol Metab 2002; 87: 2777–83PubMedCrossRef Kaufman BA, Warren MP, Dominguez JE, et al. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. J Clin Endocrinol Metab 2002; 87: 2777–83PubMedCrossRef
219.
Zurück zum Zitat Liesegang P, Romalo G, Sudmann M, et al. Human osteoblast-like cells contain specific, saturable, high-affinity glucocorticoid, androgen, estogen, and 1 alpha,25-dihydroxycholecalciferol receptors. J Androl 1994; 15: 194–9PubMed Liesegang P, Romalo G, Sudmann M, et al. Human osteoblast-like cells contain specific, saturable, high-affinity glucocorticoid, androgen, estogen, and 1 alpha,25-dihydroxycholecalciferol receptors. J Androl 1994; 15: 194–9PubMed
220.
Zurück zum Zitat Turner RT, Riggs BL, Spelsberg TC, et al. Skeletal effects of estrogen. Endocr Rev 1994; 15: 275–99PubMed Turner RT, Riggs BL, Spelsberg TC, et al. Skeletal effects of estrogen. Endocr Rev 1994; 15: 275–99PubMed
221.
Zurück zum Zitat Compston JE, Laskey MA, Croucher PI, et al. Effect of diet-induced weight loss on total body bone mass. Clin Sci 1992; 82: 429–32PubMed Compston JE, Laskey MA, Croucher PI, et al. Effect of diet-induced weight loss on total body bone mass. Clin Sci 1992; 82: 429–32PubMed
222.
Zurück zum Zitat Williams GR, Robson H, Shalet SM. Thyroid hormone actions on cartilage and bone: interactions with other hormones at the epiphyseal plate and effects on linear growth. J Endocrinol 1998; 157: 823–7CrossRef Williams GR, Robson H, Shalet SM. Thyroid hormone actions on cartilage and bone: interactions with other hormones at the epiphyseal plate and effects on linear growth. J Endocrinol 1998; 157: 823–7CrossRef
223.
Zurück zum Zitat Klein-Nulend J, Sterck JGH, Semeins CM, et al. Donor age and mechanosensitivity of human bone cells. Osteoporos Int 2002; 13: 137–46PubMedCrossRef Klein-Nulend J, Sterck JGH, Semeins CM, et al. Donor age and mechanosensitivity of human bone cells. Osteoporos Int 2002; 13: 137–46PubMedCrossRef
224.
Zurück zum Zitat Oscai LB, Spirakis CN, Wolff CA, et al. Effects of exercise and food restriction on adipose tissue cellularity. J Lipid Res 1971; 13: 588–90 Oscai LB, Spirakis CN, Wolff CA, et al. Effects of exercise and food restriction on adipose tissue cellularity. J Lipid Res 1971; 13: 588–90
225.
Zurück zum Zitat Widdowson EM, McCance RA. Some effects of accelerating growth -I: general somatic development. Proc R Soc Lond B Biol Sci 1960; 24: 923–32 Widdowson EM, McCance RA. Some effects of accelerating growth -I: general somatic development. Proc R Soc Lond B Biol Sci 1960; 24: 923–32
226.
Zurück zum Zitat Caine D, Lewis R, O’Connor P, et al. Does gymnastics training inhibit growth of females? Clin J Sports Med 2001; 11: 260–70CrossRef Caine D, Lewis R, O’Connor P, et al. Does gymnastics training inhibit growth of females? Clin J Sports Med 2001; 11: 260–70CrossRef
227.
Zurück zum Zitat Malina RM, Bouchard C. Growth, maturation and physical activity. Champaign (IL): Human Kinetics, 1991 Malina RM, Bouchard C. Growth, maturation and physical activity. Champaign (IL): Human Kinetics, 1991
228.
Zurück zum Zitat Baxter-Jones ADG, Helms PJ. Effects of training at a young age: a review of the training of young athletes (TOYA) study. Pediatr Exer Sci 1996; 8: 310–27 Baxter-Jones ADG, Helms PJ. Effects of training at a young age: a review of the training of young athletes (TOYA) study. Pediatr Exer Sci 1996; 8: 310–27
229.
Zurück zum Zitat Caine D, Bass SL, Daly R. Does elite competition inhibit growth and delay maturation in some gymnasts? Quite possibly. Pediatr Exer Sci 2003; 15: 360–72 Caine D, Bass SL, Daly R. Does elite competition inhibit growth and delay maturation in some gymnasts? Quite possibly. Pediatr Exer Sci 2003; 15: 360–72
230.
Zurück zum Zitat Daly RM, Rich PA, Klein R, et al. Short stature in competitive prepubertal and early pubertal male gymnasts: The result of selection bias or intense training? J Pediatr 2000; 137: 510–6PubMedCrossRef Daly RM, Rich PA, Klein R, et al. Short stature in competitive prepubertal and early pubertal male gymnasts: The result of selection bias or intense training? J Pediatr 2000; 137: 510–6PubMedCrossRef
231.
Zurück zum Zitat Lindholm C, Hagenfeldt K, Ringertz BM. Pubertal development in elite juvenile gymnasts: effects of physical training. Acta Obstet Gynecol Scand 1994; 73: 269–73PubMedCrossRef Lindholm C, Hagenfeldt K, Ringertz BM. Pubertal development in elite juvenile gymnasts: effects of physical training. Acta Obstet Gynecol Scand 1994; 73: 269–73PubMedCrossRef
232.
Zurück zum Zitat Tveit-Milligan P, Spindler AA, Nichold JE. Genes and gymnastics: a case study of triplets. Sports Med Training Rehab 1993; 4: 47–52CrossRef Tveit-Milligan P, Spindler AA, Nichold JE. Genes and gymnastics: a case study of triplets. Sports Med Training Rehab 1993; 4: 47–52CrossRef
233.
Zurück zum Zitat Bass S, Bradney M, Pearce G, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998; 13: 500–7PubMedCrossRef Bass S, Bradney M, Pearce G, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998; 13: 500–7PubMedCrossRef
234.
Zurück zum Zitat Jahreis G, Kauf E, Frohner G. Influence of intensive exercise on insulin-like growth factor I, thyroid and steroid hormones in female gymnasts. Growth Regul 1995; 1: 95–9 Jahreis G, Kauf E, Frohner G. Influence of intensive exercise on insulin-like growth factor I, thyroid and steroid hormones in female gymnasts. Growth Regul 1995; 1: 95–9
235.
Zurück zum Zitat Theintz GE. Endocrine adaptation to intensive physical training during growth. Clin Endocrinol 1994; 41: 267–72CrossRef Theintz GE. Endocrine adaptation to intensive physical training during growth. Clin Endocrinol 1994; 41: 267–72CrossRef
236.
Zurück zum Zitat Smith WJ, Underwood L, Clemmons D. Effects of caloric or protein restriction on insulin-like growth factor I (IGF-I) and IGF-binding proteins in children and adults. J Clin Endocrinol Metab 1995; 80: 443–9PubMedCrossRef Smith WJ, Underwood L, Clemmons D. Effects of caloric or protein restriction on insulin-like growth factor I (IGF-I) and IGF-binding proteins in children and adults. J Clin Endocrinol Metab 1995; 80: 443–9PubMedCrossRef
237.
Zurück zum Zitat Bass S, Bradney M, Pearce G, et al. Short stature and delayed puberty in gymnasts: influence of selection bias on leg length and duration of training on trunk length. J Pediatr 2000; 136: 149–55PubMedCrossRef Bass S, Bradney M, Pearce G, et al. Short stature and delayed puberty in gymnasts: influence of selection bias on leg length and duration of training on trunk length. J Pediatr 2000; 136: 149–55PubMedCrossRef
238.
Zurück zum Zitat Constantini NW, Brautber C, Manny N, et al. Differences in growth and maturation in twin athletes. Med Sci Sports Exerc 1997; 29 Suppl. 5: S150 Constantini NW, Brautber C, Manny N, et al. Differences in growth and maturation in twin athletes. Med Sci Sports Exerc 1997; 29 Suppl. 5: S150
239.
Zurück zum Zitat Warren MP. The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab 1980; 51: 279–94CrossRef Warren MP. The effects of exercise on pubertal progression and reproductive function in girls. J Clin Endocrinol Metab 1980; 51: 279–94CrossRef
240.
Zurück zum Zitat Jacks DE, Sowash J, Anning J, et al. Effect of exercise at three exercise intensities on salivary cortisol. J Strength Cond Res 2002; 16: 286–9PubMed Jacks DE, Sowash J, Anning J, et al. Effect of exercise at three exercise intensities on salivary cortisol. J Strength Cond Res 2002; 16: 286–9PubMed
241.
Zurück zum Zitat Deuster PA, Petrides JS, Singh A, et al. High intensity exercise promotes escape of adrenocorticotropin and cortisol from suppression by dexamethasone: sexually dimorphic responses. J Clin Endocrinol Metab 1998; 83: 3332–8PubMedCrossRef Deuster PA, Petrides JS, Singh A, et al. High intensity exercise promotes escape of adrenocorticotropin and cortisol from suppression by dexamethasone: sexually dimorphic responses. J Clin Endocrinol Metab 1998; 83: 3332–8PubMedCrossRef
242.
Zurück zum Zitat De Souza MJ, Luciano AA, Arve JC, et al. Clinical tests explain blunted cortisol responsiveness but not mild hypercortisolism in amenorrheic runners. J Appl Physiol 1994; 76: 1302–9PubMed De Souza MJ, Luciano AA, Arve JC, et al. Clinical tests explain blunted cortisol responsiveness but not mild hypercortisolism in amenorrheic runners. J Appl Physiol 1994; 76: 1302–9PubMed
243.
Zurück zum Zitat Klingele KE, Kocher MS. Little league elbow: valgus overload injury in the paediatric athlete. Sports Med 2002; 15: 1005–15CrossRef Klingele KE, Kocher MS. Little league elbow: valgus overload injury in the paediatric athlete. Sports Med 2002; 15: 1005–15CrossRef
244.
Zurück zum Zitat Brot C, Jensen LB, Sorensen OH. Bone mass and risk factors for bone loss in perimenopausal Danish women. J Intern Med 1997; 242: 505–11PubMedCrossRef Brot C, Jensen LB, Sorensen OH. Bone mass and risk factors for bone loss in perimenopausal Danish women. J Intern Med 1997; 242: 505–11PubMedCrossRef
245.
Zurück zum Zitat Ensrud KE, Ewing SK, Stone KL, et al. Weight loss in elderly women increases the risk of hip fracture irrespective of weight and weight loss intentions. J Bone Miner Res 2001; 16 Suppl. 1: S155 Ensrud KE, Ewing SK, Stone KL, et al. Weight loss in elderly women increases the risk of hip fracture irrespective of weight and weight loss intentions. J Bone Miner Res 2001; 16 Suppl. 1: S155
246.
Zurück zum Zitat Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham osteoporosis study. J Bone Miner Res 2000; 15: 710–20PubMedCrossRef Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham osteoporosis study. J Bone Miner Res 2000; 15: 710–20PubMedCrossRef
247.
Zurück zum Zitat Mizuno K, Suzuki A, Ino Y, et al. Postmenopausal bone loss in Japanese women. Int J Gynaecol Obstet 1995; 50: 33–9PubMedCrossRef Mizuno K, Suzuki A, Ino Y, et al. Postmenopausal bone loss in Japanese women. Int J Gynaecol Obstet 1995; 50: 33–9PubMedCrossRef
248.
Zurück zum Zitat Ramsdale SJ, Bassey FJ. Changes in bone mineral density associated with dietary induced loss of body mass in young women. Clin Sci 1994; 87: 343–8PubMed Ramsdale SJ, Bassey FJ. Changes in bone mineral density associated with dietary induced loss of body mass in young women. Clin Sci 1994; 87: 343–8PubMed
249.
Zurück zum Zitat Svendsen OL, Hassager C, Christiansen C. Effect of an energy-restrictive diet with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am J Med 1993; 95: 131–40PubMedCrossRef Svendsen OL, Hassager C, Christiansen C. Effect of an energy-restrictive diet with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am J Med 1993; 95: 131–40PubMedCrossRef
250.
Zurück zum Zitat Edelstein SL, Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 1993; 138: 160–9PubMed Edelstein SL, Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 1993; 138: 160–9PubMed
251.
Zurück zum Zitat Ravn P, Hetland ML, Overgaard K, et al. Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry. J Bone Miner Res 1994; 9: 1975–80PubMedCrossRef Ravn P, Hetland ML, Overgaard K, et al. Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry. J Bone Miner Res 1994; 9: 1975–80PubMedCrossRef
252.
Zurück zum Zitat Fall PM, Kennedy D, Smith JA, et al. Comparison of serum and urine assays for biochemical markers of bone resorption in postmenopausal women with and without hormone replacement therapy and in men. Osteoporos Int 2000; 11: 481–5PubMedCrossRef Fall PM, Kennedy D, Smith JA, et al. Comparison of serum and urine assays for biochemical markers of bone resorption in postmenopausal women with and without hormone replacement therapy and in men. Osteoporos Int 2000; 11: 481–5PubMedCrossRef
253.
Zurück zum Zitat Ensrud KE, Lipschutz RC, Cauley JA, et al. Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 1997; 103: 274–80PubMedCrossRef Ensrud KE, Lipschutz RC, Cauley JA, et al. Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 1997; 103: 274–80PubMedCrossRef
254.
Zurück zum Zitat Kushner FR, Kunigk A, Alspaugh M, et al. Validation of bioelectrical impedance analysis as a measurement of change in body composition in obesity. Am J Clin Nutr 1990; 52: 219–23PubMed Kushner FR, Kunigk A, Alspaugh M, et al. Validation of bioelectrical impedance analysis as a measurement of change in body composition in obesity. Am J Clin Nutr 1990; 52: 219–23PubMed
255.
Zurück zum Zitat Weits T, van der Beek EJ, Wedel M, et al. Fat patterning during weight reduction: a multimode investigation. Neth J Med 1989; 35: 174–84PubMed Weits T, van der Beek EJ, Wedel M, et al. Fat patterning during weight reduction: a multimode investigation. Neth J Med 1989; 35: 174–84PubMed
256.
Zurück zum Zitat Westerterp KR, Saris WHM, Soeters PB, et al. Determinants of weight loss after vertical banded gastroplasty. Int J Obes 1991; 15: 529–34PubMed Westerterp KR, Saris WHM, Soeters PB, et al. Determinants of weight loss after vertical banded gastroplasty. Int J Obes 1991; 15: 529–34PubMed
257.
Zurück zum Zitat Jensen LB, Quaade F, Sorensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res 1994; 9: 459–63PubMedCrossRef Jensen LB, Quaade F, Sorensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res 1994; 9: 459–63PubMedCrossRef
258.
Zurück zum Zitat Cann CE, Martin MC, Genant HK, et al. Decreased spinal mineral content of amenorrheic women. JAMA 1984; 251: 626–9PubMedCrossRef Cann CE, Martin MC, Genant HK, et al. Decreased spinal mineral content of amenorrheic women. JAMA 1984; 251: 626–9PubMedCrossRef
259.
Zurück zum Zitat Drinkwater BL, Nilson K, Chesnut III CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: 277–81PubMedCrossRef Drinkwater BL, Nilson K, Chesnut III CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: 277–81PubMedCrossRef
260.
Zurück zum Zitat Fisher EC, Nelson ME, Frontera WR, et al. Bone mineral content and levels of gonadotropins and estrogens in amenorrheic running women. J Clin Endocrinol Metab 1986; 62: 1232–6PubMedCrossRef Fisher EC, Nelson ME, Frontera WR, et al. Bone mineral content and levels of gonadotropins and estrogens in amenorrheic running women. J Clin Endocrinol Metab 1986; 62: 1232–6PubMedCrossRef
261.
Zurück zum Zitat Lindberg JS, Fears WB, Hunt MM, et al. Exercise-induced amenorrhea and bone density. Ann Intern Med 1984; 101: 647–8PubMed Lindberg JS, Fears WB, Hunt MM, et al. Exercise-induced amenorrhea and bone density. Ann Intern Med 1984; 101: 647–8PubMed
262.
Zurück zum Zitat Wilson JH, Wolman RL. Osteoporosis and fracture complications in an amenorrheic athlete. Br J Rheumatol 1994; 33: 480–1PubMedCrossRef Wilson JH, Wolman RL. Osteoporosis and fracture complications in an amenorrheic athlete. Br J Rheumatol 1994; 33: 480–1PubMedCrossRef
263.
Zurück zum Zitat Nichols DL, Sanborn CF, Bonnick SL, et al. The effects of gymnastics training on bone mineral density. Med Sci Sports Exerc 1994; 26: 1220–5PubMed Nichols DL, Sanborn CF, Bonnick SL, et al. The effects of gymnastics training on bone mineral density. Med Sci Sports Exerc 1994; 26: 1220–5PubMed
264.
Zurück zum Zitat Okano H, Mizunuma H, Soda M, et al. Effects of exercise and amenorrhea on bone mineral density in teenage runners. J Endocrinol 1995; 42: 271–6 Okano H, Mizunuma H, Soda M, et al. Effects of exercise and amenorrhea on bone mineral density in teenage runners. J Endocrinol 1995; 42: 271–6
265.
Zurück zum Zitat Myburgh KH, Hutchins J, Fataar AB, et al. Low bone density is an aetiologic factor for stress fractures in athletes. Ann Intern Med 1990; 113: 754–9PubMed Myburgh KH, Hutchins J, Fataar AB, et al. Low bone density is an aetiologic factor for stress fractures in athletes. Ann Intern Med 1990; 113: 754–9PubMed
266.
Zurück zum Zitat Rencken ML, Chesnut III CH, Drinkwater BL. Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 1996; 276: 238–40PubMedCrossRef Rencken ML, Chesnut III CH, Drinkwater BL. Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 1996; 276: 238–40PubMedCrossRef
267.
Zurück zum Zitat Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 2003; 88: 297–311PubMedCrossRef Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 2003; 88: 297–311PubMedCrossRef
268.
Zurück zum Zitat Loucks AB, Heath EM. Dietary restriction reduces luteinizing hormone (LH) pulse frequency during waking hours and increases LH pulse amplitude during sleep in young menstruating women. J Clin Endocrinol Metab 1994; 78: 910–5PubMedCrossRef Loucks AB, Heath EM. Dietary restriction reduces luteinizing hormone (LH) pulse frequency during waking hours and increases LH pulse amplitude during sleep in young menstruating women. J Clin Endocrinol Metab 1994; 78: 910–5PubMedCrossRef
269.
Zurück zum Zitat Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol 1998; 84: 37–46PubMed Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol 1998; 84: 37–46PubMed
270.
Zurück zum Zitat Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993; 77: 770–5PubMedCrossRef Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993; 77: 770–5PubMedCrossRef
271.
Zurück zum Zitat Young N, Formica C, Szmuckler G, et al. Bone density at weight-bearing and nonweight bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 1994; 78: 449–54PubMedCrossRef Young N, Formica C, Szmuckler G, et al. Bone density at weight-bearing and nonweight bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 1994; 78: 449–54PubMedCrossRef
272.
Zurück zum Zitat Drinkwater BL, Bruemner B, Chesnut III CH. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990; 263: 545–8PubMedCrossRef Drinkwater BL, Bruemner B, Chesnut III CH. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990; 263: 545–8PubMedCrossRef
273.
Zurück zum Zitat Drinkwater BL, Nilson K, Ott S, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA 1986; 256: 380–2PubMedCrossRef Drinkwater BL, Nilson K, Ott S, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA 1986; 256: 380–2PubMedCrossRef
274.
Zurück zum Zitat Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int 1997; 7: 311–5PubMedCrossRef Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int 1997; 7: 311–5PubMedCrossRef
275.
Zurück zum Zitat Gulekli B, Davies MC, Jacobs HS. Effect of treatment on established osteoporosis in young women with amenorrhea. Clin Endocrinol 1994; 41: 275–81CrossRef Gulekli B, Davies MC, Jacobs HS. Effect of treatment on established osteoporosis in young women with amenorrhea. Clin Endocrinol 1994; 41: 275–81CrossRef
276.
Zurück zum Zitat Haenggi W, Casez JP, Birkhaeuser MH, et al. Bone mineral density in young women with long-standing amenorrhea: limited effect of hormone replacement therapy with ethinylestradiol and desogestrel. Osteoporos Int 1994; 4: 99–103PubMedCrossRef Haenggi W, Casez JP, Birkhaeuser MH, et al. Bone mineral density in young women with long-standing amenorrhea: limited effect of hormone replacement therapy with ethinylestradiol and desogestrel. Osteoporos Int 1994; 4: 99–103PubMedCrossRef
277.
Zurück zum Zitat Jonnavithula S, Warren MP, Fox RP, et al. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol 1993; 81: 669–74PubMed Jonnavithula S, Warren MP, Fox RP, et al. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol 1993; 81: 669–74PubMed
278.
Zurück zum Zitat Warren MP, Brooks-Gunn J, Fox RP, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 2003; 80: 398–404PubMedCrossRef Warren MP, Brooks-Gunn J, Fox RP, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 2003; 80: 398–404PubMedCrossRef
279.
Zurück zum Zitat Nelson ME, Meredith CN, Dawson-Hughes B, et al. Hormone and bone mineral status in endurance-trained and sedentary postmenopausal women. J Clin Endocrinol Metab 1988; 66: 927–33PubMedCrossRef Nelson ME, Meredith CN, Dawson-Hughes B, et al. Hormone and bone mineral status in endurance-trained and sedentary postmenopausal women. J Clin Endocrinol Metab 1988; 66: 927–33PubMedCrossRef
280.
Zurück zum Zitat Dawson-Hughes B, Shipp C, Sadowski L, et al. Bone density of the radius, spine and hip in relation to percent ideal body weight in postmenopausal women. Calcif Tissue Int 1987; 40: 310–4PubMedCrossRef Dawson-Hughes B, Shipp C, Sadowski L, et al. Bone density of the radius, spine and hip in relation to percent ideal body weight in postmenopausal women. Calcif Tissue Int 1987; 40: 310–4PubMedCrossRef
281.
Zurück zum Zitat Womersley J, Durnin JVGA, Boddy K, et al. Influence of muscular development, obesity, and age on the fat-free mass of adults. J Appl Physiol 1976; 41: 223–9PubMed Womersley J, Durnin JVGA, Boddy K, et al. Influence of muscular development, obesity, and age on the fat-free mass of adults. J Appl Physiol 1976; 41: 223–9PubMed
282.
Zurück zum Zitat Foster GD, Wadden TA, Mullen JL, et al. Resting energy expenditure, body composition, and excess weight in the obese. Metabolism 1988; 37: 467–72PubMedCrossRef Foster GD, Wadden TA, Mullen JL, et al. Resting energy expenditure, body composition, and excess weight in the obese. Metabolism 1988; 37: 467–72PubMedCrossRef
283.
Zurück zum Zitat Longcope C, Pratt JH, Schneider SH, et al. Aromatization of androgens by muscle and adipose tissue in vivo. J Clin Endocrinol Metab 1978; 46: 146–52PubMedCrossRef Longcope C, Pratt JH, Schneider SH, et al. Aromatization of androgens by muscle and adipose tissue in vivo. J Clin Endocrinol Metab 1978; 46: 146–52PubMedCrossRef
284.
Zurück zum Zitat Nimrod A, Ryan KJ. Aromatization of androgens by human abdominal and breast fat tissue. J Clin Endocrinol Metab 1975; 40: 367–72PubMedCrossRef Nimrod A, Ryan KJ. Aromatization of androgens by human abdominal and breast fat tissue. J Clin Endocrinol Metab 1975; 40: 367–72PubMedCrossRef
285.
Zurück zum Zitat Frisch RE, Canick JA, Tulchinsky D. Human fatty marrow aromatizes androgen to estrogen. J Clin Endocrinol Metab 1980; 51: 394–6PubMedCrossRef Frisch RE, Canick JA, Tulchinsky D. Human fatty marrow aromatizes androgen to estrogen. J Clin Endocrinol Metab 1980; 51: 394–6PubMedCrossRef
286.
Zurück zum Zitat Nawata H, Tanaka S, Tanaka S, et al. Aromatase in bone cell: association with osteoporosis in postmenopausal women. J Steroid Biochem Mol Biol 1995; 53: 165–74PubMedCrossRef Nawata H, Tanaka S, Tanaka S, et al. Aromatase in bone cell: association with osteoporosis in postmenopausal women. J Steroid Biochem Mol Biol 1995; 53: 165–74PubMedCrossRef
287.
Zurück zum Zitat Institute of Medicine, National Academy of Sciences, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Food and Nutrition Board: dietary reference intakes for for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press, 1997 Institute of Medicine, National Academy of Sciences, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Food and Nutrition Board: dietary reference intakes for for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press, 1997
288.
Zurück zum Zitat Alaimo K, McDowell MA, Breitel RR, et al. Dietary intake of vitamins, minerals, and fiber in persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, phase 1 1988–1991. Adv Data 1994 Nov 14; (258): 1–28PubMed Alaimo K, McDowell MA, Breitel RR, et al. Dietary intake of vitamins, minerals, and fiber in persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, phase 1 1988–1991. Adv Data 1994 Nov 14; (258): 1–28PubMed
289.
Zurück zum Zitat Eck LH, Hackett-Renner C. Calcium intake in youth: Sex, age, and racial differences in NHANES II. Prev Med 1992; 21: 473–82PubMedCrossRef Eck LH, Hackett-Renner C. Calcium intake in youth: Sex, age, and racial differences in NHANES II. Prev Med 1992; 21: 473–82PubMedCrossRef
290.
Zurück zum Zitat Nicklas TA. Calcium intake trends and health consequences from childhood to adulthood. J Am Coll Nutr 2003; 22: 340–56PubMed Nicklas TA. Calcium intake trends and health consequences from childhood to adulthood. J Am Coll Nutr 2003; 22: 340–56PubMed
291.
Zurück zum Zitat Looker AC, Harris TB, Madans JH, et al. Dietary calcium and hip fracture risk: the NHANES I epidemiologic follow-up study. Osteoporos Int 1993; 3: 177–84PubMedCrossRef Looker AC, Harris TB, Madans JH, et al. Dietary calcium and hip fracture risk: the NHANES I epidemiologic follow-up study. Osteoporos Int 1993; 3: 177–84PubMedCrossRef
292.
Zurück zum Zitat Nordin B, Horsman A, Crilly R, et al. Treatment of spinal osteoporosis in postmenopausal women. BMJ 1980; 280: 451–4PubMedCrossRef Nordin B, Horsman A, Crilly R, et al. Treatment of spinal osteoporosis in postmenopausal women. BMJ 1980; 280: 451–4PubMedCrossRef
293.
Zurück zum Zitat Riggs B, Seeman E, Hodgson S, et al. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. N Engl J Med 1982; 306: 446–50PubMedCrossRef Riggs B, Seeman E, Hodgson S, et al. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. N Engl J Med 1982; 306: 446–50PubMedCrossRef
294.
Zurück zum Zitat Bonjour JP, Carrie AL, Ferrari S, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997; 99: 1287–94PubMedCrossRef Bonjour JP, Carrie AL, Ferrari S, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997; 99: 1287–94PubMedCrossRef
295.
Zurück zum Zitat Dibba B, Prentice A, Ceesay M, et al. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 2000; 71: 544–9PubMed Dibba B, Prentice A, Ceesay M, et al. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 2000; 71: 544–9PubMed
296.
Zurück zum Zitat Johnston Jr CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327: 82–7PubMedCrossRef Johnston Jr CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327: 82–7PubMedCrossRef
297.
Zurück zum Zitat Lee WT, Leung SS, Wang SH, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60: 744–50PubMed Lee WT, Leung SS, Wang SH, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60: 744–50PubMed
298.
Zurück zum Zitat Lee WT, Leung SS, Leung DM, et al. Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 1997; 86: 570–6PubMedCrossRef Lee WT, Leung SS, Leung DM, et al. Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 1997; 86: 570–6PubMedCrossRef
299.
Zurück zum Zitat Ruiz JC, Mandel C, Garabedian M. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Miner Res 1995; 10: 675–82PubMedCrossRef Ruiz JC, Mandel C, Garabedian M. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Miner Res 1995; 10: 675–82PubMedCrossRef
300.
Zurück zum Zitat Rozen GS, Rennert G, Rennert HS, et al. Calcium intake and bone mass development among Israeli adolescent girls. J Am Coll Nutr 2001; 20: 219–24PubMed Rozen GS, Rennert G, Rennert HS, et al. Calcium intake and bone mass development among Israeli adolescent girls. J Am Coll Nutr 2001; 20: 219–24PubMed
301.
Zurück zum Zitat Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270: 841–4PubMedCrossRef Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270: 841–4PubMedCrossRef
302.
Zurück zum Zitat Lloyd T, Martel JK, Rollings N, et al. The effect of calcium supplementation and Tanner stage on bone density, content and area in teenage women. Osteoporos Int 1996; 6: 276–83PubMedCrossRef Lloyd T, Martel JK, Rollings N, et al. The effect of calcium supplementation and Tanner stage on bone density, content and area in teenage women. Osteoporos Int 1996; 6: 276–83PubMedCrossRef
303.
Zurück zum Zitat Nowson CA, Green RM, Hopper JL, et al. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporos Int 1997; 7: 219–25PubMedCrossRef Nowson CA, Green RM, Hopper JL, et al. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporos Int 1997; 7: 219–25PubMedCrossRef
304.
Zurück zum Zitat Rozen GS, Rennert G, Dodiuk-Gad RP, et al. Calcium supplementation provides an extended window of opportunity for bone mass accretion after menarche. Am J Clin Nutr 2003; 78: 993–8PubMed Rozen GS, Rennert G, Dodiuk-Gad RP, et al. Calcium supplementation provides an extended window of opportunity for bone mass accretion after menarche. Am J Clin Nutr 2003; 78: 993–8PubMed
305.
Zurück zum Zitat Baran D, Sorensen A, Grimes J, et al. Dietary modification with dairy products for preventing vertebral bone loss in premenopausal women: a three year prospective study. J Clin Endocrinol Metab 1990; 70: 264–70PubMedCrossRef Baran D, Sorensen A, Grimes J, et al. Dietary modification with dairy products for preventing vertebral bone loss in premenopausal women: a three year prospective study. J Clin Endocrinol Metab 1990; 70: 264–70PubMedCrossRef
306.
Zurück zum Zitat Friedlander AL, Genant HK, Sadowsky S, et al. A two-year program of aerobic weight training enhances bone mineral density of young women. J Bone Miner Res 1995; 10: 574–85PubMedCrossRef Friedlander AL, Genant HK, Sadowsky S, et al. A two-year program of aerobic weight training enhances bone mineral density of young women. J Bone Miner Res 1995; 10: 574–85PubMedCrossRef
307.
Zurück zum Zitat Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991; 53: 132–42PubMed Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991; 53: 132–42PubMed
308.
Zurück zum Zitat Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 1986; 44: 863–76PubMed Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 1986; 44: 863–76PubMed
309.
Zurück zum Zitat Rus B, Thomsen K, Christiansen C. Does calcium supplementation prevent postmenopausal bone loss? N Engl J Med 1991, 177 Rus B, Thomsen K, Christiansen C. Does calcium supplementation prevent postmenopausal bone loss? N Engl J Med 1991, 177
310.
Zurück zum Zitat Smith EL, Gilligan C, Smith PE, et al. Calcium supplementation and bone loss in middle-aged women. Am J Clin Nutr 1989; 50: 833–42PubMed Smith EL, Gilligan C, Smith PE, et al. Calcium supplementation and bone loss in middle-aged women. Am J Clin Nutr 1989; 50: 833–42PubMed
311.
Zurück zum Zitat Elders PJM, Netelenbos JC, Lips P, et al. Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. J Clin Endocrinol Metab 1991; 73: 53–540CrossRef Elders PJM, Netelenbos JC, Lips P, et al. Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. J Clin Endocrinol Metab 1991; 73: 53–540CrossRef
312.
Zurück zum Zitat Cumming RG. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int 1990; 47: 194–201PubMedCrossRef Cumming RG. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int 1990; 47: 194–201PubMedCrossRef
313.
Zurück zum Zitat Welten DC, Kemper HCG, Post GB, et al. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr 1995; 125: 2802–13PubMed Welten DC, Kemper HCG, Post GB, et al. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr 1995; 125: 2802–13PubMed
314.
Zurück zum Zitat Dhonukshe-Rutten RAM, Lips M, deJong N, et al. Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 2003; 133: 801–7PubMed Dhonukshe-Rutten RAM, Lips M, deJong N, et al. Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 2003; 133: 801–7PubMed
315.
Zurück zum Zitat Macdonald HM, New SA, Golden MHN. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of detrimental effect of fatty acids. Am J Clin Nutr 2004; 79: 155–65PubMed Macdonald HM, New SA, Golden MHN. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of detrimental effect of fatty acids. Am J Clin Nutr 2004; 79: 155–65PubMed
316.
Zurück zum Zitat Blimkie CJR, Rice S, Webber CE, et al. Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol 1996; 74: 1025–103PubMedCrossRef Blimkie CJR, Rice S, Webber CE, et al. Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol 1996; 74: 1025–103PubMedCrossRef
317.
Zurück zum Zitat Mei J, Yeung SSC, Kung AWC. High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 2001; 86: 5217–21PubMedCrossRef Mei J, Yeung SSC, Kung AWC. High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 2001; 86: 5217–21PubMedCrossRef
318.
Zurück zum Zitat New SA, MacDonald H, Campbell MK, et al. Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 2004; 79: 131–8PubMed New SA, MacDonald H, Campbell MK, et al. Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 2004; 79: 131–8PubMed
319.
Zurück zum Zitat Hert J, Liskova M, Landa J. Reaction of bone to mechanical stimuli I: continuous and intermittent loading of tibia in rabbit. Folia Morphol (Praha) 1971; 19: 290–300 Hert J, Liskova M, Landa J. Reaction of bone to mechanical stimuli I: continuous and intermittent loading of tibia in rabbit. Folia Morphol (Praha) 1971; 19: 290–300
320.
Zurück zum Zitat Lanyon LE, Rubin CT. Static vs dynamic loads as a stimulus for bone remodeling. J Biomech 1984; 15: 767–81 Lanyon LE, Rubin CT. Static vs dynamic loads as a stimulus for bone remodeling. J Biomech 1984; 15: 767–81
321.
Zurück zum Zitat Liskova M, Hert J. Reaction of bone to mechanical stimuli: Part 2. periosteal and endosteal reaction to tibial diaphysis in rabbit to intermittent loading. Folia Morphol (Praha) 1971; 19: 301–17 Liskova M, Hert J. Reaction of bone to mechanical stimuli: Part 2. periosteal and endosteal reaction to tibial diaphysis in rabbit to intermittent loading. Folia Morphol (Praha) 1971; 19: 301–17
322.
Zurück zum Zitat Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1984; 66A: 397–402PubMed Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1984; 66A: 397–402PubMed
323.
Zurück zum Zitat Duncan CS, Blimkie CJR, Cowell CT, et al. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc 2002; 34: 286–94PubMedCrossRef Duncan CS, Blimkie CJR, Cowell CT, et al. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc 2002; 34: 286–94PubMedCrossRef
324.
Zurück zum Zitat Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001; 16: 148–56PubMedCrossRef Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001; 16: 148–56PubMedCrossRef
325.
Zurück zum Zitat Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr 2002; 141: 357–62PubMedCrossRef Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr 2002; 141: 357–62PubMedCrossRef
326.
Zurück zum Zitat Laing EM, Massoni JA, Nichols-Richardson SM, et al. A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr 2002; 141: 211–6PubMedCrossRef Laing EM, Massoni JA, Nichols-Richardson SM, et al. A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr 2002; 141: 211–6PubMedCrossRef
327.
Zurück zum Zitat Haapasalo H, Kannus P, Sievanen H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998; 13: 310–9PubMedCrossRef Haapasalo H, Kannus P, Sievanen H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998; 13: 310–9PubMedCrossRef
328.
Zurück zum Zitat Heinonen A, Sievänen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 2000; 11: 1010–7PubMedCrossRef Heinonen A, Sievänen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 2000; 11: 1010–7PubMedCrossRef
329.
Zurück zum Zitat MacKelvie KJ, McKay HA, Khan KM, et al. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 2001; 139: 501–8PubMedCrossRef MacKelvie KJ, McKay HA, Khan KM, et al. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 2001; 139: 501–8PubMedCrossRef
330.
Zurück zum Zitat McKay HA, Petit MA, Schutz RW, et al. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and pubescent children. J Pediatr 2000; 136: 156–62PubMedCrossRef McKay HA, Petit MA, Schutz RW, et al. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and pubescent children. J Pediatr 2000; 136: 156–62PubMedCrossRef
331.
Zurück zum Zitat Morris FL, Naughton GA, Gibbs JL, et al. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 1997; 12: 1453–62PubMedCrossRef Morris FL, Naughton GA, Gibbs JL, et al. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 1997; 12: 1453–62PubMedCrossRef
332.
Zurück zum Zitat Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr 2001; 139: 494–500PubMedCrossRef Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr 2001; 139: 494–500PubMedCrossRef
333.
Zurück zum Zitat Petit MA, McKay HA, MacKelvie KI, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 2002; 17: 363–72PubMedCrossRef Petit MA, McKay HA, MacKelvie KI, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 2002; 17: 363–72PubMedCrossRef
334.
Zurück zum Zitat Slemenda CW, Reister TK, Hui SL, et al. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 1994; 125: 210–07 Slemenda CW, Reister TK, Hui SL, et al. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 1994; 125: 210–07
335.
Zurück zum Zitat Helge EW, Kanstrup I-L. Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc 2002; 34: 174–80PubMedCrossRef Helge EW, Kanstrup I-L. Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc 2002; 34: 174–80PubMedCrossRef
336.
Zurück zum Zitat Taafe DR, Snow-Harter C, Connolly DA, et al. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res 1995; 10: 586–93CrossRef Taafe DR, Snow-Harter C, Connolly DA, et al. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res 1995; 10: 586–93CrossRef
337.
Zurück zum Zitat Kontulainen S, Kannus P, Haapasalo H, et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res 2001; 16: 195–201PubMedCrossRef Kontulainen S, Kannus P, Haapasalo H, et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res 2001; 16: 195–201PubMedCrossRef
338.
Zurück zum Zitat Talmage RV, Stinnett SS, Landwehr JT, et al. Age-related loss of bone mineral density in non-athletic and athletic women. Bone Miner 1986; 1: 115–25PubMed Talmage RV, Stinnett SS, Landwehr JT, et al. Age-related loss of bone mineral density in non-athletic and athletic women. Bone Miner 1986; 1: 115–25PubMed
339.
Zurück zum Zitat Haapasalo H, Kannus P, Sievanen H, et al. Long-term unilateral loading and bone mineral density in female squash players. Calcif Tissue Int 1994; 54: 249–55PubMedCrossRef Haapasalo H, Kannus P, Sievanen H, et al. Long-term unilateral loading and bone mineral density in female squash players. Calcif Tissue Int 1994; 54: 249–55PubMedCrossRef
340.
Zurück zum Zitat Heinonen A, Sievänen H, Kannus P, et al. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women. J Bone Miner Res 1996; 11: 490–501PubMedCrossRef Heinonen A, Sievänen H, Kannus P, et al. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women. J Bone Miner Res 1996; 11: 490–501PubMedCrossRef
341.
Zurück zum Zitat Heinonen A, Oja P, Kannus P, et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 1995; 17: 197–203PubMedCrossRef Heinonen A, Oja P, Kannus P, et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 1995; 17: 197–203PubMedCrossRef
342.
Zurück zum Zitat Taaffe DR, Robinson TL, Snow CM, et al. High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 1997; 12: 255–60PubMedCrossRef Taaffe DR, Robinson TL, Snow CM, et al. High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 1997; 12: 255–60PubMedCrossRef
343.
Zurück zum Zitat Fehling PC, Alekel L, Clasey J, et al. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995; 17: 205–10PubMedCrossRef Fehling PC, Alekel L, Clasey J, et al. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995; 17: 205–10PubMedCrossRef
344.
Zurück zum Zitat Wolman RL, Fauman L, Clark P, et al. Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Ann Rheum Dis 1991; 50: 487–9PubMedCrossRef Wolman RL, Fauman L, Clark P, et al. Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Ann Rheum Dis 1991; 50: 487–9PubMedCrossRef
345.
Zurück zum Zitat Creighton DL, Morgan AL, Boardley D, et al. Weight-bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 2001; 90: 565–70PubMed Creighton DL, Morgan AL, Boardley D, et al. Weight-bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 2001; 90: 565–70PubMed
346.
Zurück zum Zitat Heinonen A, Oja P, Kannus P, et al. Bone mineral density of female athletes in different sports. Bone Miner 1993; 23: 1–14PubMedCrossRef Heinonen A, Oja P, Kannus P, et al. Bone mineral density of female athletes in different sports. Bone Miner 1993; 23: 1–14PubMedCrossRef
347.
Zurück zum Zitat Snow-Harter C, Bouxsein ML, Lewis BT, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res 1992; 7: 761–9PubMedCrossRef Snow-Harter C, Bouxsein ML, Lewis BT, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res 1992; 7: 761–9PubMedCrossRef
348.
Zurück zum Zitat Kirk S, Sharp CF, Elbaum N, et al. Effect of long distance running on bone mass in women. J Bone Miner Res 1989; 4: 515–22PubMedCrossRef Kirk S, Sharp CF, Elbaum N, et al. Effect of long distance running on bone mass in women. J Bone Miner Res 1989; 4: 515–22PubMedCrossRef
349.
Zurück zum Zitat Alekel L, Clasey JL, Fehling PC, et al. Contributions of exercise, body composition, and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 1995; 27: 1477–85PubMed Alekel L, Clasey JL, Fehling PC, et al. Contributions of exercise, body composition, and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 1995; 27: 1477–85PubMed
350.
Zurück zum Zitat Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 2000; 15: 2495–503PubMedCrossRef Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 2000; 15: 2495–503PubMedCrossRef
351.
Zurück zum Zitat Orwoll ES, Ferar J, Oviatt SK, et al. The relationship of swimming exercise to bone mass in men and women. Arch Intern Med 1999; 149: 2197–200CrossRef Orwoll ES, Ferar J, Oviatt SK, et al. The relationship of swimming exercise to bone mass in men and women. Arch Intern Med 1999; 149: 2197–200CrossRef
352.
Zurück zum Zitat Notelovitz M, Martin D, Tesar R, et al. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991; 6: 583–90PubMedCrossRef Notelovitz M, Martin D, Tesar R, et al. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991; 6: 583–90PubMedCrossRef
353.
Zurück zum Zitat Pocock NA, Eisman JA, Yeates MG, et al. Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 1986; 78: 618–21PubMedCrossRef Pocock NA, Eisman JA, Yeates MG, et al. Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 1986; 78: 618–21PubMedCrossRef
354.
Zurück zum Zitat Aloia JF, Cohn SH, Ostuni JA, et al. Prevention of involutional bone loss by exercise. Ann Intern Med 1978; 89: 356–8PubMed Aloia JF, Cohn SH, Ostuni JA, et al. Prevention of involutional bone loss by exercise. Ann Intern Med 1978; 89: 356–8PubMed
355.
Zurück zum Zitat Brewer V, Meyer BM, Keele MS, et al. Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc 1983; 15: 445–9PubMed Brewer V, Meyer BM, Keele MS, et al. Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc 1983; 15: 445–9PubMed
356.
Zurück zum Zitat Aloia JF, Waswani AN, Yeh JK, et al. Postmenopausal bone mass is related to physical activity. Arch Intern Med 1988; 148: 121–3PubMedCrossRef Aloia JF, Waswani AN, Yeh JK, et al. Postmenopausal bone mass is related to physical activity. Arch Intern Med 1988; 148: 121–3PubMedCrossRef
357.
Zurück zum Zitat Zhang J, Feldblum PJ, Fortnej JA. Moderate physical activity and bone density among perimenopausal women. Am J Public Health 1992; 82: 736–8PubMedCrossRef Zhang J, Feldblum PJ, Fortnej JA. Moderate physical activity and bone density among perimenopausal women. Am J Public Health 1992; 82: 736–8PubMedCrossRef
358.
Zurück zum Zitat Sowers M, Crutchfield M, Bandekar R, et al. Bone mineral density and its change in pre- and perimenopausal white women: the Michigan Health Study. J Bone Miner Res 1998; 13: 1134–40PubMedCrossRef Sowers M, Crutchfield M, Bandekar R, et al. Bone mineral density and its change in pre- and perimenopausal white women: the Michigan Health Study. J Bone Miner Res 1998; 13: 1134–40PubMedCrossRef
359.
Zurück zum Zitat Sowers MR, Greendale GA, Bondarenko I, et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003; 14: 191–7PubMedCrossRef Sowers MR, Greendale GA, Bondarenko I, et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003; 14: 191–7PubMedCrossRef
360.
Zurück zum Zitat Sowers MR, Finkelstein JS, Ettinger B, et al. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int 2003; 14: 44–52PubMedCrossRef Sowers MR, Finkelstein JS, Ettinger B, et al. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int 2003; 14: 44–52PubMedCrossRef
361.
Zurück zum Zitat Heaney RP. Estrogen-calcium interactions in the postmenopause: a quantitative description. Bone Miner 1990; 11: 67–84PubMedCrossRef Heaney RP. Estrogen-calcium interactions in the postmenopause: a quantitative description. Bone Miner 1990; 11: 67–84PubMedCrossRef
362.
Zurück zum Zitat Mazess RB, Barden H. Bone density of the spine and femur in adult white females. Calcif Tissue Int 1999; 65: 91–9PubMedCrossRef Mazess RB, Barden H. Bone density of the spine and femur in adult white females. Calcif Tissue Int 1999; 65: 91–9PubMedCrossRef
363.
Zurück zum Zitat Sowers MR, Clark M, Hollis B, et al. Radial bone mineral density in pre- and perimenopausal women: a prospective study of rates and risk factors for loss. J Bone Miner Res 1992; 7: 647–57PubMedCrossRef Sowers MR, Clark M, Hollis B, et al. Radial bone mineral density in pre- and perimenopausal women: a prospective study of rates and risk factors for loss. J Bone Miner Res 1992; 7: 647–57PubMedCrossRef
364.
Zurück zum Zitat Baran DT. Magnitude and determinants of premenopausal bone loss. Osteoporos Int 1994; S1: S31–4CrossRef Baran DT. Magnitude and determinants of premenopausal bone loss. Osteoporos Int 1994; S1: S31–4CrossRef
365.
Zurück zum Zitat Lofman O, Larsson L, Ross L, et al. Bone mineral density in normal Swedish women. Bone 1997; 20: 167–74PubMedCrossRef Lofman O, Larsson L, Ross L, et al. Bone mineral density in normal Swedish women. Bone 1997; 20: 167–74PubMedCrossRef
366.
Zurück zum Zitat Recker RR, Lappe JM, Davies M, et al. Change in bone mass immediately before menopause. J Bone Miner Res 1992; 7: 857–62PubMedCrossRef Recker RR, Lappe JM, Davies M, et al. Change in bone mass immediately before menopause. J Bone Miner Res 1992; 7: 857–62PubMedCrossRef
367.
Zurück zum Zitat Riggs BL, Wehner HW, Dunn WL, et al. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 1981; 67: 328–35PubMedCrossRef Riggs BL, Wehner HW, Dunn WL, et al. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 1981; 67: 328–35PubMedCrossRef
368.
Zurück zum Zitat Riggs BL, Wehner HW, Melton J, et al. Rates of bone loss in the appendicular and axial skeletons of women. J Clin Invest 1986; 77: 1487–91PubMedCrossRef Riggs BL, Wehner HW, Melton J, et al. Rates of bone loss in the appendicular and axial skeletons of women. J Clin Invest 1986; 77: 1487–91PubMedCrossRef
369.
Zurück zum Zitat Lindsay R, Hart DM, Aitkin JM, et al. Long-term prevention of osteoporosis by oestrogen: evidence for an increased bone mass after delayed onset of treatment. Lancet 1976; I: 1038–41CrossRef Lindsay R, Hart DM, Aitkin JM, et al. Long-term prevention of osteoporosis by oestrogen: evidence for an increased bone mass after delayed onset of treatment. Lancet 1976; I: 1038–41CrossRef
370.
Zurück zum Zitat Lindsay R, Maclean A, Kraszewski A, et al. Bone response to termination of estrogen treatment. Lancet 1978; I: 1325–7CrossRef Lindsay R, Maclean A, Kraszewski A, et al. Bone response to termination of estrogen treatment. Lancet 1978; I: 1325–7CrossRef
371.
Zurück zum Zitat Nordin BE, Need AG, Chatterton BE, et al. The relative contributions of age and years since menopause to postmenopausal bone loss. J Clin Endocrinol Metab 1990; 70: 83–8PubMedCrossRef Nordin BE, Need AG, Chatterton BE, et al. The relative contributions of age and years since menopause to postmenopausal bone loss. J Clin Endocrinol Metab 1990; 70: 83–8PubMedCrossRef
372.
Zurück zum Zitat Recker RR, Saville PD, Heany RP. Effect of estrogens and calcium carbonate on bone loss in postmenopausal women. Ann Intern Med 1977; 87: 649–55PubMed Recker RR, Saville PD, Heany RP. Effect of estrogens and calcium carbonate on bone loss in postmenopausal women. Ann Intern Med 1977; 87: 649–55PubMed
373.
Zurück zum Zitat Slemenda CW, Hui SL, Longcope C, et al. Sex steroids and bone mass. J Clin Invest 1987; 80: 1261–9PubMedCrossRef Slemenda CW, Hui SL, Longcope C, et al. Sex steroids and bone mass. J Clin Invest 1987; 80: 1261–9PubMedCrossRef
374.
Zurück zum Zitat Slemenda CW, Longcope C, Peacock M, et al. Sex steroids, bone mass, and bone loss: a prospective study of pre-, peri and postmenopausal women. J Clin Invest 1996; 97: 14–21PubMedCrossRef Slemenda CW, Longcope C, Peacock M, et al. Sex steroids, bone mass, and bone loss: a prospective study of pre-, peri and postmenopausal women. J Clin Invest 1996; 97: 14–21PubMedCrossRef
375.
Zurück zum Zitat Atkinson PJ. Changes in resorption spaces in femoral cortical bone with age. J Pathol Bacteriol 1965; 89: 173–6PubMedCrossRef Atkinson PJ. Changes in resorption spaces in femoral cortical bone with age. J Pathol Bacteriol 1965; 89: 173–6PubMedCrossRef
376.
Zurück zum Zitat Peacock M, Liu G, Carey M, et al. Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporos Int 1998; 8: 231–9PubMedCrossRef Peacock M, Liu G, Carey M, et al. Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporos Int 1998; 8: 231–9PubMedCrossRef
377.
Zurück zum Zitat Bousson V, Meunier A, Bergot C, et al. Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 2001; 16: 1308–17PubMedCrossRef Bousson V, Meunier A, Bergot C, et al. Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 2001; 16: 1308–17PubMedCrossRef
378.
Zurück zum Zitat Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop 1987; 215: 260–71PubMed Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop 1987; 215: 260–71PubMed
379.
Zurück zum Zitat Atkinson PJ. Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1967; 1: 24–32PubMedCrossRef Atkinson PJ. Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1967; 1: 24–32PubMedCrossRef
380.
Zurück zum Zitat Aaron JE, Shore PA, Shore RC, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture -II: three-dimensional histology. Bone 2000; 27: 277–82PubMedCrossRef Aaron JE, Shore PA, Shore RC, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture -II: three-dimensional histology. Bone 2000; 27: 277–82PubMedCrossRef
381.
Zurück zum Zitat Dempster DM. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 2000; 15: 20–3PubMedCrossRef Dempster DM. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 2000; 15: 20–3PubMedCrossRef
382.
Zurück zum Zitat Rudman D, Kutner MH, Rogers CM, et al. Impaired growth hormone secretion in the adult population. J Clin Invest 1981; 67: 1361–9PubMedCrossRef Rudman D, Kutner MH, Rogers CM, et al. Impaired growth hormone secretion in the adult population. J Clin Invest 1981; 67: 1361–9PubMedCrossRef
383.
Zurück zum Zitat Veldhuis JD, Iranmanesh A, Lizzaralde G, et al. Combined deficits in the somatoropic and gonadotropic axes in healthy older men: an appraisal of neuroendocrine mechanisms by deconvolution analysis. Neurobiol Aging 1994; 15: 509–17PubMedCrossRef Veldhuis JD, Iranmanesh A, Lizzaralde G, et al. Combined deficits in the somatoropic and gonadotropic axes in healthy older men: an appraisal of neuroendocrine mechanisms by deconvolution analysis. Neurobiol Aging 1994; 15: 509–17PubMedCrossRef
384.
Zurück zum Zitat Rico H, Del Rio A, Vila T, et al. The role of growth hormone in postmenopausal osteoporosis. Arch Intern Med 1979; 139: 1263–5PubMedCrossRef Rico H, Del Rio A, Vila T, et al. The role of growth hormone in postmenopausal osteoporosis. Arch Intern Med 1979; 139: 1263–5PubMedCrossRef
385.
Zurück zum Zitat Johansson AG, Burman P, Westermark K, et al. The bone mineral density in acquired growth hormone deficiency correlates with circulating levels of insulin-like growth factor I. J Intern Med 1992; 232: 447–52PubMedCrossRef Johansson AG, Burman P, Westermark K, et al. The bone mineral density in acquired growth hormone deficiency correlates with circulating levels of insulin-like growth factor I. J Intern Med 1992; 232: 447–52PubMedCrossRef
386.
Zurück zum Zitat Romagnoli E, Minisola S, Carnevale V, et al. Effect of estrogen deficiency on IGF-I plasma levels: relationship with bone mineral density in perimenopausal women. Calcif Tissue Int 1993; 53: 1–6PubMedCrossRef Romagnoli E, Minisola S, Carnevale V, et al. Effect of estrogen deficiency on IGF-I plasma levels: relationship with bone mineral density in perimenopausal women. Calcif Tissue Int 1993; 53: 1–6PubMedCrossRef
387.
Zurück zum Zitat Wuster C, Blum WF, Schlemilch S, et al. Decreased serum levels of insulin-like growth factors and IGF binding protein 3 in osteoporosis. J Intern Med 1993; 234: 249–55PubMedCrossRef Wuster C, Blum WF, Schlemilch S, et al. Decreased serum levels of insulin-like growth factors and IGF binding protein 3 in osteoporosis. J Intern Med 1993; 234: 249–55PubMedCrossRef
388.
Zurück zum Zitat Ravn P, Overgaaerd K, Spencer EM, et al. Insulin-like growth factors I and II in healthy women with and without established oseoporosis. Eur J Endocrinol 1995; 132: 313–9PubMedCrossRef Ravn P, Overgaaerd K, Spencer EM, et al. Insulin-like growth factors I and II in healthy women with and without established oseoporosis. Eur J Endocrinol 1995; 132: 313–9PubMedCrossRef
389.
Zurück zum Zitat Reed BY, Serwekh JE, Sakhee K, et al. Serum IGF-I is low and correlated with osteoblastic surface in idiopathic osteoporosis. J Bone Miner Res 1995; 10: 1218–24PubMedCrossRef Reed BY, Serwekh JE, Sakhee K, et al. Serum IGF-I is low and correlated with osteoblastic surface in idiopathic osteoporosis. J Bone Miner Res 1995; 10: 1218–24PubMedCrossRef
390.
Zurück zum Zitat Boonen S, Lesaffre E, Dequeker J, et al. Relationship between baseline insulin-like growth factor-I (IGF-I) and femoral bone density in women aged over 70 years: potential implications for the prevention of age-related bone loss. J Am Geriatr Soc 1996; 44: 1301–6PubMed Boonen S, Lesaffre E, Dequeker J, et al. Relationship between baseline insulin-like growth factor-I (IGF-I) and femoral bone density in women aged over 70 years: potential implications for the prevention of age-related bone loss. J Am Geriatr Soc 1996; 44: 1301–6PubMed
391.
Zurück zum Zitat Kurland ES, Rosen CJ, Cosman F, et al. Insulin-like growh factor-I in men with idiopathic ostoporosis. J Clin Endocrinol Metab 1997; 82: 2799–805PubMedCrossRef Kurland ES, Rosen CJ, Cosman F, et al. Insulin-like growh factor-I in men with idiopathic ostoporosis. J Clin Endocrinol Metab 1997; 82: 2799–805PubMedCrossRef
392.
Zurück zum Zitat Fall C, Hindmarsh P, Dennison E, et al. Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 1998; 83: 135–9PubMedCrossRef Fall C, Hindmarsh P, Dennison E, et al. Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 1998; 83: 135–9PubMedCrossRef
393.
Zurück zum Zitat Barrett-Connor E, Goodman-Gruen D. Gender differences in insulin-like growth factor and bone mineral density association in old age: the Rancho Bernardo Study. J Bone Miner Res 1998; 13: 1343–9PubMedCrossRef Barrett-Connor E, Goodman-Gruen D. Gender differences in insulin-like growth factor and bone mineral density association in old age: the Rancho Bernardo Study. J Bone Miner Res 1998; 13: 1343–9PubMedCrossRef
394.
Zurück zum Zitat Langlois JA, Rose CJ, Visser M, et al. Association between insuilin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. J Clin Endocrinol Metab 1998; 83: 4257–62PubMedCrossRef Langlois JA, Rose CJ, Visser M, et al. Association between insuilin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. J Clin Endocrinol Metab 1998; 83: 4257–62PubMedCrossRef
395.
Zurück zum Zitat Seck T, Scheidt-Nave C, Leidig-Bruckner G, et al. Low serum concentrations of insulin-like growth factor are associated with femoral bone loss in a population-based sample of postmenopausal women. Clin Endocrinol 2001; 55: 101–6CrossRef Seck T, Scheidt-Nave C, Leidig-Bruckner G, et al. Low serum concentrations of insulin-like growth factor are associated with femoral bone loss in a population-based sample of postmenopausal women. Clin Endocrinol 2001; 55: 101–6CrossRef
396.
Zurück zum Zitat Vestergaard P, Hermann AP, Orskov H, et al. Effect of sex hormone replacement on the insulin-like growth factor system and bone mineral: a cross-sectional and longitudinal study in 595 perimenopausal women participating in the Danish Osteoporosis Prevention Study. J Clin Endocrinol Metab 1999; 84: 2286–90PubMedCrossRef Vestergaard P, Hermann AP, Orskov H, et al. Effect of sex hormone replacement on the insulin-like growth factor system and bone mineral: a cross-sectional and longitudinal study in 595 perimenopausal women participating in the Danish Osteoporosis Prevention Study. J Clin Endocrinol Metab 1999; 84: 2286–90PubMedCrossRef
397.
Zurück zum Zitat Scheidt-Nave C, Bismar H, Leidig-Bruckner G, et al. Serum interleukin-6 is a major predictor of bone loss in women specific to the first decade past menopause. J Bone Miner Res 1999; 14: 1057 Scheidt-Nave C, Bismar H, Leidig-Bruckner G, et al. Serum interleukin-6 is a major predictor of bone loss in women specific to the first decade past menopause. J Bone Miner Res 1999; 14: 1057
398.
Zurück zum Zitat Blain H, Vuillemin A, Guillemin F, et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2002; 87: 1030–5PubMedCrossRef Blain H, Vuillemin A, Guillemin F, et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2002; 87: 1030–5PubMedCrossRef
399.
Zurück zum Zitat Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 2001; 55: 341–7CrossRef Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 2001; 55: 341–7CrossRef
400.
Zurück zum Zitat Zoico E, Zamboni M, Adami S, et al. Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol 2003; 59: 97–103CrossRef Zoico E, Zamboni M, Adami S, et al. Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol 2003; 59: 97–103CrossRef
401.
Zurück zum Zitat Blum M, Harris SS, Must A, et al. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 2003; 73: 27–32PubMedCrossRef Blum M, Harris SS, Must A, et al. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 2003; 73: 27–32PubMedCrossRef
402.
Zurück zum Zitat Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 2002; 17: 1896–903PubMedCrossRef Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 2002; 17: 1896–903PubMedCrossRef
403.
Zurück zum Zitat Sato M, Takeda N, Sarui H, et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 2001; 86: 5273–6PubMedCrossRef Sato M, Takeda N, Sarui H, et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 2001; 86: 5273–6PubMedCrossRef
404.
Zurück zum Zitat Thomas T. Leptin: a potential mediator for protective effects of fat mass on bone tissue. Joint Bone Spine 2003; 70: 18–21PubMedCrossRef Thomas T. Leptin: a potential mediator for protective effects of fat mass on bone tissue. Joint Bone Spine 2003; 70: 18–21PubMedCrossRef
405.
406.
Zurück zum Zitat Zofkova I, Rojdmark S, Kancheva RL. Does estrogen replacement therapy influence parathyroid hormone responsiveness to exogenous hypercalcemia in postmenopausal women? J Endocrinol Invest 1993; 16: 323–7PubMed Zofkova I, Rojdmark S, Kancheva RL. Does estrogen replacement therapy influence parathyroid hormone responsiveness to exogenous hypercalcemia in postmenopausal women? J Endocrinol Invest 1993; 16: 323–7PubMed
407.
Zurück zum Zitat Vincent A, Riggs BL, Atkinson EJ, et al. Effect of estrogen replacement therapy on parathyroid hormone secretion in elderly postmenopausal women. Menopause 2003; 10: 165–71PubMedCrossRef Vincent A, Riggs BL, Atkinson EJ, et al. Effect of estrogen replacement therapy on parathyroid hormone secretion in elderly postmenopausal women. Menopause 2003; 10: 165–71PubMedCrossRef
408.
Zurück zum Zitat Taxel P, Fall PM, Albertsen PC, et al. The effect of micronized estradiol on bone turnover and calciotropic hormones in older men receiving hormonal suppression therapy for prostate cancer. J Clin Endocrinol Metab 2002; 87: 4907–13PubMedCrossRef Taxel P, Fall PM, Albertsen PC, et al. The effect of micronized estradiol on bone turnover and calciotropic hormones in older men receiving hormonal suppression therapy for prostate cancer. J Clin Endocrinol Metab 2002; 87: 4907–13PubMedCrossRef
409.
Zurück zum Zitat Whitehead MI, Lane G, Townsend PT, et al. Effects in postmenopausal women of natural and synthetic estrogens on calcitonin and calcium-regulating hormone secretion: relevance to postmenopausal osteoporosis. Acta Obstet Gynecol Scand Suppl 1981; 106: 27–32PubMed Whitehead MI, Lane G, Townsend PT, et al. Effects in postmenopausal women of natural and synthetic estrogens on calcitonin and calcium-regulating hormone secretion: relevance to postmenopausal osteoporosis. Acta Obstet Gynecol Scand Suppl 1981; 106: 27–32PubMed
410.
Zurück zum Zitat Ten Bolscher M, Netelenbos JC, Barto R, et al. Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J Bone Miner Res 1999; 14: 1197–202PubMedCrossRef Ten Bolscher M, Netelenbos JC, Barto R, et al. Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J Bone Miner Res 1999; 14: 1197–202PubMedCrossRef
411.
Zurück zum Zitat Kalu DN, Chen C. Ovariectomized murine model of postmenopausal calcium malabsorption. J Bone Miner Res 1999; 14: 593–601PubMedCrossRef Kalu DN, Chen C. Ovariectomized murine model of postmenopausal calcium malabsorption. J Bone Miner Res 1999; 14: 593–601PubMedCrossRef
412.
Zurück zum Zitat Arjmandi BH, Hollis BW, Kalu DN. In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats. Bone Miner 1994; 26: 181–9PubMedCrossRef Arjmandi BH, Hollis BW, Kalu DN. In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats. Bone Miner 1994; 26: 181–9PubMedCrossRef
413.
Zurück zum Zitat McKane WR, Khosla S, Burritt MF, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause: a clinical research center study. J Clin Endocrinol Metab 1995; 80: 3458–64PubMedCrossRef McKane WR, Khosla S, Burritt MF, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause: a clinical research center study. J Clin Endocrinol Metab 1995; 80: 3458–64PubMedCrossRef
414.
Zurück zum Zitat Uemura H, Irahara M, Yoneda N, et al. Close correlation between estrogen treatment and renal phosphate reabsorption capacity. J Clin Endocrinol Metab 2000; 85: 1215–9PubMedCrossRef Uemura H, Irahara M, Yoneda N, et al. Close correlation between estrogen treatment and renal phosphate reabsorption capacity. J Clin Endocrinol Metab 2000; 85: 1215–9PubMedCrossRef
415.
Zurück zum Zitat van Hoof HJ, van der Mooren MJ, Swinkels LM, et al. Hormone replacement therapy increases serum 1,25-dihydroxyvitamin D: a 2-year prospective study. Calcif Tissue Int 1994; 55: 417–9PubMedCrossRef van Hoof HJ, van der Mooren MJ, Swinkels LM, et al. Hormone replacement therapy increases serum 1,25-dihydroxyvitamin D: a 2-year prospective study. Calcif Tissue Int 1994; 55: 417–9PubMedCrossRef
416.
Zurück zum Zitat Liel Y, Shany S, Smirnoff P, et al. Estrogen increases 1,25-dihydroxyvitamin D receptor expression and bioresponse in the rat duodenal mucosa. Endocrinology 1999; 140: 280–5PubMedCrossRef Liel Y, Shany S, Smirnoff P, et al. Estrogen increases 1,25-dihydroxyvitamin D receptor expression and bioresponse in the rat duodenal mucosa. Endocrinology 1999; 140: 280–5PubMedCrossRef
417.
Zurück zum Zitat Breslau N. Calcium homeostasis. In: Griffin JE, Ojeda SR. Textbook of endocrine physiology. 3rd ed. Oxford: Oxford University Press, 1996: 316 Breslau N. Calcium homeostasis. In: Griffin JE, Ojeda SR. Textbook of endocrine physiology. 3rd ed. Oxford: Oxford University Press, 1996: 316
418.
Zurück zum Zitat Farrach-Carson MC, Ridal AL. Dual 1,25(OH)-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross talk between genomic and membrane initiated pathways. Am J Kidney Dis 1998; 31: 729–42CrossRef Farrach-Carson MC, Ridal AL. Dual 1,25(OH)-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross talk between genomic and membrane initiated pathways. Am J Kidney Dis 1998; 31: 729–42CrossRef
419.
Zurück zum Zitat Adami S, Gatti D, Bertoldo F, et al. The effects of menopause and estrogen replacement therapy on the renal handling of calcium. Osteoporos Int 1992; 2: 180–5PubMedCrossRef Adami S, Gatti D, Bertoldo F, et al. The effects of menopause and estrogen replacement therapy on the renal handling of calcium. Osteoporos Int 1992; 2: 180–5PubMedCrossRef
420.
Zurück zum Zitat Slovik DM, Adams JS, Neer RM, et al. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 1981; 305: 372–4PubMedCrossRef Slovik DM, Adams JS, Neer RM, et al. Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 1981; 305: 372–4PubMedCrossRef
421.
Zurück zum Zitat Khosla S, Atkinson EJ, Melton III LJ, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 1997; 82: 1522–7PubMedCrossRef Khosla S, Atkinson EJ, Melton III LJ, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 1997; 82: 1522–7PubMedCrossRef
422.
Zurück zum Zitat Kotowicz MA, Klee GG, Kao PC, et al. Relationship between serum intact parathyroid hormone concentrations and bone remodeling in type I osteoporosis: evidence that skeletal sensitivity is increased. Osteoporos Int 1990; 1: 14–22PubMedCrossRef Kotowicz MA, Klee GG, Kao PC, et al. Relationship between serum intact parathyroid hormone concentrations and bone remodeling in type I osteoporosis: evidence that skeletal sensitivity is increased. Osteoporos Int 1990; 1: 14–22PubMedCrossRef
423.
Zurück zum Zitat Sirola J, Kroger H, Honkanen R, et al. Risk factors associated with peri- and postmenopausal bone loss: does HRT prevent weight-loss related bone loss? Osteoporos Int 2003; 14: 27–33PubMedCrossRef Sirola J, Kroger H, Honkanen R, et al. Risk factors associated with peri- and postmenopausal bone loss: does HRT prevent weight-loss related bone loss? Osteoporos Int 2003; 14: 27–33PubMedCrossRef
424.
Zurück zum Zitat Cifuentes M, Johnson MA, Lewis RD, et al. Bone turnover and body weight relationships differ in normal-weight compared to heavier postmenopausal women. Osteoporos Int 2003; 14: 116–22PubMed Cifuentes M, Johnson MA, Lewis RD, et al. Bone turnover and body weight relationships differ in normal-weight compared to heavier postmenopausal women. Osteoporos Int 2003; 14: 116–22PubMed
425.
Zurück zum Zitat Dawson-Hughes B, Dallal GE, Krall EA, et al. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 1990; 323: 878–83PubMedCrossRef Dawson-Hughes B, Dallal GE, Krall EA, et al. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 1990; 323: 878–83PubMedCrossRef
426.
Zurück zum Zitat Heaney RP. Calcium, bone health, and osteoporosis. Bone Miner Res 1986; 4: 255–301 Heaney RP. Calcium, bone health, and osteoporosis. Bone Miner Res 1986; 4: 255–301
427.
Zurück zum Zitat Riis B, Thomsen K, Christiansen C. Does calcium supplementation prevent postmenopausal bone loss? N Engl J Med 1987; 316: 173–7PubMedCrossRef Riis B, Thomsen K, Christiansen C. Does calcium supplementation prevent postmenopausal bone loss? N Engl J Med 1987; 316: 173–7PubMedCrossRef
428.
Zurück zum Zitat Prince RL, Smith M, Dick IM, et al. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 1991; 325: 1189–95PubMedCrossRef Prince RL, Smith M, Dick IM, et al. Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 1991; 325: 1189–95PubMedCrossRef
429.
Zurück zum Zitat Horsman A, Gallagher JC, Simpson M, et al. Prospective trial of oestrogen and calcium in postmenopausal women. BMJ 1977; 2: 789–92PubMedCrossRef Horsman A, Gallagher JC, Simpson M, et al. Prospective trial of oestrogen and calcium in postmenopausal women. BMJ 1977; 2: 789–92PubMedCrossRef
430.
Zurück zum Zitat Heikkinen J, Kyllonen E, Kurttila-Matero E, et al. HRT and exercise: Effects on bone density, muscle strength and lipid metabolism: a placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 1997; 26: 139–49PubMedCrossRef Heikkinen J, Kyllonen E, Kurttila-Matero E, et al. HRT and exercise: Effects on bone density, muscle strength and lipid metabolism: a placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 1997; 26: 139–49PubMedCrossRef
431.
Zurück zum Zitat Reid IR, Ames RW, Evans MC, et al. Effects of calcium supplementation on bone loss in postmenopausal women. N Engl J Med 1993; 328: 460–4PubMedCrossRef Reid IR, Ames RW, Evans MC, et al. Effects of calcium supplementation on bone loss in postmenopausal women. N Engl J Med 1993; 328: 460–4PubMedCrossRef
432.
Zurück zum Zitat Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance performance. J Lab Clin Med 1978; 92: 953–63PubMed Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance performance. J Lab Clin Med 1978; 92: 953–63PubMed
433.
Zurück zum Zitat Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995; 10: 1068–75PubMedCrossRef Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995; 10: 1068–75PubMedCrossRef
434.
Zurück zum Zitat Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res 1996; 11: 1539–44PubMedCrossRef Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res 1996; 11: 1539–44PubMedCrossRef
435.
Zurück zum Zitat Bloomfield SA, Williams NI, Lamb DR, et al. Non-weight bearing exercise may increase spine bone mineral density in healthy postmenopausal women. Am J Phys Med Rehabil 1993; 72: 204–9PubMedCrossRef Bloomfield SA, Williams NI, Lamb DR, et al. Non-weight bearing exercise may increase spine bone mineral density in healthy postmenopausal women. Am J Phys Med Rehabil 1993; 72: 204–9PubMedCrossRef
436.
Zurück zum Zitat Kohrt WM, Snead DB, Slatopolsky E, et al. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 1995; 10: 1303–11PubMedCrossRef Kohrt WM, Snead DB, Slatopolsky E, et al. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 1995; 10: 1303–11PubMedCrossRef
437.
Zurück zum Zitat Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003; 22: 142–6PubMed Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003; 22: 142–6PubMed
438.
Zurück zum Zitat Smith E, Smith P, Ensign C, et al. Bone involution decrease in exercising middle aged women. Calcif Tissue Int 1984; 36: S129–38CrossRef Smith E, Smith P, Ensign C, et al. Bone involution decrease in exercising middle aged women. Calcif Tissue Int 1984; 36: S129–38CrossRef
439.
Zurück zum Zitat Sinaki M, Mikkelsen BA. Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehabil 1984; 65: 593–6PubMed Sinaki M, Mikkelsen BA. Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehabil 1984; 65: 593–6PubMed
440.
Zurück zum Zitat Etherington J, Harri PA, Nandra D, et al. The effect of weight-bearing exercise on bone mineral density: a study of female ex-elite athletes and general population. J Bone Miner Res 1996; 11: 1333–8PubMedCrossRef Etherington J, Harri PA, Nandra D, et al. The effect of weight-bearing exercise on bone mineral density: a study of female ex-elite athletes and general population. J Bone Miner Res 1996; 11: 1333–8PubMedCrossRef
441.
Zurück zum Zitat Hatori M, Hasegawa A, Adachi H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 1993; 52: 411–4PubMedCrossRef Hatori M, Hasegawa A, Adachi H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 1993; 52: 411–4PubMedCrossRef
442.
Zurück zum Zitat Martin D, Notelovitz M. Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res 1993; 8: 931–6PubMedCrossRef Martin D, Notelovitz M. Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res 1993; 8: 931–6PubMedCrossRef
443.
Zurück zum Zitat Preisinger E, Alacamlioglu Y, Pils K, et al. Therapeutic exercise in the prevention of bone loss: a controlled trial with women after menopause. Am J Phys Med Rehabil 1995; 74: 120–3PubMedCrossRef Preisinger E, Alacamlioglu Y, Pils K, et al. Therapeutic exercise in the prevention of bone loss: a controlled trial with women after menopause. Am J Phys Med Rehabil 1995; 74: 120–3PubMedCrossRef
444.
Zurück zum Zitat Bravo G, Gauthier P, Roy PM, et al. Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Geriatr Soc 1996; 44: 756–62PubMed Bravo G, Gauthier P, Roy PM, et al. Impact of a 12-month exercise program on the physical and psychological health of osteopenic women. J Am Geriatr Soc 1996; 44: 756–62PubMed
445.
Zurück zum Zitat Hartard M, Haber P, Ilieva D, et al. Systematic strength training as a model of therapeutic intervention. Am J Phys Med Rehabil 1996; 75: 21–8PubMedCrossRef Hartard M, Haber P, Ilieva D, et al. Systematic strength training as a model of therapeutic intervention. Am J Phys Med Rehabil 1996; 75: 21–8PubMedCrossRef
446.
Zurück zum Zitat Pruitt LA, Taaffe DR, Marcus R. Effects of one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995; 10: 1788–95PubMedCrossRef Pruitt LA, Taaffe DR, Marcus R. Effects of one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995; 10: 1788–95PubMedCrossRef
447.
Zurück zum Zitat Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy resistance exercise protocols in women. J Appl Physiol 1993; 75: 594–604PubMed Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy resistance exercise protocols in women. J Appl Physiol 1993; 75: 594–604PubMed
448.
Zurück zum Zitat Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotoic fractures. Lancet 1996; 348: 1343–7PubMedCrossRef Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotoic fractures. Lancet 1996; 348: 1343–7PubMedCrossRef
449.
Zurück zum Zitat Weltman A, Pritzlaff CJ, Wideman L, et al. Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol 2000; 89: 629–35PubMed Weltman A, Pritzlaff CJ, Wideman L, et al. Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol 2000; 89: 629–35PubMed
450.
Zurück zum Zitat Kraemer WJ, Anguillera BA, Terada M, et al. Responses of IGF-I to endogenous increases in growth hormone after heavy resistance exercise. J Appl Physiol 1995; 79: 1310–5PubMed Kraemer WJ, Anguillera BA, Terada M, et al. Responses of IGF-I to endogenous increases in growth hormone after heavy resistance exercise. J Appl Physiol 1995; 79: 1310–5PubMed
451.
Zurück zum Zitat Baker ER, Mathur RS, Kirk RF, et al. Plasma gonadotropins, prolactin, and steroid hormone concentrations in female runners immediately after a long-distance run. Fertil Steril 1982; 38: 38–41PubMed Baker ER, Mathur RS, Kirk RF, et al. Plasma gonadotropins, prolactin, and steroid hormone concentrations in female runners immediately after a long-distance run. Fertil Steril 1982; 38: 38–41PubMed
452.
Zurück zum Zitat Tsai KS, Lin JC, Chen CK, et al. Effect of exercise and exogenous glucocorticoid on serum level of intact parathyroid hormone. Int J Sports Med 1997; 18: 583–7PubMedCrossRef Tsai KS, Lin JC, Chen CK, et al. Effect of exercise and exogenous glucocorticoid on serum level of intact parathyroid hormone. Int J Sports Med 1997; 18: 583–7PubMedCrossRef
453.
Zurück zum Zitat Sutton JR, Lazarus L. Growth hormone in exercise: comparison of physiologic and pharmacologic stimuli. J Appl Physiol 1976; 41: 523–7PubMed Sutton JR, Lazarus L. Growth hormone in exercise: comparison of physiologic and pharmacologic stimuli. J Appl Physiol 1976; 41: 523–7PubMed
454.
Zurück zum Zitat VanHelder WP, Goode RC, Radomski MW. Effect of anaerobic and aerobic exercise of equal duration and work expenditure on plasma growth hormone levels. Eur J Appl Physiol 1984; 52: 255–7CrossRef VanHelder WP, Goode RC, Radomski MW. Effect of anaerobic and aerobic exercise of equal duration and work expenditure on plasma growth hormone levels. Eur J Appl Physiol 1984; 52: 255–7CrossRef
455.
Zurück zum Zitat Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 1989; 49: 159–69PubMedCrossRef Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 1989; 49: 159–69PubMedCrossRef
456.
Zurück zum Zitat Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-I in older individuals. Metabolism 1994; 43: 1401–5PubMedCrossRef Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-I in older individuals. Metabolism 1994; 43: 1401–5PubMedCrossRef
457.
458.
Zurück zum Zitat Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987; 2: 73–86PubMed Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987; 2: 73–86PubMed
459.
Zurück zum Zitat Frost HM. Suggested fundamental concepts in skeletal physiology. Calcif Tissue Int 1993; 52: 1–4PubMedCrossRef Frost HM. Suggested fundamental concepts in skeletal physiology. Calcif Tissue Int 1993; 52: 1–4PubMedCrossRef
460.
Zurück zum Zitat Lanyon LE. Functional strain in bone as an objective and controlling stimulus for the adaptive bone remodeling. J Biomech 1987; 20: 1083–93PubMedCrossRef Lanyon LE. Functional strain in bone as an objective and controlling stimulus for the adaptive bone remodeling. J Biomech 1987; 20: 1083–93PubMedCrossRef
461.
Zurück zum Zitat Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411–7PubMedCrossRef Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411–7PubMedCrossRef
462.
Zurück zum Zitat Turner CH. Homeostatic control of bone structure: an application of feedback theory. Bone 1991; 12: 203–17PubMedCrossRef Turner CH. Homeostatic control of bone structure: an application of feedback theory. Bone 1991; 12: 203–17PubMedCrossRef
463.
Zurück zum Zitat Nilsson J, Thorstensson A. Ground reaction forces at different speeds of humans walking and running. Acta Physiol Scand 1989; 136: 217–27PubMedCrossRef Nilsson J, Thorstensson A. Ground reaction forces at different speeds of humans walking and running. Acta Physiol Scand 1989; 136: 217–27PubMedCrossRef
464.
Zurück zum Zitat Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993; 26: 969–90PubMedCrossRef Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993; 26: 969–90PubMedCrossRef
465.
Zurück zum Zitat Bergmann G, Graichen F, Rohlmann A. Is staircase walking a risk for the fixation of hip implants? J Biomech 1995; 28 (5): 535–53PubMedCrossRef Bergmann G, Graichen F, Rohlmann A. Is staircase walking a risk for the fixation of hip implants? J Biomech 1995; 28 (5): 535–53PubMedCrossRef
466.
Zurück zum Zitat Kotzar GM, Davy DT, Goldberg VM, et al. Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery. J Orthop Res 1991; 9: 621–33PubMedCrossRef Kotzar GM, Davy DT, Goldberg VM, et al. Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery. J Orthop Res 1991; 9: 621–33PubMedCrossRef
467.
Zurück zum Zitat Davy DT, Kotzar GM, Brown RH, et al. Telemetric force measurements across the hip after total arthroplasty. J Bone Joint Surg 1988; 70: 45–50PubMed Davy DT, Kotzar GM, Brown RH, et al. Telemetric force measurements across the hip after total arthroplasty. J Bone Joint Surg 1988; 70: 45–50PubMed
468.
Zurück zum Zitat Breit GA, Whalen RT. Prediction of human gait parameters from temporal measures of foot-ground contact. Med Sci Sport Exerc 1997; 29: 540–7CrossRef Breit GA, Whalen RT. Prediction of human gait parameters from temporal measures of foot-ground contact. Med Sci Sport Exerc 1997; 29: 540–7CrossRef
469.
Zurück zum Zitat Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech 1980; 13: 397–406PubMedCrossRef Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech 1980; 13: 397–406PubMedCrossRef
470.
Zurück zum Zitat Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech 1987; 20: 147–55PubMedCrossRef Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech 1987; 20: 147–55PubMedCrossRef
471.
Zurück zum Zitat Winter DA. The biomechanics and motor control of human gait. Waterloo (ON): University of Waterloo Press, 1987: 1–296 Winter DA. The biomechanics and motor control of human gait. Waterloo (ON): University of Waterloo Press, 1987: 1–296
472.
Zurück zum Zitat Hsieh Y-F, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001; 16: 918–24PubMedCrossRef Hsieh Y-F, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001; 16: 918–24PubMedCrossRef
473.
Zurück zum Zitat Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res 1994; 198: 165–74 Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res 1994; 198: 165–74
474.
Zurück zum Zitat Rubin J, Murphy T, Fan X, et al. Mechanical strain inhibits RANKL expression through activation of ERK 1/2 in bone marrow cells. J Bone Miner Res 2002; 17: 1452–60PubMedCrossRef Rubin J, Murphy T, Fan X, et al. Mechanical strain inhibits RANKL expression through activation of ERK 1/2 in bone marrow cells. J Bone Miner Res 2002; 17: 1452–60PubMedCrossRef
475.
Zurück zum Zitat Rubin C, Turner AS, Mallinckrodt C. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 2002; 30: 445–52PubMedCrossRef Rubin C, Turner AS, Mallinckrodt C. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 2002; 30: 445–52PubMedCrossRef
476.
Zurück zum Zitat Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimuous into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res 2000; 15: 1596–602PubMedCrossRef Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimuous into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res 2000; 15: 1596–602PubMedCrossRef
477.
Zurück zum Zitat Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 2001; 204: 3389–99PubMed Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 2001; 204: 3389–99PubMed
478.
Zurück zum Zitat Robling AG, Hinant FM, Burr DB, et al. Improved bone structure and strength after short-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 2002; 17: 1545–54PubMedCrossRef Robling AG, Hinant FM, Burr DB, et al. Improved bone structure and strength after short-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 2002; 17: 1545–54PubMedCrossRef
479.
Zurück zum Zitat Robling AG, Hinant FM, Burr DB, et al. Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exer 2002; 34: 196–202CrossRef Robling AG, Hinant FM, Burr DB, et al. Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exer 2002; 34: 196–202CrossRef
480.
Zurück zum Zitat Umemura Y, Ishiko T, Yamauchi T, et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12: 1480–5PubMedCrossRef Umemura Y, Ishiko T, Yamauchi T, et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12: 1480–5PubMedCrossRef
481.
Zurück zum Zitat Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Med Sci Sports Exerc 2003; 31: 45–50 Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Med Sci Sports Exerc 2003; 31: 45–50
482.
Zurück zum Zitat Lanyon LE, Goodship AE, Pye CJ, et al. Mechanically adaptive bone remodeling: a quantitative study on functional adaptation in the radius following ulna osteotomy in sheep. J Biomech 1982; 15: 141–54PubMedCrossRef Lanyon LE, Goodship AE, Pye CJ, et al. Mechanically adaptive bone remodeling: a quantitative study on functional adaptation in the radius following ulna osteotomy in sheep. J Biomech 1982; 15: 141–54PubMedCrossRef
483.
Zurück zum Zitat Lanyon LE. Bone loading: the functional determinant of bone architecture and physiological contributor to the prevention of osteoporosis. In: Smith R, editor. Osteoporosis. London: LR Printing Services Ltd, 1990: 63 Lanyon LE. Bone loading: the functional determinant of bone architecture and physiological contributor to the prevention of osteoporosis. In: Smith R, editor. Osteoporosis. London: LR Printing Services Ltd, 1990: 63
484.
Zurück zum Zitat Eaton SB, Eaton SB. An evolutionary perspective on human physical activity: implications for health. Comp Biochem Physiol A Mol Integr Physiol 2003; 136: 153–9PubMedCrossRef Eaton SB, Eaton SB. An evolutionary perspective on human physical activity: implications for health. Comp Biochem Physiol A Mol Integr Physiol 2003; 136: 153–9PubMedCrossRef
Metadaten
Titel
Physical Activity in the Prevention and Amelioration of Osteoporosis in Women
Interaction of Mechanical, Hormonal and Dietary Factors
verfasst von
Dr Katarina T. Borer
Publikationsdatum
01.09.2005
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2005
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200535090-00004

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.