Skip to main content
Erschienen in: CNS Drugs 2/2007

01.02.2007 | Review Article

Various Pharmacogenetic Aspects of Antiepileptic Drug Therapy

A Review

verfasst von: Dr Michael W. Mann, Gerard Pons

Erschienen in: CNS Drugs | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Pharmacogenetics concerns the influence of an individual’s genetic background on the pharmacokinetics and pharmacodynamics of xenobiotics.
Much of the pharmacogenetic data in the field of epilepsy deals with the pharmacokinetics of antiepileptic drugs (AEDs). In particular, two polymorphisms of cytochrome P450 2C9 are known to slow down the metabolism of phenytoin to a degree that increases the risk of the neurotoxic adverse effects of this drug among carriers of these polymorphisms. A significant number of patients with epilepsy do not respond to AEDs and such pharmacoresistance is a major, largely unsolved, problem that is likely to be multifactorial in nature. In this regard, genetic factors may influence transmembrane drug transporter proteins, thereby modifying the intracerebral penetration of AEDs.
Monogenic idiopathic epilepsies are rare and frequently associated with ion channel mutations; however, to date, a consistent relationship between changes in channel properties and clinical phenotype has not been established nor has any association between genotype and response to specific treatment options. Polymorphisms of drug targets may represent another genetic facet in epilepsy: a recent study demonstrated for the first time a polymorphism of a drug target (the α-subunit of a voltage-gated sodium channel) associated in clinical practice with differing response to two classic AEDs.
Adverse drug reactions and teratogenicity of AEDs remain a major concern. Whole-genome single nucleotide polymorphism profiling might in the future help to determine genetic predisposing factors for adverse drug reactions. Recently, in Han Chinese treated with carbamazepine and presenting with Stevens-Johnson syndrome, a strong association was found with HLA B*1502.
If genetically targeted drug development becomes more affordable/cost efficient in the near future, the development of new drugs for relatively rare diseases could become economically viable for the pharmaceutical industry. The synergy of lower trial costs and efficacy-based prescribing may reduce the cost of medical treatment for a particular disease. This hypothetical advantage of the practical use of pharmacogenetics is, however, counterbalanced by several possible dangers, including illicit data mining and the development of a human ‘genetic underclass’ with the risk of exclusion from, for example employment or health insurance, because of an ‘unfavourable’ genetic profile.
Fußnoten
1
Each number preceded by a * denotes a particular polymorphism. The increasing numbers indicate the chronological order of the description of the polymorphism. *1 or ‘1’ denotes the wild type without a mutation. *1/*1 indicates the absence of a mutation in both alleles. The mutated base can be indicated in parentheses (A = adenine, C = cytosine, G = guanine, T = thymine). In CYP2C9 this is illustrated by the replacement of A by C: A→C for *3/*3 (C/C) and *3/*1 (C/ A).
 
Literatur
2.
Zurück zum Zitat Meyer UA. Pharmacogenetics: five decades of therapeutic lessons from genetic diversity. Nat Rev 2004 Sep; 5: 669–76 Meyer UA. Pharmacogenetics: five decades of therapeutic lessons from genetic diversity. Nat Rev 2004 Sep; 5: 669–76
3.
Zurück zum Zitat Dahl ML. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinetic 2002; 41: 453–70CrossRef Dahl ML. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinetic 2002; 41: 453–70CrossRef
4.
Zurück zum Zitat Fukuda K, Ohta T, Oshima Y, et al. Specific CYP3A4 inhibitors in grapefruit juice: furocoumarin dimers as components of drug interaction. Pharmacogenetics 1997 Oct; 7: 191–396CrossRef Fukuda K, Ohta T, Oshima Y, et al. Specific CYP3A4 inhibitors in grapefruit juice: furocoumarin dimers as components of drug interaction. Pharmacogenetics 1997 Oct; 7: 191–396CrossRef
5.
Zurück zum Zitat Snyder LH. Studies in human inheritance IX: the inheritance of taste deficiency in man. Ohio J Sci 1932; 32: 436–68 Snyder LH. Studies in human inheritance IX: the inheritance of taste deficiency in man. Ohio J Sci 1932; 32: 436–68
6.
Zurück zum Zitat Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005 May 26; 352: 2211–21PubMedCrossRef Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005 May 26; 352: 2211–21PubMedCrossRef
7.
Zurück zum Zitat Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–99PubMedCrossRef Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–99PubMedCrossRef
8.
Zurück zum Zitat Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed
9.
Zurück zum Zitat Floyd M, Gervasini G, Masica A, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European-and African-American men and women. Pharmacogenetics 2003; 13: 595–606PubMedCrossRef Floyd M, Gervasini G, Masica A, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European-and African-American men and women. Pharmacogenetics 2003; 13: 595–606PubMedCrossRef
10.
Zurück zum Zitat Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251–63PubMedCrossRef Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251–63PubMedCrossRef
11.
Zurück zum Zitat Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the olymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–97PubMedCrossRef Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the olymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–97PubMedCrossRef
12.
Zurück zum Zitat Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochromes P450(CYP)2D6 and 2C19. Clin Pharmacokinet 1995; 29(3): 192–209PubMedCrossRef Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state of knowledge of cytochromes P450(CYP)2D6 and 2C19. Clin Pharmacokinet 1995; 29(3): 192–209PubMedCrossRef
13.
Zurück zum Zitat Lonjou C, Thomas L, Borot N, et al. A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics J 2006; (6): 265-8 Lonjou C, Thomas L, Borot N, et al. A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics J 2006; (6): 265-8
14.
Zurück zum Zitat Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 2006; 234(1): 4–33PubMedCrossRef Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 2006; 234(1): 4–33PubMedCrossRef
15.
Zurück zum Zitat Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. Lancet 1902 Dec; 160: 1616–20CrossRef Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. Lancet 1902 Dec; 160: 1616–20CrossRef
16.
Zurück zum Zitat Garrod AE. The Croonian lectures on inborn errors of metabolism: lecture II. Alkaptonuria. Lancet 1908; II: 73–9 Garrod AE. The Croonian lectures on inborn errors of metabolism: lecture II. Alkaptonuria. Lancet 1908; II: 73–9
17.
Zurück zum Zitat Garrod AE. The inborn errors of metabolism. London: Oxford University Press, 1909 Garrod AE. The inborn errors of metabolism. London: Oxford University Press, 1909
18.
Zurück zum Zitat Vogel F. Moderne Probleme der Humangenetik. Ergebn Inn Med Kinderheilkunde 1959; 12: 52–125CrossRef Vogel F. Moderne Probleme der Humangenetik. Ergebn Inn Med Kinderheilkunde 1959; 12: 52–125CrossRef
19.
20.
21.
Zurück zum Zitat Lehmann H, Ryan E. The familial incidence of low pseudocholinesterase level [letter]. Lancet 1956; 271: 124PubMedCrossRef Lehmann H, Ryan E. The familial incidence of low pseudocholinesterase level [letter]. Lancet 1956; 271: 124PubMedCrossRef
22.
Zurück zum Zitat Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Med Sci 1957; 35: 1305–20 Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Med Sci 1957; 35: 1305–20
23.
Zurück zum Zitat Kalow W, Gunn DR. Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet 1959; 23: 239–50PubMedCrossRef Kalow W, Gunn DR. Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet 1959; 23: 239–50PubMedCrossRef
24.
Zurück zum Zitat Price Evans DA, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. BMJ 1960; 2: 485–90CrossRef Price Evans DA, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. BMJ 1960; 2: 485–90CrossRef
25.
Zurück zum Zitat Solinas C, Vaida FJ. Epilepsy and porphyria: new perspectives. J Clin Nerosci 2004; 11(4): 356–61CrossRef Solinas C, Vaida FJ. Epilepsy and porphyria: new perspectives. J Clin Nerosci 2004; 11(4): 356–61CrossRef
26.
Zurück zum Zitat Zadra M, Grandi R, Erli LC, et al. Treatment of seizures in acute intermittent porphyria: safety and efficacy of gabapentin. Seizure 1998; 5: 415–6CrossRef Zadra M, Grandi R, Erli LC, et al. Treatment of seizures in acute intermittent porphyria: safety and efficacy of gabapentin. Seizure 1998; 5: 415–6CrossRef
27.
Zurück zum Zitat Friedemann P, Meencke H-J. Levetiracetam in focal epilepsy and hepatic porphyria: a case report. Epilepsia 2004; 45(5): 559–60CrossRef Friedemann P, Meencke H-J. Levetiracetam in focal epilepsy and hepatic porphyria: a case report. Epilepsia 2004; 45(5): 559–60CrossRef
30.
Zurück zum Zitat Depondt C. The potential of pharmacogenetics in the treatment of epilepsy. Eur J Paediatr Neurol 2006; 10: 57–65PubMedCrossRef Depondt C. The potential of pharmacogenetics in the treatment of epilepsy. Eur J Paediatr Neurol 2006; 10: 57–65PubMedCrossRef
31.
Zurück zum Zitat Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 2003; 55: 649–73PubMedCrossRef Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 2003; 55: 649–73PubMedCrossRef
32.
Zurück zum Zitat Anderson GD. Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 2004 Nov; 63Suppl. 4: S3–8PubMedCrossRef Anderson GD. Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 2004 Nov; 63Suppl. 4: S3–8PubMedCrossRef
33.
Zurück zum Zitat Amirimani B, Ning B, Deitz AC, et al. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42(4): 299–305PubMedCrossRef Amirimani B, Ning B, Deitz AC, et al. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42(4): 299–305PubMedCrossRef
34.
Zurück zum Zitat Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006; 2(2): 171–82PubMedCrossRef Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006; 2(2): 171–82PubMedCrossRef
35.
Zurück zum Zitat Ariyoshi N, Miyazaki M, Toide K, et al. A single nucleotide polymorphism of CYP 2B6 found in Japanese enhances catalytic activity by auto activation. Biochem Biophys Res Commun. 2001; 281(5): 1256–60PubMedCrossRef Ariyoshi N, Miyazaki M, Toide K, et al. A single nucleotide polymorphism of CYP 2B6 found in Japanese enhances catalytic activity by auto activation. Biochem Biophys Res Commun. 2001; 281(5): 1256–60PubMedCrossRef
36.
Zurück zum Zitat Xie HJ, Yasar U, Lundgren S, et al. Role of polymorphic human CYP2B6 in cyclophosphamid bioactivation. Pharmacogenom J 2003; 3: 53–61CrossRef Xie HJ, Yasar U, Lundgren S, et al. Role of polymorphic human CYP2B6 in cyclophosphamid bioactivation. Pharmacogenom J 2003; 3: 53–61CrossRef
37.
Zurück zum Zitat Xie HJ, Griskevicius L, Stahle L, et al. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 2006; 27: 54–61PubMedCrossRef Xie HJ, Griskevicius L, Stahle L, et al. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 2006; 27: 54–61PubMedCrossRef
38.
Zurück zum Zitat Xiao ZS, Goldenstein JA, Xie HG, et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997; 281: 604–9PubMed Xiao ZS, Goldenstein JA, Xie HG, et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997; 281: 604–9PubMed
39.
Zurück zum Zitat Xie H-G, Wood AJJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5(3): 243–72PubMedCrossRef Xie H-G, Wood AJJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5(3): 243–72PubMedCrossRef
40.
Zurück zum Zitat Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A4-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A4-mediated metabolism. Adv Drug Deliv Rev 2002; 54(10): 1271–94PubMedCrossRef
41.
Zurück zum Zitat Lamba JK, Lin YS, Thummel KG, et al. Common allelic variants of cytochrome P450 3A4 and their prevalence in different populations. Pharmacogenetics. 2002; 12(2): 121–32PubMedCrossRef Lamba JK, Lin YS, Thummel KG, et al. Common allelic variants of cytochrome P450 3A4 and their prevalence in different populations. Pharmacogenetics. 2002; 12(2): 121–32PubMedCrossRef
42.
Zurück zum Zitat Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired S-warfain metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4: 39–42PubMedCrossRef Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired S-warfain metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4: 39–42PubMedCrossRef
43.
Zurück zum Zitat Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, urification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996; 333: 447–58PubMedCrossRef Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, urification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996; 333: 447–58PubMedCrossRef
44.
Zurück zum Zitat Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40: 587–603PubMedCrossRef Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40: 587–603PubMedCrossRef
45.
Zurück zum Zitat Hillman MA, Wilke RA, Caldwell MF, et al. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 2004 Aug; 14(8): 539–47PubMedCrossRef Hillman MA, Wilke RA, Caldwell MF, et al. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 2004 Aug; 14(8): 539–47PubMedCrossRef
46.
Zurück zum Zitat Brandolese R, Scordo MG, Spina E, et al. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin Pharmacol Ther 2001 Oct; 70: 391–4PubMed Brandolese R, Scordo MG, Spina E, et al. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin Pharmacol Ther 2001 Oct; 70: 391–4PubMed
47.
Zurück zum Zitat Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxic phenytoin. Pharmacogenetics 2001 Dec; 11: 803–8PubMedCrossRef Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxic phenytoin. Pharmacogenetics 2001 Dec; 11: 803–8PubMedCrossRef
48.
Zurück zum Zitat Mamiya K, Ieiri I, Shimamoto J, et al. The effects of genetic polymorphisms of CYP2C9 and CY2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998; 39: 1317–23PubMedCrossRef Mamiya K, Ieiri I, Shimamoto J, et al. The effects of genetic polymorphisms of CYP2C9 and CY2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998; 39: 1317–23PubMedCrossRef
49.
Zurück zum Zitat Soga Y, Nishimura F, Ohtsuka Y, et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci 2004; 74: 827–34PubMedCrossRef Soga Y, Nishimura F, Ohtsuka Y, et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci 2004; 74: 827–34PubMedCrossRef
50.
Zurück zum Zitat Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest 2003; 33Suppl. 2: 23–30PubMedCrossRef Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest 2003; 33Suppl. 2: 23–30PubMedCrossRef
51.
Zurück zum Zitat Van der Weide J, Steijns LSW, van Weelden JM, et al. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001; 11: 287–91PubMedCrossRef Van der Weide J, Steijns LSW, van Weelden JM, et al. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001; 11: 287–91PubMedCrossRef
52.
Zurück zum Zitat Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA 2005 Apr; 102(15): 5507–12PubMedCrossRef Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA 2005 Apr; 102(15): 5507–12PubMedCrossRef
53.
Zurück zum Zitat Odani A, Hashimoto Y, Otsuki Y, et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–92PubMedCrossRef Odani A, Hashimoto Y, Otsuki Y, et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–92PubMedCrossRef
54.
Zurück zum Zitat Kwan P, Brodie MJ. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia 2004; 45: 1141–9PubMedCrossRef Kwan P, Brodie MJ. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia 2004; 45: 1141–9PubMedCrossRef
55.
Zurück zum Zitat Mamiya K, Hadama A, Yukawa E, et al. CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol 2000 Feb–Mar; 55(11–12): 821–5PubMedCrossRef Mamiya K, Hadama A, Yukawa E, et al. CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol 2000 Feb–Mar; 55(11–12): 821–5PubMedCrossRef
56.
Zurück zum Zitat Hadama A, Ieri I, Morita T, et al. P-hydroxylation of phenobarbital: relationship to (S)-mephenytoin hydroxylation (CYP2C19) polymorphism. Ther Drug Monit 2001; 23: 115–8PubMedCrossRef Hadama A, Ieri I, Morita T, et al. P-hydroxylation of phenobarbital: relationship to (S)-mephenytoin hydroxylation (CYP2C19) polymorphism. Ther Drug Monit 2001; 23: 115–8PubMedCrossRef
57.
Zurück zum Zitat Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav 2005; 7: 18–36PubMedCrossRef Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav 2005; 7: 18–36PubMedCrossRef
58.
Zurück zum Zitat Green VJ, Pirmohamed M, Kitteringham NR, et al. Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem Pharmacol 1995; 50(9): 1353–9PubMedCrossRef Green VJ, Pirmohamed M, Kitteringham NR, et al. Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem Pharmacol 1995; 50(9): 1353–9PubMedCrossRef
59.
Zurück zum Zitat Ketter TA, Frye MA, Cora-Locatelli G, et al. Metabolism and excretion of mood stabilizers and new anticonvulsants. Cell Mol Neurobiol 1999; 19: 511–32PubMedCrossRef Ketter TA, Frye MA, Cora-Locatelli G, et al. Metabolism and excretion of mood stabilizers and new anticonvulsants. Cell Mol Neurobiol 1999; 19: 511–32PubMedCrossRef
60.
Zurück zum Zitat Sadeque AJM, Fisher MB, Korzekwa KR, et al. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997; 283(2): 698–703PubMed Sadeque AJM, Fisher MB, Korzekwa KR, et al. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997; 283(2): 698–703PubMed
61.
Zurück zum Zitat Ho PC, Abbott FS, Zanger UM, et al. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J 2003; 3(6): 335–42PubMedCrossRef Ho PC, Abbott FS, Zanger UM, et al. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J 2003; 3(6): 335–42PubMedCrossRef
62.
Zurück zum Zitat Rogiers V, Akrawi M, Vercruysse A, et al. Effects of the anticonvulsant, valproate, on the expression of components of the cytochrome P-450-mediated monooxygenase system and glutathione S-transferases. Eur J Biochem 1995; 231(2): 337–43PubMedCrossRef Rogiers V, Akrawi M, Vercruysse A, et al. Effects of the anticonvulsant, valproate, on the expression of components of the cytochrome P-450-mediated monooxygenase system and glutathione S-transferases. Eur J Biochem 1995; 231(2): 337–43PubMedCrossRef
63.
Zurück zum Zitat Krishnaswamy S, Hao Q, Al-Rohaimi A, et al. UDP Glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S) J Pharmacol Exp Ther 2005; 313(3): 1340–6PubMed Krishnaswamy S, Hao Q, Al-Rohaimi A, et al. UDP Glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S) J Pharmacol Exp Ther 2005; 313(3): 1340–6PubMed
64.
Zurück zum Zitat Ciotti M, Marrone A, Potter C, et al. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronyltransferase: pharmacological implications. Pharmacogenetics 1997; 7: 485–95PubMedCrossRef Ciotti M, Marrone A, Potter C, et al. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronyltransferase: pharmacological implications. Pharmacogenetics 1997; 7: 485–95PubMedCrossRef
65.
Zurück zum Zitat Nagar S, Zalatoria JJ, Blanchard RL. Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics 2004; 14: 487–99PubMedCrossRef Nagar S, Zalatoria JJ, Blanchard RL. Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics 2004; 14: 487–99PubMedCrossRef
66.
Zurück zum Zitat Krishnaswamy S, Hao Q, Al-Rohaimi A, et al. UDP-glucuronosyltransferase (UGT)1A6 pharmacogenetics: I. Identification of polymorphisms in the 5′-regulatory and exon 1 regions, and association with human liver UGT1A6 gene expression and glucuronidation. J Pharmacol Exp Ther 2005; 313: 1331–9 Krishnaswamy S, Hao Q, Al-Rohaimi A, et al. UDP-glucuronosyltransferase (UGT)1A6 pharmacogenetics: I. Identification of polymorphisms in the 5′-regulatory and exon 1 regions, and association with human liver UGT1A6 gene expression and glucuronidation. J Pharmacol Exp Ther 2005; 313: 1331–9
67.
Zurück zum Zitat Kobayashi K, Morita J, Chiba K, et al. Pharmacogenetic roles of CYP2C19 and CYP2B6 in the metabolism of R-and S-mephobarbital in humans. Pharmacogenetics 2004; 14: 549–56PubMedCrossRef Kobayashi K, Morita J, Chiba K, et al. Pharmacogenetic roles of CYP2C19 and CYP2B6 in the metabolism of R-and S-mephobarbital in humans. Pharmacogenetics 2004; 14: 549–56PubMedCrossRef
68.
Zurück zum Zitat Liston HL, Markowitz JS, DeVane CL. Drug glucuronidation in clinical psychopharmacology. J Clin Psychopharmacol 2001 Oct; 21(5): 500–15PubMedCrossRef Liston HL, Markowitz JS, DeVane CL. Drug glucuronidation in clinical psychopharmacology. J Clin Psychopharmacol 2001 Oct; 21(5): 500–15PubMedCrossRef
69.
Zurück zum Zitat Rowland A, Elliot DJ, Williams JA, et al. In vitro characterization of lamotrigine N2-glucuronidation and the lamotriginevalproic acid interaction. Drug Metab Dispos 2006; 34(6): 1055–62PubMed Rowland A, Elliot DJ, Williams JA, et al. In vitro characterization of lamotrigine N2-glucuronidation and the lamotriginevalproic acid interaction. Drug Metab Dispos 2006; 34(6): 1055–62PubMed
70.
Zurück zum Zitat Ehmer U, Vogel A, Schütte JK, et al. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltranferase UGT1A4. Hepatology 2004; 39: 970–7PubMedCrossRef Ehmer U, Vogel A, Schütte JK, et al. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltranferase UGT1A4. Hepatology 2004; 39: 970–7PubMedCrossRef
71.
Zurück zum Zitat Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314–9PubMedCrossRef Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314–9PubMedCrossRef
72.
Zurück zum Zitat Scheffer GL, Wijngaard PLJ, Flens MJ, et al. The drug resistance-related protein LRP is the human major vault protein. Nature Medicine 1995; 1: 578–82PubMedCrossRef Scheffer GL, Wijngaard PLJ, Flens MJ, et al. The drug resistance-related protein LRP is the human major vault protein. Nature Medicine 1995; 1: 578–82PubMedCrossRef
73.
Zurück zum Zitat Löscher W, Potschka H. Role of multidrug transporter in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 2002; 301(1): 7–14PubMedCrossRef Löscher W, Potschka H. Role of multidrug transporter in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 2002; 301(1): 7–14PubMedCrossRef
74.
Zurück zum Zitat Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 2005 Feb; 46(2): 224–35PubMedCrossRef Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 2005 Feb; 46(2): 224–35PubMedCrossRef
75.
76.
Zurück zum Zitat Sisodiya SM, Lin WR, Harding BN, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002 Jan; 125: 22–31PubMedCrossRef Sisodiya SM, Lin WR, Harding BN, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002 Jan; 125: 22–31PubMedCrossRef
77.
Zurück zum Zitat Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455(1): 152–62PubMedCrossRef Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455(1): 152–62PubMedCrossRef
78.
Zurück zum Zitat Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11: 1156–66PubMedCrossRef Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11: 1156–66PubMedCrossRef
80.
Zurück zum Zitat Brinkmann U, Roots I, Eichelbaum M. Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today 2001 Aug 15; 6: 835–9PubMedCrossRef Brinkmann U, Roots I, Eichelbaum M. Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today 2001 Aug 15; 6: 835–9PubMedCrossRef
81.
Zurück zum Zitat Borst P, Evers R, Kool M, et al. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295–302PubMedCrossRef Borst P, Evers R, Kool M, et al. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295–302PubMedCrossRef
82.
Zurück zum Zitat Wijnholds J. Drug resistance caused by multidrug resistance-associated proteins: mechanisms of drug resistance in epilepsy: lessons from oncology. Chichester: John Wiley & Sons Ltd, 2002, 82 Wijnholds J. Drug resistance caused by multidrug resistance-associated proteins: mechanisms of drug resistance in epilepsy: lessons from oncology. Chichester: John Wiley & Sons Ltd, 2002, 82
83.
Zurück zum Zitat Sills GJ, Kwan P, Butler E, et al. P-glycoprotein mediated efflux of antiepileptic drugs: preliminary studies in mdr1 knockout mice. Epilepsy Behav 2002; 3: 427–32PubMedCrossRef Sills GJ, Kwan P, Butler E, et al. P-glycoprotein mediated efflux of antiepileptic drugs: preliminary studies in mdr1 knockout mice. Epilepsy Behav 2002; 3: 427–32PubMedCrossRef
84.
Zurück zum Zitat Owen A, Pirmohamed M, Tettey JN, et al. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001 Apr; 51(4): 345–9PubMedCrossRef Owen A, Pirmohamed M, Tettey JN, et al. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001 Apr; 51(4): 345–9PubMedCrossRef
85.
Zurück zum Zitat Potschka H, Baltes S, Löscher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res 2004; 58: 85–91PubMedCrossRef Potschka H, Baltes S, Löscher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res 2004; 58: 85–91PubMedCrossRef
86.
Zurück zum Zitat Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed
87.
Zurück zum Zitat Johnstone RW, Ruefli AA, Tainton KM, et al. A role for P-glycoprotein in regulating cell death. Leukemia Lymphoma 2000 Jun; 38(1–2): 1–11PubMed Johnstone RW, Ruefli AA, Tainton KM, et al. A role for P-glycoprotein in regulating cell death. Leukemia Lymphoma 2000 Jun; 38(1–2): 1–11PubMed
88.
Zurück zum Zitat Sisodiya SM, Lin WR, Squier MV, et al. Multidrug-resistance protein 1 in focal cortical dysplasia. Lancet 2001 Jan 6; 357: 42–3PubMedCrossRef Sisodiya SM, Lin WR, Squier MV, et al. Multidrug-resistance protein 1 in focal cortical dysplasia. Lancet 2001 Jan 6; 357: 42–3PubMedCrossRef
89.
Zurück zum Zitat Sakaeda T. MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab Pharmacokinet 2005; 20(6): 391–414PubMedCrossRef Sakaeda T. MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab Pharmacokinet 2005; 20(6): 391–414PubMedCrossRef
90.
Zurück zum Zitat Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97(7): 3473–8PubMedCrossRef Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97(7): 3473–8PubMedCrossRef
91.
Zurück zum Zitat Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003; 348: 1442–8PubMedCrossRef Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003; 348: 1442–8PubMedCrossRef
92.
Zurück zum Zitat Zimprich F, Sunder-Plassmann R, Stogmann E, et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 2004; 63: 1087–9PubMedCrossRef Zimprich F, Sunder-Plassmann R, Stogmann E, et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 2004; 63: 1087–9PubMedCrossRef
93.
Zurück zum Zitat Hung CC, Tai JJ, Lin CJ, et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 2005; 6(4): 411–7PubMedCrossRef Hung CC, Tai JJ, Lin CJ, et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 2005; 6(4): 411–7PubMedCrossRef
94.
Zurück zum Zitat Seo T, Ishitsu T, Ueda N, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006; 7(4): 551–61PubMedCrossRef Seo T, Ishitsu T, Ueda N, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006; 7(4): 551–61PubMedCrossRef
95.
Zurück zum Zitat Tan NCK, Heron SE, Scheffer IE, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 2004; 63: 1090–2PubMedCrossRef Tan NCK, Heron SE, Scheffer IE, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 2004; 63: 1090–2PubMedCrossRef
96.
Zurück zum Zitat Sills GJ, Mohanraj R, Butler E, et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia 2005; 46(5): 643–7PubMedCrossRef Sills GJ, Mohanraj R, Butler E, et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia 2005; 46(5): 643–7PubMedCrossRef
97.
Zurück zum Zitat Kim YO, Kim MK, Woo YJ, et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics. Seizure 2006; 15: 67–72PubMedCrossRef Kim YO, Kim MK, Woo YJ, et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics. Seizure 2006; 15: 67–72PubMedCrossRef
98.
Zurück zum Zitat Leschziner G, Jorgensen AI, Andrew T, et al. Clinical factors and ABCB1 polymorphisms in prediction of antiepileptic drug response: a prospective cohort study. Lancet Neuro 2006 Aug; 5: 668–76CrossRef Leschziner G, Jorgensen AI, Andrew T, et al. Clinical factors and ABCB1 polymorphisms in prediction of antiepileptic drug response: a prospective cohort study. Lancet Neuro 2006 Aug; 5: 668–76CrossRef
100.
Zurück zum Zitat Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001; 2(2): 91–9PubMedCrossRef Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001; 2(2): 91–9PubMedCrossRef
101.
Zurück zum Zitat Scheffer IE, Berkovic SF. The genetics of human epilepsy. Trends in Pharmacol Sci 2003; 24(8): 428–33CrossRef Scheffer IE, Berkovic SF. The genetics of human epilepsy. Trends in Pharmacol Sci 2003; 24(8): 428–33CrossRef
102.
Zurück zum Zitat Leppert M, Anderson VE, Quattlebaum T, et al. Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature 1989; 337: 647–8PubMedCrossRef Leppert M, Anderson VE, Quattlebaum T, et al. Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature 1989; 337: 647–8PubMedCrossRef
103.
Zurück zum Zitat Gourfinkel-An I, Baulac S, Nabbout R, et al. Monogenic idiopathic epilepsies. Lancet Neurol 2004; 3: 209–18PubMedCrossRef Gourfinkel-An I, Baulac S, Nabbout R, et al. Monogenic idiopathic epilepsies. Lancet Neurol 2004; 3: 209–18PubMedCrossRef
104.
Zurück zum Zitat Baulac S, Gourfinkel-An I, Nabbout R, et al. Fever, genes and epilepsy. Lancet Neurol 2004; 3: 421–30PubMedCrossRef Baulac S, Gourfinkel-An I, Nabbout R, et al. Fever, genes and epilepsy. Lancet Neurol 2004; 3: 421–30PubMedCrossRef
105.
106.
Zurück zum Zitat Ottmann R, Winawer MR, Kalachnikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 2004; 62: 1120–6CrossRef Ottmann R, Winawer MR, Kalachnikov S, et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 2004; 62: 1120–6CrossRef
107.
Zurück zum Zitat Escayg A, De Waard M, Lee DD, et al. Coding and noncoding variation of the human calcium-channel β4 subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66: 1531–9PubMedCrossRef Escayg A, De Waard M, Lee DD, et al. Coding and noncoding variation of the human calcium-channel β4 subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66: 1531–9PubMedCrossRef
108.
Zurück zum Zitat Jouvenceau A, Eunson LH, Spauschus A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358(9284): 801–7PubMedCrossRef Jouvenceau A, Eunson LH, Spauschus A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358(9284): 801–7PubMedCrossRef
109.
Zurück zum Zitat Brodtkorb E, Michler RP, Gu W, et al. Speech-induced aphasic seizures in epilepsy caused by LGI 1 mutation. Epilepsia 2005 Jun; 46: 963–6PubMedCrossRef Brodtkorb E, Michler RP, Gu W, et al. Speech-induced aphasic seizures in epilepsy caused by LGI 1 mutation. Epilepsia 2005 Jun; 46: 963–6PubMedCrossRef
110.
Zurück zum Zitat Vadlamudi L, Scheffer IE, Berkovic SF. Genetics of temporal lobe epilepsy. J Neurol Neurosurg Psych 2003; 74: 1359–61CrossRef Vadlamudi L, Scheffer IE, Berkovic SF. Genetics of temporal lobe epilepsy. J Neurol Neurosurg Psych 2003; 74: 1359–61CrossRef
111.
Zurück zum Zitat Mulley JC, Scheffer IE, Petrou S, et al. Channelopathies as a genetic cause of epilepsy. Curr Opin Neurol 2003; 16: 171–176PubMedCrossRef Mulley JC, Scheffer IE, Petrou S, et al. Channelopathies as a genetic cause of epilepsy. Curr Opin Neurol 2003; 16: 171–176PubMedCrossRef
112.
Zurück zum Zitat Baulac S, Huberfeld G, Gourfinkel-An I, et al. First evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet 2001; 28: 46–8PubMed Baulac S, Huberfeld G, Gourfinkel-An I, et al. First evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet 2001; 28: 46–8PubMed
113.
Zurück zum Zitat Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28: 49–52PubMed Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28: 49–52PubMed
114.
Zurück zum Zitat Bowser DN, Wagner DA, Czajkowski C, et al. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation (γ2-R43Q) found in human epilepsy. Proc Natl Acad Sci USA 2002; 99: 15170–5PubMedCrossRef Bowser DN, Wagner DA, Czajkowski C, et al. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation (γ2-R43Q) found in human epilepsy. Proc Natl Acad Sci USA 2002; 99: 15170–5PubMedCrossRef
115.
Zurück zum Zitat Picard F, Bertrand S, Steinlein OK, et al. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999; 40(9): 1198–209PubMedCrossRef Picard F, Bertrand S, Steinlein OK, et al. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999; 40(9): 1198–209PubMedCrossRef
116.
Zurück zum Zitat Guerrini R, Dravet C, Genton P, et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39(5): 508–12PubMedCrossRef Guerrini R, Dravet C, Genton P, et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39(5): 508–12PubMedCrossRef
117.
Zurück zum Zitat Bolstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet Supplement 2003; 33: 228–37CrossRef Bolstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet Supplement 2003; 33: 228–37CrossRef
118.
Zurück zum Zitat Gambardella A, Manna I, Labate A, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 2003; 60: 560–3PubMedCrossRef Gambardella A, Manna I, Labate A, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 2003; 60: 560–3PubMedCrossRef
119.
Zurück zum Zitat Salzmann A, Moulard B, Crespel A, et al. GABA 1 receptor polymorphism (G1465A) and temporal lobe epilepsy. Epilepsia 2005; 46(6): 931–3PubMedCrossRef Salzmann A, Moulard B, Crespel A, et al. GABA 1 receptor polymorphism (G1465A) and temporal lobe epilepsy. Epilepsia 2005; 46(6): 931–3PubMedCrossRef
120.
Zurück zum Zitat Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17: 525–30PubMedCrossRef Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17: 525–30PubMedCrossRef
121.
Zurück zum Zitat Briellmann RS, Torn-Broers Y, Busuttil BE, et al. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology 2000; 55: 435–7PubMedCrossRef Briellmann RS, Torn-Broers Y, Busuttil BE, et al. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology 2000; 55: 435–7PubMedCrossRef
122.
Zurück zum Zitat Stogmann E, Zimprich A, Baumgartner C, et al. A functional polymorphism in the prodynorphin gene promoter is associated with temporal lobe epilepsy. Ann Neurol 2002 Feb; 51: 260–3PubMedCrossRef Stogmann E, Zimprich A, Baumgartner C, et al. A functional polymorphism in the prodynorphin gene promoter is associated with temporal lobe epilepsy. Ann Neurol 2002 Feb; 51: 260–3PubMedCrossRef
123.
Zurück zum Zitat Tilgen N, Rebstock J, Horvath S, et al. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy. Ann Neurol 2003; 53(2): 280–2PubMedCrossRef Tilgen N, Rebstock J, Horvath S, et al. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy. Ann Neurol 2003; 53(2): 280–2PubMedCrossRef
124.
Zurück zum Zitat Kanemoto K, Kawasaki J, Miyamoto T, et al. Interleukin (IL)β, IL-1α, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000 May; 47(5): 571–4PubMedCrossRef Kanemoto K, Kawasaki J, Miyamoto T, et al. Interleukin (IL)β, IL-1α, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000 May; 47(5): 571–4PubMedCrossRef
125.
Zurück zum Zitat Heils A, Haug K, Kunz WS, et al. Interleukin-1beta gene polymorphism and susceptibility to temporal lobe epilepsy with hippocampal sclerosis. Ann Neurol 2000; 48(6): 948–50PubMedCrossRef Heils A, Haug K, Kunz WS, et al. Interleukin-1beta gene polymorphism and susceptibility to temporal lobe epilepsy with hippocampal sclerosis. Ann Neurol 2000; 48(6): 948–50PubMedCrossRef
126.
Zurück zum Zitat Tsai F-J, Hsieh Y-Y, Chang C-C, et al. Polymorphisms for interleukin 1beta exon 5 and interleukin 1 receptor antagonist in Taiwanese children with febrile convulsions. Arch Pediatr Adolesc Med 2002; 156: 545–8PubMed Tsai F-J, Hsieh Y-Y, Chang C-C, et al. Polymorphisms for interleukin 1beta exon 5 and interleukin 1 receptor antagonist in Taiwanese children with febrile convulsions. Arch Pediatr Adolesc Med 2002; 156: 545–8PubMed
127.
Zurück zum Zitat Coenen AM, Drinkenburg WH, Inoue M, et al. Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res 1992 Jul; 12(2): 75–86PubMedCrossRef Coenen AM, Drinkenburg WH, Inoue M, et al. Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res 1992 Jul; 12(2): 75–86PubMedCrossRef
128.
Zurück zum Zitat Przewlocka B, Lason W, Turchan J, et al. Anatomical and functional aspects of mu opioid receptors in epileptic WAG/Rij rats. Epilepsy Res 1998 Jan; 29(2): 167–73PubMedCrossRef Przewlocka B, Lason W, Turchan J, et al. Anatomical and functional aspects of mu opioid receptors in epileptic WAG/Rij rats. Epilepsy Res 1998 Jan; 29(2): 167–73PubMedCrossRef
129.
Zurück zum Zitat Han SH, Cho YW, Kim CJ, et al. Mu-opioid agonist-induced activation of G-protein-coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neuroscience 1999 Apr; 90(1): 209–19PubMedCrossRef Han SH, Cho YW, Kim CJ, et al. Mu-opioid agonist-induced activation of G-protein-coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neuroscience 1999 Apr; 90(1): 209–19PubMedCrossRef
130.
Zurück zum Zitat Sander TH, Berlin W, Gscheidel N, et al. Genetic variation of the human μ-opioid receptor and susceptibility to idiopathic absence epilepsy. Epilepsy Res 2000; 39: 57–61PubMedCrossRef Sander TH, Berlin W, Gscheidel N, et al. Genetic variation of the human μ-opioid receptor and susceptibility to idiopathic absence epilepsy. Epilepsy Res 2000; 39: 57–61PubMedCrossRef
131.
Zurück zum Zitat Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998 Aug; 95(16): 9608–13PubMedCrossRef Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998 Aug; 95(16): 9608–13PubMedCrossRef
132.
Zurück zum Zitat Wang JB, Imai Y, Eppler CM, et al. Mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 1993 Nov; 90(21): 10230–4PubMedCrossRef Wang JB, Imai Y, Eppler CM, et al. Mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 1993 Nov; 90(21): 10230–4PubMedCrossRef
133.
Zurück zum Zitat Duncan S, Mercho S, Lopes-Cendes I, et al. Repeated neural tube defects and valproate monotherapy suggest a pharmacogenetic abnormality. Epilepsia 2001; 42(6): 750–3PubMedCrossRef Duncan S, Mercho S, Lopes-Cendes I, et al. Repeated neural tube defects and valproate monotherapy suggest a pharmacogenetic abnormality. Epilepsia 2001; 42(6): 750–3PubMedCrossRef
134.
Zurück zum Zitat MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991 Jul 20; 338: 131–7CrossRef MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991 Jul 20; 338: 131–7CrossRef
135.
Zurück zum Zitat Hishida R, Nau H. VPA-induced neural tube defects in mice: I. Altered metabolism of sulfur amino acids and glutathione. Teratog Carcinog Mutagen 1988; 18(2): 49–61 Hishida R, Nau H. VPA-induced neural tube defects in mice: I. Altered metabolism of sulfur amino acids and glutathione. Teratog Carcinog Mutagen 1988; 18(2): 49–61
136.
Zurück zum Zitat Ehlers K, Elmazar MA, Nau H. Methionine reduces the valproic acid induced spina bifida rate in mice without altering valproic acid kinetics. J Nutr 1996; 126: 67–75PubMed Ehlers K, Elmazar MA, Nau H. Methionine reduces the valproic acid induced spina bifida rate in mice without altering valproic acid kinetics. J Nutr 1996; 126: 67–75PubMed
137.
Zurück zum Zitat Molloy AM, Daly S, Mills JL, et al. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red cell folates: implications for folate intake recommendations. Lancet 1997; 349: 1591–3PubMedCrossRef Molloy AM, Daly S, Mills JL, et al. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red cell folates: implications for folate intake recommendations. Lancet 1997; 349: 1591–3PubMedCrossRef
138.
Zurück zum Zitat Christensen B, Arbour L, Tran P. Genetic polymorphisms in MTHFR and methionine synthase folate levels in red cells and risk of neural tube defects. Am J Med Genet 1999; 84: 151–7PubMedCrossRef Christensen B, Arbour L, Tran P. Genetic polymorphisms in MTHFR and methionine synthase folate levels in red cells and risk of neural tube defects. Am J Med Genet 1999; 84: 151–7PubMedCrossRef
139.
Zurück zum Zitat Finnell RH, Wlodarczyk BC, Craig JC, et al. Strain-dependent alterations in the expression of folate pathway genes following teratogenic exposure to valproic acid in a mouse. Am J Med Genet 1997; 70: 303–11PubMedCrossRef Finnell RH, Wlodarczyk BC, Craig JC, et al. Strain-dependent alterations in the expression of folate pathway genes following teratogenic exposure to valproic acid in a mouse. Am J Med Genet 1997; 70: 303–11PubMedCrossRef
140.
Zurück zum Zitat Gennis MA, Vemuri R, Burns EA, et al. Familial occurrence of hypersensitivity to phenytoin. Am J Med 1991; 91: 631–4PubMedCrossRef Gennis MA, Vemuri R, Burns EA, et al. Familial occurrence of hypersensitivity to phenytoin. Am J Med 1991; 91: 631–4PubMedCrossRef
141.
Zurück zum Zitat Fischer PR, Shigeoka AO. Familial occurrence of Stevens-Johnson syndrome. Am J Dis Child 1983; 137(9): 914–6PubMed Fischer PR, Shigeoka AO. Familial occurrence of Stevens-Johnson syndrome. Am J Dis Child 1983; 137(9): 914–6PubMed
142.
Zurück zum Zitat Roujeau J-C, Stern RS. Severe cutaneous adverse reactions to drugs. N Engl J Med 1994; 331(19): 1272–85PubMedCrossRef Roujeau J-C, Stern RS. Severe cutaneous adverse reactions to drugs. N Engl J Med 1994; 331(19): 1272–85PubMedCrossRef
143.
Zurück zum Zitat Roujeau JC. Pharmacogénétique des réactions médicamenteuses cutanées graves. Revue française d’allergologie et d’immunologie clinique. 2003; 43: 211–5CrossRef Roujeau JC. Pharmacogénétique des réactions médicamenteuses cutanées graves. Revue française d’allergologie et d’immunologie clinique. 2003; 43: 211–5CrossRef
144.
Zurück zum Zitat Pirmohamed M, Lin K, Chadwick D, et al. TNFα promoter region gene polymorphisms in carbamazepine-hypersensitive patients. Neurology 2001; 56: 890–6PubMedCrossRef Pirmohamed M, Lin K, Chadwick D, et al. TNFα promoter region gene polymorphisms in carbamazepine-hypersensitive patients. Neurology 2001; 56: 890–6PubMedCrossRef
145.
Zurück zum Zitat Schnyder B, Burkhart C, Schnyder-Frutig K, et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals. J Immunol 2000; 164: 6647–54PubMed Schnyder B, Burkhart C, Schnyder-Frutig K, et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals. J Immunol 2000; 164: 6647–54PubMed
146.
Zurück zum Zitat Wen-Hung C, Shuen-Iu H, Hong-Shang H, et al. A marker for Stevens-Johnson syndrome. Nature 2004 Apr; 428: 486CrossRef Wen-Hung C, Shuen-Iu H, Hong-Shang H, et al. A marker for Stevens-Johnson syndrome. Nature 2004 Apr; 428: 486CrossRef
147.
Zurück zum Zitat Schlosstein L, Terasaki PI, Bluestone R, et al. High association of an HLA-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973; 288(14): 704–6PubMedCrossRef Schlosstein L, Terasaki PI, Bluestone R, et al. High association of an HLA-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973; 288(14): 704–6PubMedCrossRef
148.
Zurück zum Zitat Martin ER, Lai EH, Gilbert JR, et al. S Ping away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67(2): 383–94PubMedCrossRef Martin ER, Lai EH, Gilbert JR, et al. S Ping away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67(2): 383–94PubMedCrossRef
149.
Zurück zum Zitat McCarthy LC, Bhatti SM, Bird MI, et al. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine [published erratum appears in Genomics 2002; 79(2): 271]. Genomics 2001; 78(3): 135–49PubMedCrossRef McCarthy LC, Bhatti SM, Bird MI, et al. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine [published erratum appears in Genomics 2002; 79(2): 271]. Genomics 2001; 78(3): 135–49PubMedCrossRef
150.
Zurück zum Zitat Hewett D, Samulesson L, Polding J, et al. Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 2002; 79(3): 305–14PubMedCrossRef Hewett D, Samulesson L, Polding J, et al. Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 2002; 79(3): 305–14PubMedCrossRef
151.
Zurück zum Zitat Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 1994; 5(6): 663–7PubMedCrossRef Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 1994; 5(6): 663–7PubMedCrossRef
152.
Zurück zum Zitat Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 12260–4PubMedCrossRef Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 12260–4PubMedCrossRef
153.
Zurück zum Zitat Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 248(6): 538–49 Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 248(6): 538–49
154.
Zurück zum Zitat The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33CrossRef The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33CrossRef
155.
156.
Zurück zum Zitat Roses AD. Pharmacogenetics place in modern medical science and practice. Life Sci 2001; 70: 1471–80CrossRef Roses AD. Pharmacogenetics place in modern medical science and practice. Life Sci 2001; 70: 1471–80CrossRef
Metadaten
Titel
Various Pharmacogenetic Aspects of Antiepileptic Drug Therapy
A Review
verfasst von
Dr Michael W. Mann
Gerard Pons
Publikationsdatum
01.02.2007
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 2/2007
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200721020-00005

Weitere Artikel der Ausgabe 2/2007

CNS Drugs 2/2007 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.