Skip to main content
Erschienen in: Breast Cancer 4/2020

01.07.2020 | Original Article

lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer

verfasst von: Yaqiong Zhang, Zhaoyun Li, Meifang Chen, Hanjun Chen, Qianyi Zhong, Lingzhi Liang, Bo Li

Erschienen in: Breast Cancer | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Long non-coding RNA (lncRNA) T-cell leukemia/lymphoma 6 (TCL6) has been reported as a potential tumor suppressor. However, its expression and function in breast cancer remain unknown. This study was performed to investigate the expression of lncRNA TCL6 in breast cancer and its clinical significance.

Methods

The survival and clinical molecular roles of TCL6 in breast cancer were analyzed. The underlying mechanism modulated by TCL6 and its correlation with immune-infiltrating cells were investigated. Gene Expression Omnibus (GEO) datasets were further used to confirm the prognostic role of TCL6.

Results

TCL6 low expression was not correlated with age, clinical stage, T stage, lymph node metastasis, distant metastasis, human epidermal growth factor 2 status, but was associated with estrogen receptor and progesterone receptor (PR) status and was an independent factor for worse survival (HR 1.876, P = 0.016). Specifically, low TCL6 expression correlated with worse prognosis in PR-negative patients. TCL6 could predict worse survival in luminal B breast cancer based on intrinsic subtypes. Immune-related pathways such as Janus kinase–signal transducer of activators of transcription were regulated by TCL6. Further finding revealed that TCL6 correlated with immune infiltrating cells such as B cells (r = 0.25, P < 0.001), CD8+ T cells (r = 0.23, P < 0.001), CD4+ T cells (r = 0.25, P < 0.001), neutrophils (r = 0.21, P < 0.001), and dendritic cells (r = 0.27, P < 0.001). TCL6 was also positively correlated with tumor-infiltrating lymphocytes infiltration and PD-1, PD-L1, PD-L2, and CTLA-4 immune checkpoint molecules (P < 0.001).

Conclusion

Our findings suggest that lncRNA TCL6 correlates with immune infiltration and may act as a useful prognostic molecular marker in breast cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef
2.
Zurück zum Zitat Biglia N, D'Alonzo M, Sgro LG, Tomasi Cont N, Bounous V, Robba E. Breast cancer treatment in mutation carriers: surgical treatment. Minerva Ginecol. 2016;68:548–56.PubMed Biglia N, D'Alonzo M, Sgro LG, Tomasi Cont N, Bounous V, Robba E. Breast cancer treatment in mutation carriers: surgical treatment. Minerva Ginecol. 2016;68:548–56.PubMed
3.
Zurück zum Zitat Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Breast cancer version 2.2015. J Natl Compr Cancer Netw. 2015;13:448–75.CrossRef Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Breast cancer version 2.2015. J Natl Compr Cancer Netw. 2015;13:448–75.CrossRef
4.
Zurück zum Zitat Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat. 2010;120:293–308.CrossRef Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat. 2010;120:293–308.CrossRef
5.
Zurück zum Zitat Payne SJ, Bowen RL, Jones JL, Wells CA. Predictive markers in breast cancer—the present. Histopathology. 2008;52:82–90.CrossRef Payne SJ, Bowen RL, Jones JL, Wells CA. Predictive markers in breast cancer—the present. Histopathology. 2008;52:82–90.CrossRef
6.
Zurück zum Zitat Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287–301.CrossRef Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287–301.CrossRef
7.
Zurück zum Zitat Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.CrossRef Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.CrossRef
8.
Zurück zum Zitat Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79.CrossRef Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79.CrossRef
9.
Zurück zum Zitat Isin M, Dalay N. LncRNAs and neoplasia. Clin Chim Acta. 2015;444:280–8.CrossRef Isin M, Dalay N. LncRNAs and neoplasia. Clin Chim Acta. 2015;444:280–8.CrossRef
10.
Zurück zum Zitat Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y, et al. LncRNA-ATB: an indispensable cancer-related long noncoding RNA. Cell Prolif. 2017;50:e12381.CrossRef Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y, et al. LncRNA-ATB: an indispensable cancer-related long noncoding RNA. Cell Prolif. 2017;50:e12381.CrossRef
11.
Zurück zum Zitat Renganathan A, Felley-Bosco E. Long noncoding rnas in cancer and therapeutic potential. Adv Exp Med Biol. 2017;1008:199–222.CrossRef Renganathan A, Felley-Bosco E. Long noncoding rnas in cancer and therapeutic potential. Adv Exp Med Biol. 2017;1008:199–222.CrossRef
12.
13.
Zurück zum Zitat Yu WD, Wang H, He QF, Xu Y, Wang XC. Long noncoding RNAs in cancer-immunity cycle. J Cell Physiol. 2018;233:6518–23.CrossRef Yu WD, Wang H, He QF, Xu Y, Wang XC. Long noncoding RNAs in cancer-immunity cycle. J Cell Physiol. 2018;233:6518–23.CrossRef
14.
Zurück zum Zitat Malih S, Saidijam M, Malih N. A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumour Biol. 2016;37:1479–85.CrossRef Malih S, Saidijam M, Malih N. A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumour Biol. 2016;37:1479–85.CrossRef
15.
Zurück zum Zitat Su H, Sun T, Wang H, Shi G, Zhang H, Sun F, et al. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget. 2017;8:5789–99.CrossRef Su H, Sun T, Wang H, Shi G, Zhang H, Sun F, et al. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget. 2017;8:5789–99.CrossRef
16.
Zurück zum Zitat Bertucci F, Chaffanet M, Birnbaum D. An ICGC major achievement in breast cancer: a comprehensive catalog of mutations and mutational signatures. Chin Clin Oncol. 2017;6:4.CrossRef Bertucci F, Chaffanet M, Birnbaum D. An ICGC major achievement in breast cancer: a comprehensive catalog of mutations and mutational signatures. Chin Clin Oncol. 2017;6:4.CrossRef
17.
Zurück zum Zitat Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.CrossRef Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.CrossRef
18.
Zurück zum Zitat Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.CrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.CrossRef
19.
Zurück zum Zitat Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–10.CrossRef Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–10.CrossRef
20.
Zurück zum Zitat Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.CrossRef Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.CrossRef
21.
Zurück zum Zitat Liu Y, Sharma S, Watabe K. Roles of lncRNA in breast cancer. Front Biosci (Sch Ed). 2015;7:94–108.CrossRef Liu Y, Sharma S, Watabe K. Roles of lncRNA in breast cancer. Front Biosci (Sch Ed). 2015;7:94–108.CrossRef
22.
Zurück zum Zitat Bin X, Hongjian Y, Xiping Z, Bo C, Shifeng Y, Binbin T. Research progresses in roles of LncRNA and its relationships with breast cancer. Cancer Cell Int. 2018;18:179.CrossRef Bin X, Hongjian Y, Xiping Z, Bo C, Shifeng Y, Binbin T. Research progresses in roles of LncRNA and its relationships with breast cancer. Cancer Cell Int. 2018;18:179.CrossRef
23.
Zurück zum Zitat Saitou M, Sugimoto J, Hatakeyama T, Russo G, Isobe M. Identification of the TCL6 genes within the breakpoint cluster region on chromosome 14q32 in T-cell leukemia. Oncogene. 2000;19:2796–802.CrossRef Saitou M, Sugimoto J, Hatakeyama T, Russo G, Isobe M. Identification of the TCL6 genes within the breakpoint cluster region on chromosome 14q32 in T-cell leukemia. Oncogene. 2000;19:2796–802.CrossRef
24.
Zurück zum Zitat Tao S, Wang W, Liu P, Wang H, Chen W. Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN. Korean J Physiol Pharmacol. 2019;23:449–58.CrossRef Tao S, Wang W, Liu P, Wang H, Chen W. Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN. Korean J Physiol Pharmacol. 2019;23:449–58.CrossRef
25.
Zurück zum Zitat Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.CrossRef Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.CrossRef
26.
Zurück zum Zitat Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adhes Migr. 2012;6:547–53.CrossRef Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adhes Migr. 2012;6:547–53.CrossRef
27.
Zurück zum Zitat Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000;5(Suppl 1):37–44.CrossRef Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000;5(Suppl 1):37–44.CrossRef
28.
Zurück zum Zitat Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.CrossRef Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.CrossRef
29.
Zurück zum Zitat Groner B, von Manstein V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017;451:1–14.CrossRef Groner B, von Manstein V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017;451:1–14.CrossRef
30.
Zurück zum Zitat Zhang C, Ben A, Reville J, Calabrese V, Villa NN, Bandyopadhyay M, et al. Immunotherapeutic impact of toll-like receptor agonists in breast cancer. Anticancer Agents Med Chem. 2015;15:1134–40.CrossRef Zhang C, Ben A, Reville J, Calabrese V, Villa NN, Bandyopadhyay M, et al. Immunotherapeutic impact of toll-like receptor agonists in breast cancer. Anticancer Agents Med Chem. 2015;15:1134–40.CrossRef
31.
Zurück zum Zitat Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.CrossRef Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.CrossRef
32.
Zurück zum Zitat Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ, et al. Chemokine (C–C motif) ligand 5 is involved in tumor-associated dendritic cell-mediated colon cancer progression through non-coding RNA MALAT-1. J Cell Physiol. 2015;230:1883–944.CrossRef Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ, et al. Chemokine (C–C motif) ligand 5 is involved in tumor-associated dendritic cell-mediated colon cancer progression through non-coding RNA MALAT-1. J Cell Physiol. 2015;230:1883–944.CrossRef
33.
Zurück zum Zitat Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T, et al. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep. 2017;37:1545–54.CrossRef Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T, et al. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep. 2017;37:1545–54.CrossRef
34.
Zurück zum Zitat Saleh R, Toor SM, Khalaf S, Elkord E. Breast cancer cells and PD-1/PD-L1 blockade upregulate the expression of PD-1, CTLA-4, TIM-3 and LAG-3 immune checkpoints in CD4(+) T cells. Vaccines (Basel). 2019;7:149.CrossRef Saleh R, Toor SM, Khalaf S, Elkord E. Breast cancer cells and PD-1/PD-L1 blockade upregulate the expression of PD-1, CTLA-4, TIM-3 and LAG-3 immune checkpoints in CD4(+) T cells. Vaccines (Basel). 2019;7:149.CrossRef
35.
Zurück zum Zitat Goltz D, Gevensleben H, Vogt TJ, Dietrich J, Golletz C, Bootz F, et al. CTLA4 methylation predicts response to anti-PD-1 and anti-CTLA-4 immunotherapy in melanoma patients. JCI Insight. 2018;3:96793.CrossRef Goltz D, Gevensleben H, Vogt TJ, Dietrich J, Golletz C, Bootz F, et al. CTLA4 methylation predicts response to anti-PD-1 and anti-CTLA-4 immunotherapy in melanoma patients. JCI Insight. 2018;3:96793.CrossRef
Metadaten
Titel
lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer
verfasst von
Yaqiong Zhang
Zhaoyun Li
Meifang Chen
Hanjun Chen
Qianyi Zhong
Lingzhi Liang
Bo Li
Publikationsdatum
01.07.2020
Verlag
Springer Japan
Erschienen in
Breast Cancer / Ausgabe 4/2020
Print ISSN: 1340-6868
Elektronische ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-020-01048-5

Weitere Artikel der Ausgabe 4/2020

Breast Cancer 4/2020 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.