Skip to main content
Erschienen in: medizinische genetik 2/2019

Open Access 16.07.2019 | Schwerpunktthema: NGS aktuell

Long-read sequencing in human genetics

verfasst von: Dr. rer. nat. Florian Kraft, Univ.-Prof. Dr. med. Ingo Kurth

Erschienen in: medizinische genetik | Ausgabe 2/2019

Abstract

Sanger sequencing revolutionized molecular genetics 40 years ago. However, next-generation sequencing technologies became further game changers and shaped our current view on genome structure and function in health and disease. Although still at the very beginning, third-generation sequencing methods, also referred to as long-read sequencing technologies, provide exciting possibilities for studying structural variations, epigenetic modifications, or repetitive elements and complex regions of the genome. We discuss the advantages and pitfalls of current long-read sequencing methods with a focus on nanopore sequencing, summarize respective applications and provide an outlook on the potential of these novel methods.

Initial sequencing technologies and short-read next-generation sequencing

Determining the nucleic acid sequence has shaped our view of genome structure and function. Back in 1968, Wu and Kaiser used primer extension methods to identify a short sequence of the bacteriophage lambda [62], whereas 5 years later, Maxam and Gilbert determined the sequence of the lactose-repressor binding site by chemical cleavage [21]. Subsequently, the widespread method using chain-terminating dideoxynucleotides by Frederick Sanger and colleagues has fostered sequencing since the mid-1970s [42, 51]. Sanger sequencing culminated in the sequencing of the human genome and is still relevant for targeted resequencing [27, 37, 61]. However, the advent of massively parallel sequencing (next-generation sequencing, NGS) turned out to be another game changer and revolutionized human genetics. Within 10 years, NGS led to a dramatic increase in knowledge on genetic variation and allowed fast and accurate diagnostics of clinically relevant germline and somatic mutations [45]. Different methods using semiconductors (Ion Torrent), pyrosequencing (Roche), sequencing by ligation (Applied Biosystems), and the widely used sequencing by synthesis with reversible terminators (Solexa, Illumina) enabled gene panel, whole-exome, and whole-genome sequencing within a few days at moderate costs [43]. However, both Sanger sequencing and NGS technologies deliver only short-read DNA fragments within the range of 50–1000 bases. The short-reads prevent analysis of complex genomic loci, repetitive elements, or variant phasing (haplotyping) and result in inefficient and incomplete genome assemblies. Moreover, PCR amplification of sequencing templates generates artefacts and precludes detection of native base modifications. Several of these shortcomings can be overcome by third-generation sequencing technologies (TGS), also referred to as long-read sequencing in the following.

Nanopore sequencing

The idea to sequence long fragments of DNA and RNA without PCR amplification and nucleotide labeling had its origins as early as the 1980s, but has only become feasible after a technology using nanopores recently reached market maturity (Oxford Nanopore Technologies®, ONT, Oxford, UK) [14, 34]. In nanopore sequencing, a tiny protein pore (Mycobacterium smegmatis porin A, MspA, or Escherichia coli Curlin sigma S‑dependent growth subunit G, CsgG) is embedded in an electrically resistant polymer membrane and an ionic current is passed through this nanopore by setting a voltage across the membrane. When DNA or RNA passes through the pore via a helicase, this creates a characteristic change in the current, which provides information on the respective nucleotides in the nanopore (Fig. 1a; Table 1). The technology does not depend on a polymerase and allows sequencing of native DNA and RNA and the detection of various chemical modifications (e.g., methylation) of nucleic acids [12]. The longest reads achieved with the current method comprise a length of more than 2 million bases of DNA in a row.
Table 1
Comparison of long-read sequencing methods
 
Device
Device costs
Output max (avg) in Gb
Read length (avg/max)
Costs per Gb
Run time
Accuracy
Multiplexing capacity
Long read
Consensus read
ONT
Flongle
$
2 (1)
5–35 kb/>2 Mb
$$$
0.5–48 h
>Q10
>Q30
96
MinION
$
30 (15)
$$
GridION
$$
150 (75)
$$
PromethION
$$$
15 Tb (4–6 Tb)
$
0.5–72 h
PacBio
RS II
$$$$
2 (1)
5–15 kb/>60 kb
$$$$
0.5–6 h
>Q10
384
Sequel
$$$
50a/20b (8–10)
5–30 kb/>200 kb
$$$
0.5–20 h
>Q30
Sequel II
?
300a/100b (?)
?
0.5–30 h
Costs in “$” are given in relation to each other, but without applying list prices
ONT Oxford Nanopore Technologies (ONT, Oxford, UK), PacBio Pacific Biosciences (Pacific Biosciences of California, Inc., Menlo Park, CA, USA)
aCircular consensus mode
bContinuous long-read mode

SMRT sequencing

In single-molecule real-time (SMRT) sequencing, a single DNA polymerase molecule is immobilized at the bottom of picoliter wells called zero-mode waveguides (ZMWs). These wells are small enough to allow real-time recording of individual fluorescence signals on excitation by a laser when labeled nucleotides are progressively incorporated by the polymerase during the replication process (Fig. 1b; Table 1; [54]). The technology, commercialized by Pacific Biosciences® (Pacific Biosciences of California, Inc., Menlo Park, CA, USA), produces an average read length of 10–30 kb, but reads can exceed 80 kb [60]. Circular DNAs serve as a sequencing template and can be sequenced multiple times to provide higher accuracy consensus sequences. Base modifications affect the speed of nucleotide incorporation, which enables SMRT sequencing to detect modified bases.

Other approaches

Currently there are only a few alternatives to assessing long stretches of nucleic acids. Synthetic long read (SLR) technologies are offered by Illumina® or by emulsion-based sequencing from 10X Genomics®. However, both techniques are built on classical Illumina short-read sequencing and are in fact not TGS technologies. BioNano Genomics® uses an optical mapping method to mark sequences in long DNA fragments (500 bases – megabases) which are imaged and allow long-range genome mapping and detection of structural variants (Saphyr system).

Applications of long-read sequencing in human genetics

The first applications of long-read sequencing were restricted to the sequencing of smaller genomes such as bacteria. However, with improvements in chemistry, human genome sequencing became feasible [29]. In contrast to short-reads, these technologies enable unambiguous mapping of reads such as in regions of high homology, low complexity, or in pseudogenes. Also, the phasing of alleles (generation of haplotypes) is facilitated by long reads and is possible without information on the parental SNPs. This also allows whether genetic variants occur on the same allele or on opposite strands to be distinguished. Recent examples demonstrated that complete haplotyping of highly complex regions, including killer cell immunoglobin-like receptor (KIR) and human leukocyte antigen (HLA) loci can be performed using long-read technologies [1]. With improvements in the read lengths, as yet unresolved regions of the human genome, such as low-copy repeats, telomeres or centromeres (for sequencing of the Y‑chromosome centromere see [30]), become accessible [39].
An obvious advantage of long-read sequencing is the detection of structural variations (SVs), including the detection of balanced chromosomal rearrangements. There are several studies demonstrating the successful identification of constitutive [50], complex “chromothrypsis” [11], or somatic genomic rearrangements [16, 25]. Exact characterization of breakpoints for larger indels [36] or the detection of fusion gene products [32] are possible with long-read approaches. Long-read whole genome sequencing can identify thousands of SVs that may escape NGS and allows otherwise missed disease-causative genomic aberrations to be discovered [8, 12, 53]. The identification of SVs from TGS data may also require lower coverage than with NGS [11].
Long-read sequencing also enables studying larger repeat-expansions that escape PCR-based approaches. Repetitive elements can be evaluated with high precision, for example, for the FMR1-associated Fragile X‑syndrome repeat and determination of its repeat-stability-relevant AGG interruptions [3]. Larger repeats such as the facioscapulohumeral muscular dystrophy (FSHD)-associated D4Z4 repeat array have also been fully sequenced by TGS [44]. Using long-read sequencing, novel expansions of intronic TTTCA and TTTTA repeats of SAMD12 have been reported in benign adult familial myoclonic epilepsy [28] and repeat expansions in NOTCH2NLC have recently been associated with a neuronal intranuclear inclusion disease [57]. The highly similar sequences of the tandem repeats can be directly assessed from the raw signal (Fig. 2). Cas9-based enrichments, e.g., of disease-causing repetitive or other genomic regions make TGS more feasible for routine diagnostic applications and allow several genomic loci to be analyzed in one assay. Utilizing the ONT Flongle for these targeted approaches enables the costs of TGS-based analysis to be further reduced.
The feasibility of long-read sequencing to detect unusual mutation mechanisms was recently reported for the exonization of an intronic LINE-1 element inserted into the DMD gene in a patient with muscular dystrophy [24]. Another example of an unusual mutation is a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the TAF1 locus, which causes an endemic type of X‑linked dystonia parkinsonism [2].
Previous sequencing technologies provided only limited access to the state of nucleic acid modifications. In principle, any base modification that affects the current in nanopore sequencing (Fig. 3) or the nucleotide incorporation time in SMRT sequencing is recorded in the raw signals. It allows, for example, discrimination between 5‑methylcytosine and 5‑hydroxymethylcytosine, or detection of N6-methyladenosine [48, 56]. This unique feature of TGS enables SV, SNV, and the methylation status of genomic loci to be analyzed in parallel and may improve the molecular diagnostics, for example, of cancer and imprinting disorders. Not only the landscape of alternative splicing can be investigated by reading through entire isoforms [33], but the various base modifications present on native RNA molecules can also be detected using this PCR-free method [18]. Moreover, native CpG methylation and chromatin accessibility can be studied in parallel using long reads [38]. Table 2 provides an overview of current long-read sequencing applications.
Table 2
Examples of applications of long-read sequencing
Applications
Highly polymorphic regions
HLA [59], KIR [49]
Infection
Antibiotic resistance [7], Ebola [47], gonorrhea [23], West Nile virus, Zika [26], meningitis [6], tuberculosis [19], sepsis
Methylation analysis [20, 22, 38]
Microbiome analysis [35, 46, 55]
Pseudogene discrimination
CYP2D6 [40], IKBKG [4], PKD1 [5], SMN1
Repeat structure/expansions
ABCA7 [13], C9orf72, FMR1, HTT, INS, MUC1, NOTCH2NLC, SAMD12, SCA2, SCA3, SCA10, SCA17
RNA isoform detection [9, 58]
Translocations
BCR-ABL [31], t(X;20) [15]
Structural variants [12, 50]
STR profiling [10]

Challenges of long-read sequencing

Preparing of libraries for long-read sequencing is straightforward; however, there are several pitfalls in terms of obtaining optimal sequencing libraries. A major drawback of SMRT sequencing is the fixed number of µ‑wells per flow cell, which means that shorter or no sequencing templates per well reduce the overall output. In contrast, individual pores in nanopore sequencing can sequence up to several thousand molecules; however, very large DNA molecules tend to block respective pores. A major challenge in TGS sequencing is the high sequencing error rate, but higher coverage and optimized filtering strategies can improve consensus accuracy [14]. The release of a new ONT “linear consensus sequencing” (LCS) chemistry will provide better results, such as the “circular consensus sequencing” (CCS) chemistry used by PacBio. Another issue is the relatively large raw data file size, which requires a high demand for data management and storage especially for nanopore sequencing applications. PCR-free target enrichment strategies for nanopore sequencing are hardly available, but interesting approaches using CRISPR/Cas9 are under development. Cas9 is used to cleave and directly capture genomic regions via hybridization and immobilization on beads before sequencing. Moreover, software applications for nanopore sequencing may be useful for in silico target enrichment. ‘ReadUntil’ is a software application that allows fragments of interest to be selected by reversing the voltage across utilized nanopores and extruding DNA on the fly [41]. Bioinformatics strategies for the processing of long-read sequencing data are rapidly evolving; however, it is currently unclear which applications are the most suitable [52]. Notably, base calling performance is lower for modified bases owing to the lack of suited reference sequences and computational models. Table 3 provides an overview of some of the most commonly used bioinformatics tools in long-read sequencing.
Table 3
Selected bioinformatics tools for analyzing nanopore (N) and/or PacBio (P) data
Application
Tool
 
URL
Basecalling
Guppy
N
SMRT Analysis
P
Alignment
BLASR
P
LAST
N/P
minimap2
N/P
NGMLR
N/P
Assembly
Canu
N/P
FALCON
N/P
Flye
N/P
wtdbg2
N/P
Error correction
HALC
P
Medeka
N
Nanopolish
N
SV calling
Nplnv
N
Pbsv
P
Sniffles
N/P
SVIM
N/P
SNP calling
DeepVariant
N/P
GATK
N/P
Medeka
N
Nanopolish
N
DNA/RNA modifications
Nanopolish
N
SMRT Analysis
P
Tombo
N
Tandem repeat analysis
NanoSatellite
N
nanoSTRique
N
Pbsv
P
STRetch
P

Outlook

Long-read sequencing has a huge potential and will provide additional insight into genome biology and human genetics. Several disease-relevant genes and pathomechanisms that escape short-read sequencing technologies will be elucidated by long-read technologies. The technologies will soon become an integral part of molecular genetic diagnostics. An open question is whether the techniques will mature such that they will even replace short-read sequencing technologies, array-based analyses, and cytogenetics. Applications of TGS to detect SVs and tandem repeats are already superior to NGS and almost ready for use in molecular routine diagnostics. In contrast, the higher error rate of nanopore sequencing currently makes SNV detection only suitable in targeted sequencing approaches that generate a high coverage (> 100×). The lack of commercially available kits for TGS enrichments and gold-standard bioinformatics solutions is at the moment one of the bottlenecks for usage in molecular diagnostics. Besides the aforementioned applications, the portability of small nanopore sequencers opens up additional opportunities for field applications in a nearly lab-free environment. This is illustrated by surveillance of pathogens in disease epidemics, such as the real-time tracking of Ebola distribution [47] or the molecular mapping of Zika virus spread in Brazil [17]. Are we perhaps heading for times of “sequencing at home” or in outpatient clinics and medical practices, with direct data transfer to genetic specialists? Other open questions concern the speed of nanopore technologies from library preparation to obtaining the first sequencing results within minutes to a few hours: Can we tackle fast sepsis diagnostics or intraoperative molecular genotyping? Undoubtedly, genetics is becoming increasingly important in many fields of health care and the possibilities for addressing the plentiful questions by TGS are rapidly evolving.

Conclusions for clinical practice

  • Different long-read sequencing platforms are available that either depend on an immobilized polymerase and fluorescently labelled nucleotides or on biological (nano)pores.
  • Long-read sequencing is mostly applied in research, but has the potential to be used in many fields of molecular genetic diagnostics.
  • Long-read sequencing has several advantages compared with short-read sequencing methods and is well suited to, for example, addressing structural variations, epigenetic modifications, and repetitive elements of the genome.

Acknowledgements

We apologize that many outstanding papers in the field have not been cited owing to the limitations of space. We would like to point out that developments in the field of long-read sequencing illustrate changes in the current research practice toward rapid publication of results on preprint servers such as bioRXiv (https://​www.​biorxiv.​org/​), the nanopore community platform (https://​nanoporetech.​com/​community), Twitter, or as blogs. In our opinion, this practice fosters lively discussion and speedy innovation, and may serve as a contemporary model to complement the often viscous and delaying peer-review processes.

Compliance with ethical guidelines

Conflict of interest

F. Kraft and I. Kurth declare that they have no competing interests.
For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Ameur A, Kloosterman WP, Hestand MS (2019) Single-molecule sequencing: towards clinical applications. Trends Biotechnol 37:72–85CrossRefPubMed Ameur A, Kloosterman WP, Hestand MS (2019) Single-molecule sequencing: towards clinical applications. Trends Biotechnol 37:72–85CrossRefPubMed
2.
Zurück zum Zitat Aneichyk T, Hendriks WT, Yadav R et al (2018) Dissecting the causal mechanism of X‑linked Dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172:897–909e21CrossRefPubMedPubMedCentral Aneichyk T, Hendriks WT, Yadav R et al (2018) Dissecting the causal mechanism of X‑linked Dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172:897–909e21CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Ardui S, Race V, Zablotskaya A et al (2017) Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing. Hum Mutat 38:324–331CrossRefPubMed Ardui S, Race V, Zablotskaya A et al (2017) Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing. Hum Mutat 38:324–331CrossRefPubMed
5.
Zurück zum Zitat Borràs DM, Vossen RHAM, Liem M, Buermans HPJ, Dauwerse H, van Heusden D, Gansevoort RT, den JT Dunnen, Janssen B, Peters DJM, Losekoot M, Anvar SY (2017) Detecting variants in polycystic kidney disease patients by single-molecule long-read sequencing. Human Mutation 38(7):870–879CrossRefPubMedPubMedCentral Borràs DM, Vossen RHAM, Liem M, Buermans HPJ, Dauwerse H, van Heusden D, Gansevoort RT, den JT Dunnen, Janssen B, Peters DJM, Losekoot M, Anvar SY (2017) Detecting variants in polycystic kidney disease patients by single-molecule long-read sequencing. Human Mutation 38(7):870–879CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Brønstad Brynildsrud O, Eldholm V, Bohlin J, Uadiale K, Obaro S, Caugant SA (2018) Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proceedings of the National Academy of Sciences 115(21):5510–5515CrossRef Brønstad Brynildsrud O, Eldholm V, Bohlin J, Uadiale K, Obaro S, Caugant SA (2018) Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proceedings of the National Academy of Sciences 115(21):5510–5515CrossRef
7.
Zurück zum Zitat Břinda K, Hanage WP et al (2018) Lineage calling can identify antibiotic resistant clones within minutes. bioRxiv 403204 Břinda K, Hanage WP et al (2018) Lineage calling can identify antibiotic resistant clones within minutes. bioRxiv 403204
8.
Zurück zum Zitat Chaisson MJP, Sanders AD, Zhao X et al (2019) Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun 10:1784CrossRefPubMedPubMedCentral Chaisson MJP, Sanders AD, Zhao X et al (2019) Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun 10:1784CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Clark MB, Tunbridge EM et al (2018) Long-read sequencing reveals the splicing profile of the calcium channel gene CACNA1C in human brain. bioRxiv 260562 Clark MB, Tunbridge EM et al (2018) Long-read sequencing reveals the splicing profile of the calcium channel gene CACNA1C in human brain. bioRxiv 260562
10.
Zurück zum Zitat Cornelis S, Gansemans Y, Vander Plaetsen A‑S, Weymaere J, Willems S, Deforce D, Van Nieuwerburgh F (2019) Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Science International: Genetics 38:204–210CrossRef Cornelis S, Gansemans Y, Vander Plaetsen A‑S, Weymaere J, Willems S, Deforce D, Van Nieuwerburgh F (2019) Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Science International: Genetics 38:204–210CrossRef
11.
Zurück zum Zitat Cretu Stancu M, Van Roosmalen MJ, Renkens I et al (2017) Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 8:1326CrossRefPubMedPubMedCentral Cretu Stancu M, Van Roosmalen MJ, Renkens I et al (2017) Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 8:1326CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat De Coster W, De Roeck A, De Pooter T et al (2018) Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. bioRxiv:434118 De Coster W, De Roeck A, De Pooter T et al (2018) Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. bioRxiv:434118
13.
Zurück zum Zitat De Roeck A, Duchateau L, Van Dongen J, Cacace R, Bjerke M, Van den Bossche T, Cras P, Vandenberghe R, De Deyn PP, Engelborghs S, Van Broeckhoven C, Sleegers K (2018) An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer’s disease. Acta Neuropathologica 135(6):827–837CrossRefPubMedPubMedCentral De Roeck A, Duchateau L, Van Dongen J, Cacace R, Bjerke M, Van den Bossche T, Cras P, Vandenberghe R, De Deyn PP, Engelborghs S, Van Broeckhoven C, Sleegers K (2018) An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer’s disease. Acta Neuropathologica 135(6):827–837CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Euskirchen P, Bielle F, Labreche K et al (2017) Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol 134:691–703CrossRefPubMedPubMedCentral Euskirchen P, Bielle F, Labreche K et al (2017) Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol 134:691–703CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Faria NR, Quick J, Claro IM et al (2017) Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546:406–410CrossRefPubMedPubMedCentral Faria NR, Quick J, Claro IM et al (2017) Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546:406–410CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206CrossRefPubMed Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206CrossRefPubMed
19.
Zurück zum Zitat George S, Dingle KE et al (2018) MinION nanopore sequencing of multiple displacement amplified mycobacteria DNA direct from sputum. bioRxiv 490417 George S, Dingle KE et al (2018) MinION nanopore sequencing of multiple displacement amplified mycobacteria DNA direct from sputum. bioRxiv 490417
20.
Zurück zum Zitat Gigante S, Ritchie ME et al (2018) Using long-read sequencing to detect imprinted DNA methylation. bioRxiv 445924 Gigante S, Ritchie ME et al (2018) Using long-read sequencing to detect imprinted DNA methylation. bioRxiv 445924
22.
Zurück zum Zitat Gilpatrick T, Timp W et al (2019) Targeted nanopore sequencing with Cas9 for studies of methylation, structural variants and mutations. bioRxiv 604173 Gilpatrick T, Timp W et al (2019) Targeted nanopore sequencing with Cas9 for studies of methylation, structural variants and mutations. bioRxiv 604173
23.
Zurück zum Zitat Golparian D, Donà V, Sánchez-Busó L, Foerster S, Harris S, Endimiani A, Low N, Unemo M (2018) Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Scientific Reports. https://doi.org/10.1038/s41598-018-35750-4 Golparian D, Donà V, Sánchez-Busó L, Foerster S, Harris S, Endimiani A, Low N, Unemo M (2018) Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Scientific Reports. https://​doi.​org/​10.​1038/​s41598-018-35750-4
25.
Zurück zum Zitat Gong L, Wong CH, Cheng WC et al (2018) Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat Methods 15:455–460CrossRefPubMedPubMedCentral Gong L, Wong CH, Cheng WC et al (2018) Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat Methods 15:455–460CrossRefPubMedPubMedCentral
26.
27.
Zurück zum Zitat International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRef International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRef
28.
Zurück zum Zitat Ishiura H, Doi K, Mitsui J et al (2018) Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 50:581–590CrossRefPubMed Ishiura H, Doi K, Mitsui J et al (2018) Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 50:581–590CrossRefPubMed
29.
Zurück zum Zitat Jain M, Koren S, Miga KH et al (2018a) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345CrossRefPubMedPubMedCentral Jain M, Koren S, Miga KH et al (2018a) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Jeck WR, Lee J, Robinson H, Le LP, Iafrate AJ, Nardi V (2019) A nanopore sequencing–based assay for rapid detection of gene fusions. J Molecul Diagn 21(1):58–69CrossRefPubMed Jeck WR, Lee J, Robinson H, Le LP, Iafrate AJ, Nardi V (2019) A nanopore sequencing–based assay for rapid detection of gene fusions. J Molecul Diagn 21(1):58–69CrossRefPubMed
32.
Zurück zum Zitat Jeck WR, Lee J, Robinson H et al (2019) A Nanopore sequencing-based assay for rapid detection of gene fusions. J Mol Diagn 21:58–69CrossRefPubMed Jeck WR, Lee J, Robinson H et al (2019) A Nanopore sequencing-based assay for rapid detection of gene fusions. J Mol Diagn 21:58–69CrossRefPubMed
33.
Zurück zum Zitat Karsai G, Kraft F, Haag N et al (2019) DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J Clin Invest 129:1229–1239CrossRefPubMedPubMedCentral Karsai G, Kraft F, Haag N et al (2019) DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J Clin Invest 129:1229–1239CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Kraft F, Wesseler K, Begemann M et al (2019) Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. Clin Epigenetics 11:30CrossRefPubMedPubMedCentral Kraft F, Wesseler K, Begemann M et al (2019) Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. Clin Epigenetics 11:30CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMed Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMed
38.
Zurück zum Zitat Lee I, Razaghi R, Gilpatrick T et al (2018) Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. bioRxiv:504993CrossRef Lee I, Razaghi R, Gilpatrick T et al (2018) Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. bioRxiv:504993CrossRef
40.
Zurück zum Zitat Liau Y, Cree SL et al (2019) Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications. bioRxiv 576280 Liau Y, Cree SL et al (2019) Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications. bioRxiv 576280
43.
44.
Zurück zum Zitat Mitsuhashi S, Nakagawa S, Takahashi Ueda M et al (2017) Nanopore-based single molecule sequencing of the D4Z4 array responsible for facioscapulohumeral muscular dystrophy. Sci Rep 7:14789CrossRefPubMedPubMedCentral Mitsuhashi S, Nakagawa S, Takahashi Ueda M et al (2017) Nanopore-based single molecule sequencing of the D4Z4 array responsible for facioscapulohumeral muscular dystrophy. Sci Rep 7:14789CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35CrossRefPubMed Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35CrossRefPubMed
47.
48.
49.
Zurück zum Zitat Roe D, Vierra-Green C, Pyo C‑W, Eng K, Hall R, Kuang R, Spellman S, Ranade S, Geraghty DE, Maiers M (2017) Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes & Immunity 18(3):127–134CrossRef Roe D, Vierra-Green C, Pyo C‑W, Eng K, Hall R, Kuang R, Spellman S, Ranade S, Geraghty DE, Maiers M (2017) Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes & Immunity 18(3):127–134CrossRef
50.
Zurück zum Zitat Sanchis-Juan A, Stephens J, French CE et al (2018) Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med 10:95CrossRefPubMedPubMedCentral Sanchis-Juan A, Stephens J, French CE et al (2018) Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med 10:95CrossRefPubMedPubMedCentral
51.
52.
Zurück zum Zitat Sedlazeck FJ, Lee H, Darby CA et al (2018) Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 19:329–346CrossRefPubMed Sedlazeck FJ, Lee H, Darby CA et al (2018) Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 19:329–346CrossRefPubMed
53.
Zurück zum Zitat Seo JS, Rhie A, Kim J et al (2016) De novo assembly and phasing of a Korean human genome. Nature 538:243–247CrossRefPubMed Seo JS, Rhie A, Kim J et al (2016) De novo assembly and phasing of a Korean human genome. Nature 538:243–247CrossRefPubMed
54.
Zurück zum Zitat Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353CrossRefPubMed Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353CrossRefPubMed
56.
Zurück zum Zitat Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410CrossRefPubMed Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410CrossRefPubMed
57.
Zurück zum Zitat Sone J, Mitsuhashi S, Fujita A et al (2019) Long-read sequencing identifies GGC repeat expansion in human-specific NOTCH2NLC associated with neuronal intranuclear inclusion disease. bioRxiv:515635CrossRef Sone J, Mitsuhashi S, Fujita A et al (2019) Long-read sequencing identifies GGC repeat expansion in human-specific NOTCH2NLC associated with neuronal intranuclear inclusion disease. bioRxiv:515635CrossRef
58.
Zurück zum Zitat Tang AD, Brooks AN et al (2018) Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. bioRxiv 410183 Tang AD, Brooks AN et al (2018) Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. bioRxiv 410183
60.
Zurück zum Zitat Van Dijk EL, Jaszczyszyn Y, Naquin D et al (2018) The third revolution in sequencing technology. Trends Genet 34:666–681CrossRefPubMed Van Dijk EL, Jaszczyszyn Y, Naquin D et al (2018) The third revolution in sequencing technology. Trends Genet 34:666–681CrossRefPubMed
61.
Zurück zum Zitat Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMed Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMed
62.
Zurück zum Zitat Wu R, Kaiser AD (1968) Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol 35:523–537CrossRefPubMed Wu R, Kaiser AD (1968) Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol 35:523–537CrossRefPubMed
Metadaten
Titel
Long-read sequencing in human genetics
verfasst von
Dr. rer. nat. Florian Kraft
Univ.-Prof. Dr. med. Ingo Kurth
Publikationsdatum
16.07.2019
Verlag
Springer Medizin
Erschienen in
medizinische genetik / Ausgabe 2/2019
Print ISSN: 0936-5931
Elektronische ISSN: 1863-5490
DOI
https://doi.org/10.1007/s11825-019-0249-z

Weitere Artikel der Ausgabe 2/2019

medizinische genetik 2/2019 Zur Ausgabe

Mitteilungen der GfH

Mitteilungen der GfH

Einführung zum Thema: NGS aktuell

NGS: Gestern, heute und morgen

Mitteilungen des BVDH

Mitteilungen des BVDH