Skip to main content
Erschienen in: Digestive Diseases and Sciences 4/2017

06.02.2017 | Original Article

LRRK2: An Emerging New Molecule in the Enteric Neuronal System That Quantitatively Regulates Neuronal Peptides and IgA in the Gut

verfasst von: Tatsunori Maekawa, Hitomi Shimayama, Hiromichi Tsushima, Fumitaka Kawakami, Rei Kawashima, Makoto Kubo, Takafumi Ichikawa

Erschienen in: Digestive Diseases and Sciences | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

Leucine-rich repeat kinase 2 (LRRK2) is a recently discovered molecule associated with familial and sporadic Parkinson’s disease. It regulates many central neuronal functions such as cell proliferation, apoptosis, autophagy, and axonal extension. However, in contrast to the well-documented function of LRRK2 in central neurons, it is unclear whether LRRK2 is expressed in enteric neurons and affects the physiology of the gut.

Aims

By examining LRRK2-KO mice, this study investigated whether enteric neurons express LRRK2 and whether intestinal neuronal peptides and IgA are quantitatively changed.

Methods

Intestinal protein lysates and sections prepared from male C57BL/6 J mice were analyzed by Western blotting and immunostaining using anti-LRRK2 antibody, respectively. Intestinal neuronal peptide-mRNAs were quantified by real-time PCR in wild-type mice and LRRK2-KO mice. Intestinal IgA was quantified by ELISA. Lamina propria mononuclear cells (LPMCs) were analyzed by flow cytometry to evaluate the ratio of B1 to B2 B cells.

Results

Western analysis and immunostaining revealed that LRRK2 is expressed in enteric neurons. The amounts of mRNA for vasoactive intestinal peptide, neuropeptide Y, and substance P were increased in LRRK2-KO mice accompanied by an increment of IgA. However, the intestinal B cell subpopulations were not altered in LRRK2-KO mice.

Conclusions

For the first time, we have revealed that LRRK2 is expressed in enteric neurons and related to quantitative alterations of neuronal peptide and IgA. Our study highlights the importance of LRRK2 in enteric neurons as well as central neurons.
Literatur
1.
Zurück zum Zitat Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301.CrossRefPubMed Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301.CrossRefPubMed
2.
Zurück zum Zitat Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–921.CrossRefPubMed Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–921.CrossRefPubMed
3.
Zurück zum Zitat Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600.CrossRefPubMed Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600.CrossRefPubMed
4.
Zurück zum Zitat Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn′s disease. Nat Genet. 2008;40:955–962.CrossRefPubMedPubMedCentral Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn′s disease. Nat Genet. 2008;40:955–962.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn′s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.CrossRefPubMedPubMedCentral Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn′s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zhang FR, Huang W, Chen SM, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361:2609–2618.CrossRefPubMed Zhang FR, Huang W, Chen SM, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361:2609–2618.CrossRefPubMed
7.
Zurück zum Zitat Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci. 2005;30:151–159.CrossRefPubMed Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci. 2005;30:151–159.CrossRefPubMed
8.
Zurück zum Zitat Higashi S, Moore DJ, Colebrooke RE, et al. Expression and localization of Parkinson’s disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem. 2007;100:368–381.CrossRefPubMed Higashi S, Moore DJ, Colebrooke RE, et al. Expression and localization of Parkinson’s disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem. 2007;100:368–381.CrossRefPubMed
9.
Zurück zum Zitat Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011;12:1063–1070.CrossRefPubMedPubMedCentral Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011;12:1063–1070.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kubo M, Kamiya Y, Nagashima R, et al. LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J Neuroimmunol. 2010;229:123–128.CrossRefPubMed Kubo M, Kamiya Y, Nagashima R, et al. LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J Neuroimmunol. 2010;229:123–128.CrossRefPubMed
12.
Zurück zum Zitat Hakimi M, Selvanantham T, Swinton E, et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm. 2011;118:795–808.CrossRefPubMedPubMedCentral Hakimi M, Selvanantham T, Swinton E, et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm. 2011;118:795–808.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol. 2014;261:206–216.CrossRefPubMed Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol. 2014;261:206–216.CrossRefPubMed
15.
Zurück zum Zitat Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.CrossRefPubMed Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.CrossRefPubMed
16.
Zurück zum Zitat Coelho-Aguiar Jde M, Bon-Frauches AC, Gomes AL, et al. The enteric glia: identity and functions. Glia. 2015;63:921–935.CrossRefPubMed Coelho-Aguiar Jde M, Bon-Frauches AC, Gomes AL, et al. The enteric glia: identity and functions. Glia. 2015;63:921–935.CrossRefPubMed
17.
Zurück zum Zitat Schemann M. Control of gastrointestinal motility by the “gut brain”—the enteric nervous system. J Pediatr Gastroenterol Nutr. 2005;41:S4–6.CrossRefPubMed Schemann M. Control of gastrointestinal motility by the “gut brain”—the enteric nervous system. J Pediatr Gastroenterol Nutr. 2005;41:S4–6.CrossRefPubMed
18.
Zurück zum Zitat Genton L, Kudsk KA. Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg. 2003;186:253–258.CrossRefPubMed Genton L, Kudsk KA. Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg. 2003;186:253–258.CrossRefPubMed
19.
Zurück zum Zitat Neunlist M, Van Landeghem L, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:90–100.CrossRefPubMed Neunlist M, Van Landeghem L, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:90–100.CrossRefPubMed
20.
Zurück zum Zitat Vu JP, Million M, Larauche M, et al. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J Mol Neurosci. 2014;52:37–47.CrossRefPubMedPubMedCentral Vu JP, Million M, Larauche M, et al. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J Mol Neurosci. 2014;52:37–47.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Margolis KG, Stevanovic K, Karamooz N, et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology. 2011;141:588–598.CrossRefPubMedPubMedCentral Margolis KG, Stevanovic K, Karamooz N, et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology. 2011;141:588–598.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Duffy LC, Zielezny MA, Riepenhoff-Talty M, et al. Vasoactive intestinal peptide as a laboratory supplement to clinical activity index in inflammatory bowel disease. Dig Dis Sci. 1989;34:1528–1535.CrossRefPubMed Duffy LC, Zielezny MA, Riepenhoff-Talty M, et al. Vasoactive intestinal peptide as a laboratory supplement to clinical activity index in inflammatory bowel disease. Dig Dis Sci. 1989;34:1528–1535.CrossRefPubMed
23.
Zurück zum Zitat Magnusson KE, Stjernström I. Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology. 1982;45:239–248.PubMedPubMedCentral Magnusson KE, Stjernström I. Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology. 1982;45:239–248.PubMedPubMedCentral
24.
Zurück zum Zitat Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev. 2010;237:180–190.CrossRefPubMed Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev. 2010;237:180–190.CrossRefPubMed
25.
Zurück zum Zitat Stanisz AM, Befus D, Bienenstock J. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer’s patches, mesenteric lymph nodes, and spleen. J Immunol. 1986;136:152–156.PubMed Stanisz AM, Befus D, Bienenstock J. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer’s patches, mesenteric lymph nodes, and spleen. J Immunol. 1986;136:152–156.PubMed
26.
Zurück zum Zitat Pascual DW, Beagley KW, Kiyono H, McGhee JR. Substance P promotes Peyer’s patch and splenic B cell differentiation. Adv Exp Med Biol. 1995;371:55–59.CrossRef Pascual DW, Beagley KW, Kiyono H, McGhee JR. Substance P promotes Peyer’s patch and splenic B cell differentiation. Adv Exp Med Biol. 1995;371:55–59.CrossRef
27.
Zurück zum Zitat Pascual DW, Xu-Amano JC, Kiyono H, McGhee JR, Bost KL. Substance P acts directly upon cloned B lymphoma cells to enhance IgA and IgM production. J Immunol. 1991;146:2130–2136.PubMed Pascual DW, Xu-Amano JC, Kiyono H, McGhee JR, Bost KL. Substance P acts directly upon cloned B lymphoma cells to enhance IgA and IgM production. J Immunol. 1991;146:2130–2136.PubMed
28.
Zurück zum Zitat Fujieda S, Waschek JA, Zhang K, Saxon A. Vasoactive intestinal peptide induces S(alpha)/S(mu) switch circular DNA in human B cells. J Clin Investig. 1996;98:1527–1532.CrossRefPubMedPubMedCentral Fujieda S, Waschek JA, Zhang K, Saxon A. Vasoactive intestinal peptide induces S(alpha)/S(mu) switch circular DNA in human B cells. J Clin Investig. 1996;98:1527–1532.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ishioka C, Yoshida A, Kimata H, Mikawa H. Vasoactive intestinal peptide stimulates immunoglobulin production and growth of human B cells. Clin Exp Immunol. 1992;87:504–508.CrossRefPubMedPubMedCentral Ishioka C, Yoshida A, Kimata H, Mikawa H. Vasoactive intestinal peptide stimulates immunoglobulin production and growth of human B cells. Clin Exp Immunol. 1992;87:504–508.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Hinkle KM, Yue M, Behrouz B, et al. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener. 2012;7:25.CrossRefPubMedPubMedCentral Hinkle KM, Yue M, Behrouz B, et al. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener. 2012;7:25.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kawashima R, Kawamura YI, Kato R, Mizutani N, Toyama-Sorimachi N, Dohi T. IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology. 2006;131:6130–6141.CrossRef Kawashima R, Kawamura YI, Kato R, Mizutani N, Toyama-Sorimachi N, Dohi T. IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology. 2006;131:6130–6141.CrossRef
32.
Zurück zum Zitat Zhang Q, Pan Y, Yan R, et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol. 2015;16:918–926.CrossRefPubMed Zhang Q, Pan Y, Yan R, et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol. 2015;16:918–926.CrossRefPubMed
33.
Zurück zum Zitat Davies P, Hinkle KM, Sukar NN, et al. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J. 2013;453:101–113.CrossRefPubMedPubMedCentral Davies P, Hinkle KM, Sukar NN, et al. Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J. 2013;453:101–113.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat West AB, Cowell RM, Daher JP, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522:2465–2480.CrossRefPubMedPubMedCentral West AB, Cowell RM, Daher JP, et al. Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. J Comp Neurol. 2014;522:2465–2480.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–569.CrossRefPubMed Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–569.CrossRefPubMed
36.
Zurück zum Zitat Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12:354–367.CrossRefPubMed Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12:354–367.CrossRefPubMed
37.
Zurück zum Zitat Häbig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson’s disease key player. Neurogenetics. 2008;9:83–94.CrossRefPubMed Häbig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson’s disease key player. Neurogenetics. 2008;9:83–94.CrossRefPubMed
38.
39.
Zurück zum Zitat Kawakami F, Yabata T, Ohta E, et al. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS ONE. 2012;7:e30834.CrossRefPubMedPubMedCentral Kawakami F, Yabata T, Ohta E, et al. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS ONE. 2012;7:e30834.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol. 2013;304:949–957.CrossRef Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol. 2013;304:949–957.CrossRef
41.
Zurück zum Zitat Michalski CW, Autschbach F, Selvaggi F, et al. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn’s disease. Am J Surg. 2007;193:476–481.CrossRefPubMed Michalski CW, Autschbach F, Selvaggi F, et al. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn’s disease. Am J Surg. 2007;193:476–481.CrossRefPubMed
42.
Zurück zum Zitat Del Valle-Pinero AY, Sherwin LB, Anderson EM, Caudle RM, Henderson WA. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis. World J Gastroenterol. 2015;21:155–163.CrossRefPubMedPubMedCentral Del Valle-Pinero AY, Sherwin LB, Anderson EM, Caudle RM, Henderson WA. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis. World J Gastroenterol. 2015;21:155–163.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Winston JH, Li Q, Sarna SK. Paradoxical regulation of ChAT and nNOS expression in animal models of Crohn’s colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2013;305:295–302.CrossRef Winston JH, Li Q, Sarna SK. Paradoxical regulation of ChAT and nNOS expression in animal models of Crohn’s colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2013;305:295–302.CrossRef
44.
Zurück zum Zitat Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008;1:96–109.CrossRefPubMed Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008;1:96–109.CrossRefPubMed
45.
Zurück zum Zitat Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1:11–22.CrossRefPubMed Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1:11–22.CrossRefPubMed
46.
47.
Zurück zum Zitat Kang SH, Jin BR, Kim HJ, et al. Lactoferrin combined with retinoic acid stimulates B1 Cells to express IgA isotype and gut-homing molecules. Immune Netw. 2015;15:37–43.CrossRefPubMedPubMedCentral Kang SH, Jin BR, Kim HJ, et al. Lactoferrin combined with retinoic acid stimulates B1 Cells to express IgA isotype and gut-homing molecules. Immune Netw. 2015;15:37–43.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Kubo M, Nagashima R, Ohta E, et al. Leucine-rich repeat kinase 2 is a regulator of B cell function, affecting homeostasis, BCR signaling, IgA production, and TI antigen responses. J Neuroimmunol. 2016;292:1–8.CrossRefPubMed Kubo M, Nagashima R, Ohta E, et al. Leucine-rich repeat kinase 2 is a regulator of B cell function, affecting homeostasis, BCR signaling, IgA production, and TI antigen responses. J Neuroimmunol. 2016;292:1–8.CrossRefPubMed
Metadaten
Titel
LRRK2: An Emerging New Molecule in the Enteric Neuronal System That Quantitatively Regulates Neuronal Peptides and IgA in the Gut
verfasst von
Tatsunori Maekawa
Hitomi Shimayama
Hiromichi Tsushima
Fumitaka Kawakami
Rei Kawashima
Makoto Kubo
Takafumi Ichikawa
Publikationsdatum
06.02.2017
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 4/2017
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4476-3

Weitere Artikel der Ausgabe 4/2017

Digestive Diseases and Sciences 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.