Skip to main content
Erschienen in: European Journal of Nutrition 4/2018

27.03.2017 | Original Contribution

Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium

Erschienen in: European Journal of Nutrition | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Mangiferin is a naturally occurring glucosylxanthone with beneficial effects on glucose and lipid homeostasis. This study investigates the potential therapeutic effect of Mangiferin in perivascular adipose tissue (PVAT) and whether it contributes to regulating insulin action in the endothelium.

Methods

Palmitate challenge evoked ROS-associated endoplasmic reticulum stress (ER stress) and NLRP3 inflammasome activation in PVAT. The conditioned medium from PA-stimulated PVAT was prepared to induce endothelial insulin resistance, and improved endothelium-dependent vasodilation in response to insulin was detected in vitro and in vivo.

Results

Mangiferin treatment enhanced LKB1-dependent AMPK activity and suppressed ER stress with downregulation of TXNIP induction, leading to the inhibition of NLRP3 inflammasome activation evidenced by attenuated NLRP3 and cleaved caspase-1 expression as well as reduced IL-1β secretion. Moreover, Mangiferin restored insulin-mediated Akt and eNOS phosphorylations with increased NO production, immunohistochemistry examination of adipocytes, and endothelial tissue in high-fat diet-fed mice also showed that oral administration of Mangiferin inhibited ER stress and NLRP3 induction in PVAT, and then effectively prevented insulin resistance in the vessel endothelium.

Conclusions

Taken together, these results revealed that Mangiferin suppressed ER stress-associated NLRP3 inflammasome activation in PVAT through regulation of AMPK activity, which prevented endothelial insulin resistance. These findings suggested that the amelioration of PVAT dysfunction may be a therapeutic strategy for the prevention of endothelial insulin resistance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE (2012) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126:1067–1078. doi:10.1161/CIRCULATIONAHA.112.104489 CrossRefPubMedPubMedCentral Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE (2012) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126:1067–1078. doi:10.​1161/​CIRCULATIONAHA.​112.​104489 CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, Huang F, Liu B, Liu K (2014) Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89:19–28. doi:10.1016/j.phrs.2014.07.006 CrossRefPubMed Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, Huang F, Liu B, Liu K (2014) Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89:19–28. doi:10.​1016/​j.​phrs.​2014.​07.​006 CrossRefPubMed
5.
Zurück zum Zitat Skilton MR, Sérusclat A, Sethu AH, Brun S, Bernard S, Balkau B, Moulin P, Bonnet F (2009) Noninvasive measurement of carotid extra-media thickness: associations with cardiovascular risk factors and intima-media thickness. JACC Cardiovasc Imaging 2:176–182. doi:10.1016/j.jcmg.2008.09.013 CrossRefPubMed Skilton MR, Sérusclat A, Sethu AH, Brun S, Bernard S, Balkau B, Moulin P, Bonnet F (2009) Noninvasive measurement of carotid extra-media thickness: associations with cardiovascular risk factors and intima-media thickness. JACC Cardiovasc Imaging 2:176–182. doi:10.​1016/​j.​jcmg.​2008.​09.​013 CrossRefPubMed
8.
Zurück zum Zitat Ringseis R, Eder K, Mooren FC, Krüger K (2015) Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev 21:58–68PubMed Ringseis R, Eder K, Mooren FC, Krüger K (2015) Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev 21:58–68PubMed
9.
11.
Zurück zum Zitat Oslowski CM, Hara T, B O’Sullivan-Murphy, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16:265–273. doi:10.1016/j.cmet.2012.07.005 CrossRefPubMedPubMedCentral Oslowski CM, Hara T, B O’Sullivan-Murphy, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16:265–273. doi:10.​1016/​j.​cmet.​2012.​07.​005 CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Müller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulinsensitivity. Cell Metab 12:593–605. doi:10.1016/j.cmet.2010.11.011 CrossRefPubMedPubMedCentral Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Müller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulinsensitivity. Cell Metab 12:593–605. doi:10.​1016/​j.​cmet.​2010.​11.​011 CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y (2015) Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep 5:10344. doi:10.1038/srep10344 CrossRefPubMedPubMedCentral Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y (2015) Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep 5:10344. doi:10.​1038/​srep10344 CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63:3626–3636. doi:10.2337/db14-0006 CrossRefPubMedPubMedCentral Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63:3626–3636. doi:10.​2337/​db14-0006 CrossRefPubMedPubMedCentral
20.
23.
25.
26.
Zurück zum Zitat Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O’Reilly ME, Tierney AC, Morine MJ, Alcala-Diaz JF, Lopez-Miranda J, O’Connor DP, O’Neill LA, McGillicuddy FC, Roche HM (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64:2116–2128. doi:10.2337/db14-1098 CrossRefPubMed Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O’Reilly ME, Tierney AC, Morine MJ, Alcala-Diaz JF, Lopez-Miranda J, O’Connor DP, O’Neill LA, McGillicuddy FC, Roche HM (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64:2116–2128. doi:10.​2337/​db14-1098 CrossRefPubMed
28.
Zurück zum Zitat Hardie DG (1999) Roles of the amp-activated/snf1 protein kinase family in the response to cellular stress. Biochem Soc Symp 64:13–27PubMed Hardie DG (1999) Roles of the amp-activated/snf1 protein kinase family in the response to cellular stress. Biochem Soc Symp 64:13–27PubMed
31.
Zurück zum Zitat Dutta KK, Nishinaka Y, Masutani H, Akatsuka S, Aung TT, Shirase T, Lee WH, Yamada Y, Hiai H, Yodoi J, Toyokuni S (2005) Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. Lab Invest 85:798–807. doi:10.1038/labinvest.3700280 CrossRefPubMed Dutta KK, Nishinaka Y, Masutani H, Akatsuka S, Aung TT, Shirase T, Lee WH, Yamada Y, Hiai H, Yodoi J, Toyokuni S (2005) Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. Lab Invest 85:798–807. doi:10.​1038/​labinvest.​3700280 CrossRefPubMed
32.
Metadaten
Titel
Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium
Publikationsdatum
27.03.2017
Erschienen in
European Journal of Nutrition / Ausgabe 4/2018
Print ISSN: 1436-6207
Elektronische ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-017-1441-z

Weitere Artikel der Ausgabe 4/2018

European Journal of Nutrition 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.