Skip to main content
Erschienen in: BMC Pregnancy and Childbirth 1/2020

Open Access 01.12.2020 | Research article

Maternal cardiovascular adaptation to twin pregnancy: a population-based prospective cohort study

verfasst von: Maria C. Adank, Zoe A. Broere-Brown, Romy Gonçalves, M. Kamran Ikram, Vincent W. V. Jaddoe, Eric A. P. Steegers, Sarah Schalekamp-Timmermans

Erschienen in: BMC Pregnancy and Childbirth | Ausgabe 1/2020

Abstract

Background

In women with singleton pregnancies, maternal adaptation is considered a stress test for later life cardiovascular disease. The aim of this study was to assess maternal adaptation in women with twin pregnancies compared to women carrying singletons during and after pregnancy.

Methods

This was a population based prospective cohort study of 91 women with twin pregnancies and 8107 women carrying singletons. The association of twin pregnancy and maternal adaptation was examined using regression analyses. In pregnancy, we measured soluble fms-like tyrosine kinase-1 (sFLT-1), placental growth (PGF) factor, systolic (SBP) and diastolic blood pressure (DBP), and the occurrence of pre-eclampsia (PE). After pregnancy, measurements were obtained on SBP and DBP, cardiac function, retinal calibres, intima media thickness and distensibility of the common carotid artery.

Results

sFLT-1 and PGF concentrations were higher in early (13.4 weeks) and mid-pregnancy (20.4 weeks) in women with twin pregnancies compared to women with singleton pregnancies. Women with twin pregnancies had a different DBP pattern in pregnancy. Women with twin pregnancies were more likely to have PE (odds ratio 3.63; 95% CI [1.76 to 7.48]). Six and ten years after pregnancy, no differences in maternal adaptation were observed.

Conclusions

Women with twin pregnancies show an altered adaptation during pregnancy compared to women with singleton pregnancies. This is associated with a substantially increased incidence of PE, but does not lead to persistent altered maternal adaptation years after pregnancy.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12884-020-02994-w.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ART
Assisted reproductive techniques
BMI
Body mass index
CCA
Common carotid artery
CI
Confidence interval
CVD
Cardiovascular disease
DBP
Diastolic blood pressure
IMT
Intima media thickness
OR
Odds ratio
MoM
Multiple of the Median
PE
Pre-eclampsia
PGF
Placental growth factor
PWV
Pulse wave velocity
SBP
Systolic blood pressure
SD
Standard Deviation
sFLT-1
Soluble fms-like tyrosine kinase 1
UtA-RI
Uterine artery resistance index

Background

In pregnancy, extensive maternal cardiovascular adaptations lead to proper implantation and placental and fetal growth and development. Women failing to meet the hemodynamic demands of pregnancy are more likely to develop complications such as pre-eclampsia (PE). These women also have an increased risk to develop cardiovascular disease (CVD) later in life [1]. The associations may be explained by persisting endothelial damage of pregnancy and/or a pre-existing unfavourable cardiovascular risk profile [2, 3]. Therefore, pregnancy can be considered as a hemodynamic stress test for long term CVD [3].
Twin pregnancy has been marked as a risk factor of PE [46], and may be explained by the higher demand of both foetuses from the mother. This leads to different maternal adaptation to pregnancy [79], in response to altered placentation with increased anti-angiogenic factors as soluble fms-like tyrosine kinase-1 (sFLT-1) and pro-angiogenic factors as placental growth factor (PGF). The adaptation to pregnancy is more often inadequate in women with twin pregnancies conceived after assisted reproductive techniques (ART), leading to an even more increased risk of PE [10]. This relation may be explained by the fact that women who conceived after ART are more often older [1113]. They are also more often nulliparous, which is associated with PE [14].
Given this knowledge on the association of twin pregnancies with PE and the association of PE with CVD, we hypothesize that women with twin pregnancies have an increased risk of future CVD, which is mediated by the increased risk of PE. Therefore, the aim of this study was to investigate maternal adaptation throughout pregnancy and years after pregnancy in women with twin pregnancies compared to women with singleton pregnancies.

Methods

Study design

This study was embedded within The Generation R Study. Generation R is an ongoing population-based prospective cohort study from early pregnancy onwards [15]. Mothers with a delivery date between April 2002 and January 2006 were eligible for participation. Standardized examinations were performed within mothers during pregnancy, and within both mother and child 6 and 10 years later. The Medical Ethical Committee of The Erasmus Medical Centre in Rotterdam approved the study (MEC 198.782/2001/31). Written informed consent was obtained from all mothers. Women with a live born singleton or twin pregnancy with at least one measurement available on cardiovascular parameters during and after pregnancy were included in this study. Women who participated more than one time in the cohort were excluded (i.e. with different pregnancies). The total population for analyses comprised 8198 women (Additional file 1: Figure S1). All women were invited to standardized visits three times during pregnancy and 6 and 10 years after pregnancy at the research centre.

Pregnancy

Early in pregnancy (median 13.4 weeks of gestational age, 90% range 10.5 to 17.2) and in mid-pregnancy (median 20.4 weeks of gestational age, 90% range 18.8 to 23.1), we obtained maternal non-fasting venous blood samples [16, 17]. sFLT-1 and PGF concentrations were determined. sFLT-1 and PGF vary with gestational age and concentrations are therefore not normally distributed. We constructed sFLT-1 and PGF gestational-age-adjusted standardized Multiple of the Median (MoM) scores, which we used in all analyses [18].
Late in pregnancy (median 30.2 weeks of gestational age, 90% range 28.9 to 32.2) we performed Doppler velocimetry of the uterine arteries to measure the uterine artery resistance index (UtA-RI) as described previously [19]. Doppler measurements showed a high intraclass correlation coefficient value (> 0.80) with corresponding low coefficient of variation value (< 10%), which indicates adequate reproducibility [20].
Trained research assistants wearing usual clothing (i.e. no white coats) measured systolic and diastolic blood pressures in early, mid-, and late pregnancy in the right upper arm [21]. Before the measurement, women sat in an upright position with back support and relaxed for 5 min. The mean value of two blood pressure readings over a 60-s interval was documented.

Pre-eclampsia

We obtained information on clinically diagnosed PE from cross-checked original hospital charts [22]. Given this study design (prospective cohort study), we defined the occurrence of PE according to the ISSHP criteria that were in effect at the time of the study, as new onset systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg after 20 weeks of gestation and the presence of proteinuria with no evidence of urinary tract infection in a random urine sample [23].

Six years after pregnancy

Six years (median 6.1 years, 90% range 5.6 to 7.6) after pregnancy blood pressure was measured with the validated automatic sphygmomanometer Datascope Accutorr Plus (Paramus, NJ, USA) [24]. Two-dimensional M-mode echocardiographic measurements were performed as described previously [25]. To assess aortic stiffness we used carotid-femoral pulse wave velocity (PWV) [26, 27]. Retinal vascular calibres were assessed by taking digital retinal photographs [28].

Ten years after pregnancy

Ten years after pregnancy (median 9.8 years, 90% range 9.4 to 10.6) blood pressure was measured with the validated automatic sphygmomanometer Datascope Accutorr Plus (Paramus, NJ, USA) [24]. The common carotid artery (CCA) was measured using the ATL-Philips Model HDI 5000 (Seattle, WA, USA) or the Logiq E9 (GE Medical Systems, Wauwatosa, WI, USA) device 10 years after pregnancy. Carotid distensibility is a measure of carotid artery elasticity that has been introduced as a risk factor for cardiovascular disease [29]. Intima media thickness (IMT) is a measure of subclinical atherosclerosis associated with cardiovascular risk factors. Common carotid distensibility and IMT were assessed with the subjects in supine position, with the head tilted slightly to the contralateral side for the measurement in the common carotid artery. A region at 1.5 cm proximal to the origin of the bulb of the carotid artery was identified with the use of ultrasound. The end-diastolic diameter (D), the absolute stroke change in diameter during systole (ΔD), the relative stroke change in diameter (ΔD/D) and IMT were computed as the mean of three successive recordings from both left and right side. The cross-sectional arterial wall distensibility coefficient was calculated according to the following equation: distensibility coefficient = 2ΔD/(Dxpulse pressure) (10− 3 kPa). In a reproducibility study performed among 50 subjects, the intraclass correlation coefficient was 0.90 for distensibility and 0.91 for IMT.

Covariates

We obtained information on maternal age, ethnicity, educational level, parity, smoking and method of conception through questionnaires repeatedly applied during pregnancy. At study enrolment during pregnancy, we measured maternal height (cm) and weight (kg) without shoes. Body mass index (BMI) was calculated (kg/m2). Community midwifery and hospital registries provided information on gestational age at birth, birth weight and placental weight.

Statistical analysis

In this study, all available women with twin pregnancies (n = 91) were compared to all women with singleton pregnancies (n = 8107). Independent Student’s t, Mann-Whitney U and Chi-square tests were performed to test the differences in baseline characteristics between women with singleton and twin pregnancies.

Pregnancy

Linear regression analyses were performed to relate women with singleton or twin pregnancies to placental biomarkers, blood pressure, uterine artery Doppler measurements, and cardiovascular outcomes at follow-up. Logistic regression analyses were performed to relate women with singleton or twin pregnancies to PE. For placental biomarkers, blood pressure in pregnancy and uterine artery Doppler measurements basic models were adjusted for maternal age and gestational age at time of measurement. If MoMs were used, measurements were not additionally adjusted for gestational age at time of measurement. In the multivariate analyses, we additionally adjusted for ethnicity, educational level, parity, smoking, method of conception and BMI at intake. For PE, the basic model was adjusted for gestational age at birth. To examine the role of the placenta, placental weight was added to the placenta model, and the mediating role of early pregnancy sFLT-1 and PGF as proxy for placental function were used. We analysed the direct causal mediation effects through mediation analyses. To explore blood pressure trajectories in pregnancy between women with singleton and twin pregnancies repeated measurement regression models were performed using the mixed model procedure with maternal blood pressure as repeated outcome measure. These models take the correlation between repeated measurements of the same woman into account.

Maternal outcomes years after pregnancy

For outcomes 6 and 10 years after pregnancy, a linear regression basic model was adjusted for maternal age and interval time. The multivariate analyses were additionally adjusted for ethnicity, educational level, parity, smoking, method of conception and BMI at intake. When assessing retinal arteriolar calibre, we additionally adjusted for retinal venular calibre and vice versa. PWV was additionally adjusted for pulse at the time of PWV assessment.
Missing values in covariates were multiple-imputed, by using Markov chain Monte Carlo approach [30]. Five imputed data sets were created and analysed together. Statistical analyses were performed using Statistical Package of Social Sciences version 21.0 for Windows (SPSS, IBM Corp., Armonk, NY, USA), Statistical Analysis System version 9.4 (SAS, Institute Inc., Cary, NC, USA) and R version 3.5.0 (R Foundation, Vienna, Austria).

Results

Table 1 shows maternal characteristics during pregnancy and 6 and 10 years after pregnancy. Woman with twin pregnancies were more often of Western ethnicity, multiparous, older, and had more pregnancies conceived by ART (Table 1).
Table 1
Baseline characteristics (n = 8198)
 
Singleton
(n = 8107)
Twin
(n = 91)
P-value
Intake
 Maternal age (years)
29.5 (5.3)
32.1 (4.4)
< 0.001
 Non-Western ethnicity (%)
3660 (45.1)
27 (29.7)
0.01
 Lower education (%)
4978 (61.4)
46 (50.5)
0.05
 Nulliparous (%)
4761 (58.7)
44 (48.4)
0.04
 Assisted conception (%)
539 (6.6)
14 (15.4)
0.001
 BMI at intake (kg/m2)
24.1 (19.5 to 34.0)
24.1 (19.1 to 36.0)
0.37
 Smoking during pregnancy (%)
2382 (29.4)
28 (30.8)
0.68
Early pregnancy
 sFLT (pg./mL)
5.1 (2.2 to 12.0)
8.1 (3.6 to 15.8)
< 0.001
 PGF (pg./mL)
43.4 (17.5 to 157.7)
46.6 (16.2 to 226.2)
0.62
 SBP (mmHg)
115.7 (12.4)
116.8 (12.0)
0.45
 DBP (mmHg)
68.4 (9.6)
68.9 (10.1)
0.68
Mid-pregnancy
 sFLT (pg./mL)
5.0 (1.9 to 14.3)
9.5 (2.7 to 24.6)
< 0.001
 PGF (pg./mL)
202.4 (89.1 to 525.4)
405.0 (108.4 to 1183.8)
< 0.001
 SBP (mmHg)
116.8 (12.1)
118.9 (12.1)
0.11
 DBP (mmHg)
67.3 (9.4)
67.5 (9.8)
0.82
Late pregnancy
 SBP (mmHg)
118.3 (12.1)
119.5 (12.1)
0.42
 DBP (mmHg)
69.2 (9.4)
71.0 (11.5)
0.10
Birth
 Gestational age at birth (weeks)
40.1 (36.7 to 42.1)
37.0 (30.8 to 39.5)
< 0.001
 Premature birth < 37 weeks (%)
442 (5.5)
45 (49.5)
< 0.001
 Premature birth < 34 weeks (%)
113 (1.4)
13 (14.3)
< 0.001
 Birth weight (g)
3398.9 (561.7)
2470.2 (620.4)
< 0.001
 Weight placenta (g)
633.4 (147.6)
1016.5 (235.7)
< 0.001
 Pre-eclampsia (%)
168 (2.1)
11 (12.1)
< 0.001
Six years after pregnancy
 Interval time (years)
6.1 (5.6 to 7.6)
6.1 (5.7 to 7.4)
0.75
 BMI (kg/m2)
24.8 (19.8 to 36.0)
24.4 (19.5 to 39.1)
0.61
 Central retinal arteriolar calibre (SDS)
145.3 (16.9)
143.5 (17.3)
0.56
 Central retinal venular calibre (SDS)
206.9 (22.5)
206.3 (24.5)
0.89
 Pulse wave velocity (m/s)
7.6 (1.1)
7.4 (0.9)
0.45
 Fractional shortening
37.0 (4.9)
36.4 (4.6)
0.37
 Aortic root diameter (mm)
27.7 (2.9)
27.8 (2.8)
0.98
 Left atrial diameter (mm)
33.9 (3.8)
34.2 (3.8)
0.48
 Left ventricular mass (g)
127.0 (84.0 to 187.0)
133.0 (88.2 to 200.0)
0.05
 SBP (mmHg)
119.4 (13.1)
119.3 (13.7)
0.97
 DBP (mmHg)
71.0 (10.1)
70.1 (10.5)
0.51
Ten years after pregnancy
 Interval time (years)
9.8 (9.4 to 10.6)
9.8 (9.3 to 10.4)
0.27
 BMI (kg/m2)
24.9 (20.0 to 36.2)
24.9 (20.3 to 39.9)
0.63
 IMT (mm)
0.6 (0.1)
0.6 (0.1)
0.22
 Distensibility (10−3/kPa)
31.3 (18.8 to 49.1)
31.9 (18.6 to 51.4)
0.37
 SBP (mmHg)
114.6 (12.8)
111.2 (13.4)
0.13
 DBP (mmHg)
68.6 (8.2)
67.3 (9.3)
0.40
Data are represented as n (%), mean (SD) or as the median with the 90% range. Differences in baseline characteristics were tested using Student’s t, Mann-Whitney U and Chi-Square tests. Abbreviations: BMI Body mass index, sFLT Soluble fms-like tyrosine kinase 1, PGF Placental growth factor, SBP Systolic blood pressure, DBP Diastolic blood pressure, IMT Intima media thickness

Pregnancy

Women with twin pregnancies had higher levels of sFLT-1 and PGF in early and mid-pregnancy (Table 2).
Table 2
Association of outcome measures in women with a previous singleton or twin pregnancy
  
Singleton
(n = 8107)
Twin
(n = 91)
   
   
sFLT MoM
β (95% CI)
PGF MoM
β (95% CI)
  
Early pregnancy
Basic model
Reference
0.61 (0.45 to 0.78)*
0.55 (0.35 to 0.76)*
  
 
Confounder model
Reference
0.64 (0.48 to 0.79)*
0.56 (0.36 to 0.77)*
  
Mid-pregnancy
Basic model
Reference
1.06 (0.85 to 1.26)*
1.02 (0.87 to 1.17)*
  
 
Confounder model
Reference
1.10 (0.90 to 1.30)*
1.05 (0.90 to 1.20)*
  
  
Singleton
(n = 5133)
Twin
(n = 61)
   
Six years
  
Arteriolar retinal
calibre (SDS)
Venular retinal
calibre (SDS)
PWV
(m/s)
 
 
Basic model
Reference
−1.50 (−4.09 to 1.08)
1.95 (−1.51 to 5.42)
−0.21 (−0.59 to 0.18)
 
 
Confounder model
Reference
−1.43 (−6.51 to 3.65)
1.81 (−4.94 to 8.57)
−0.20 (−0.59 to 0.19)
 
   
Aortic root
diameter (mm)
Left atrial
diameter (mm)
Left ventricular
mass (g)
Fractional
Shortening
 
Basic model
Reference
−0.24 (−0.60 to 0.12)
0.26 (−0.24 to 0.75)
7.65 (−0.25 to 15.56)
−0.81 (−2.05 to 0.43)
 
Confounder model
Reference
−0.39 (−1.08 to 0.31)
0.15 (−0.72 to 1.02)
5.82 (−1.49 to 13.12)
−0.85 (−2.09 to 0.40)
   
SBP (mmHg)
DBP (mmHg)
  
 
Basic model
Reference
−1.92 (−5.20 to 1.37)
−2.20 (−4.77 to 0.37)
  
 
Confounder model
Reference
−1.85 (−5.04 to 1.34)
−1.97 (−4.45 to 0.50)
  
  
Singleton
(n = 4655)
Twin
(n = 53)
   
Ten years
  
IMT (mm)
Distensibility (10−3/kPa)
SBP (mmHg)
DBP (mmHg)
 
Basic model
Reference
0.00 (−0.02 to 0.02)
2.53 (−0.31 to 5.36)
−4.44 (−8.87 to −0.01)*
−2.50 (−5.37 to 0.37)
 
Confounder model
Reference
0.00 (−0.02 to 0.02)
2.10 (−0.67 to 4.87)
−3.38 (−7.54 to 0.78)
−1.96 (−4.75 to 0.84)
Values are regression coefficients with the 95% confidence interval (CI) and are based on linear regression models. Women with the use of antihypertensive medication were excluded for blood pressure analyses. Basic model: adjusted for maternal age at intake and interval time. Arteriolar retinal calibre is additionally adjusted for venular calibre and vice versa. PWV is additionally adjusted for pulse at the time of PWV assessment. Confounder model: basic model additionally adjusted for ethnicity, educational level, parity, smoking, method of conception, and BMI at intake. Abbreviations: sFLT Soluble fms-like tyrosine kinase 1, PGF Placental growth factor, PWV Pulse wave velocity, IMT Intima media thickness, SBP Systolic blood pressure, DBP Diastolic blood pressure, BMI Body mass index. * p-value < 0.05
In total, 179 women (2.2%) developed PE; 168 women (2.1%) with a singleton and 11 women (12.1%) with twin pregnancies. Of these 179 women, 20 (11.2%) had early onset PE (< 34 weeks of gestation). Women with twin pregnancies had a higher risk to develop PE (OR 3.63; 95% CI 1.76 to 7.48) compared to women with singleton pregnancies. The risk to develop PE was even higher if we took placental weight into account (OR 6.76; 95% CI 2.81 to 16.24). This was mediated by placental function represented by sFLT-1 and PGF levels in early pregnancy. Despite this mediation through placental function, women with twin pregnancies still had a higher incidence of PE (Table 3). Women with twin pregnancies and PE showed no difference in sFLT-1 and PGF compared to women with twin pregnancies without PE (data not shown).
Table 3
Association of pre-eclampsia in women with a singleton or twin pregnancy
  
PE
OR (95% CI)
 
Mediation
OR (95% CI)
 
Singleton
Twin
 
sFLT / PGF ratio
Basic model
Reference
2.90 (2.03 to 4.16)
Direct effect
2.18 (1.38 to 3.43)
Confounder model
Reference
3.63 (1.76 to 7.48)
Direct effect
2.63 (1.05 to 6.57)
Placenta model
Reference
6.76 (2.81 to 16.24)
Direct effect
4.35 (1.43 to 13.22)
Data are represented as the odds ratio (OR) with the 95% confidence interval (CI) and are based on logistic regression models. The represented direct effect is the OR of women with twin pregnancies to develop PE if you take the mediating role of sFLT and PGF in early pregnancy into account. Basic model: adjusted for maternal age at intake and gestational age at birth. Confounder model: basic model additionally adjusted for ethnicity, educational level, parity, smoking, method of conception and BMI at intake. Placenta model: confounder model additionally adjusted for placental weight. Abbreviations: PE Pre-eclampsia, sFLT Soluble fms-like tyrosine kinase 1, PGF Placental growth factor
Figure 1 shows blood pressure patterns during pregnancy for women with twin pregnancies compared to women with a singleton pregnancies. A different DBP (p < 0.05), but not SBP (p-value 0.89) pattern was observed for women with twin pregnancies compared to women with singleton pregnancies with a cross-over in the DBP pattern around 15 weeks of gestation. This difference in DBP pattern was still observed after adjustment for confounders. Women with twin pregnancies and PE start with a higher DBP in early pregnancy compared to women with twin pregnancies without PE (p = 0.02). No difference in SBP or DBP pattern was observed.

Maternal outcomes years after pregnancy

Twin pregnancies were not associated with SBP or DBP 6 years after pregnancy. Women with twin pregnancies had a lower SBP 10 years after pregnancy (β −4.44, 95% CI −8.87 to −0.01). After adjustment for confounders this association was no longer significant. Twin pregnancies were not associated with DBP 10 years after pregnancy (Table 2). Six years after pregnancy, no differences were found for women with twin pregnancies compared to women with singleton pregnancies regarding microvasculature, including arteriolar and venular retinal calibres. In addition, also no differences were found in macrovasculature 6 years after pregnancy, including PWV, left atrial diameter, aortic root diameter, fractional shortening and left ventricular mass. Ten years after pregnancy, no difference was found for IMT or distensibility as measure for elasticity in the CCA of women with twin pregnancies compared to women with singleton pregnancies (Table 2). We found no difference in SBP, DBP, retinal microvasculature, echocardiographic, and CCA measurements 6 and 10 years after pregnancy in women with twin pregnancies and PE compared to women with twin pregnancies without PE (data not shown).

Discussion

Our study shows a different maternal adaptation to pregnancy in women with twin pregnancies compared to women with singleton pregnancies. Women with twin pregnancies have higher levels of sFLT-1 and PGF, a different DBP pattern in pregnancy and a higher risk for PE. Years after pregnancy, there seem to be no remaining cardiovascular differences in women with previous twin pregnancies compared to those with singleton pregnancies.
The increased risk of PE in women with twin pregnancies found in this study is in agreement with previous studies [46]. It was previously suggested that this increased risk was mediated through increased levels of sFLT-1 as a result of higher placental mass [9]. In our study the higher risk of PE in women with twin pregnancies could not be fully explained by higher placental mass, since women with twin pregnancies still show an increased risk of PE, even after taking placental weight, sFLT-1 and PGF into account. This suggests that the increased risk of PE in women with twin pregnancies is not merely the result of different placentation.
The average trajectory of blood pressure in pregnancy which decreases until mid-pregnancy and increases in late pregnancy, has been well described in women with singleton pregnancies [31]. For DBP, a different pattern was found in women with twin pregnancies compared to women with singleton pregnancies. We speculate a different physiologic basis for this difference. The higher DBP from mid-pregnancy onwards may be the effect of an increased intravascular volume, resulting in an increased DBP from mid-pregnancy onwards. Previously, Gaillard et al. showed that second to third trimester increase in BP is associated with an increased risk of gestational hypertensive disorders [32]. This is in agreement with our findings, showing that women with twin pregnancies have a higher increase in DBP from mid- to late pregnancy compared to women with singleton pregnancies resulting in a higher risk of PE.
Inadequate adaptation to pregnancy reveals diminished maternal reserves of women’s cardiovascular system. Therefore, pregnancy acts as a medical stress test for women [33]. It is thought that inadequate adaptation to pregnancy through endothelial dysfunction leads to a cascade of events that progresses to atherosclerosis and contributes to the risk of CVD [34]. Additionally, women at risk of CVD have risk factors as obesity, hyperlipidaemia and hypertension, also associated with endothelial dysfunction [35]. Since twin pregnancies demand a greater maternal adaptation, we hypothesized that women with twin pregnancies might have an increased risk of CVD by the increased risk of PE associated with persistent endothelial damage. Our study shows that women with twin pregnancies have a different adaptation during pregnancy compared to women with singleton pregnancies, but years after pregnancy these differences seem to resolve, not leading to an increased risk of CVD. Additionally we repeated the same analyses in women with twin pregnancies and PE compared to women with twin pregnancies without PE. No associations were found for women with twin pregnancies and PE. This may be explained by the relative small number of women with twin pregnancies in our study. In previous studies performed in women with singleton pregnancies, we did find associations years after pregnancy in women with PE compared to women without PE [28, 36]. However, it might also be that PE in women with twin pregnancies is potentially a different phenotype compared to PE in women with singleton pregnancies, independently from cardiovascular predisposition of mothers. Therefore we assume that PE and the link with CVD in women with singleton pregnancies can not be compared to PE in women with twin pregnancies. We hypothesize that the differences in adaptation during pregnancy in women with twin pregnancies are the result of the higher demand of both foetuses rather than failing pregnancy as cardiovascular stress test resulting in a higher risk of cardiovascular disease later in life.

Strengths and limitations

A limitation is that the number of women with twin pregnancies in this study is rather low compared to the number of women with singleton pregnancies, therefore we performed the same analyses in a smaller number of selected women with singleton pregnancies (n = 199) matched on maternal age, ethnicity and level of education. Since this resulted in the same conclusions, we assume that the difference in group size did not influence our results. Due to incomplete information on chorionicity, no multivariate analysis was performed. Another limitation is that since this is a cohort study, measurements were restricted to standardized moments as part of the study design. We did not obtain outcomes of all women years after pregnancy. Six and ten years after pregnancy we obtained data from 63% at most. Nonresponse analyses showed that women with no attendance 10 years after pregnancy tended to be younger at intake, to be of non-Western descent, to have a lower level of education, to be more often nulliparous, to have a higher BMI and to smoke more often during pregnancy. They were also more likely to have an earlier gestational age at birth, more often delivered prematurely and their children had a lower birth weight (Table 4). If the selection mechanisms have been related to both determinant and outcome, this may have led to biased effect estimates. However, given the prospective nature of the study, this seems unlikely. It is impossible though, to exclude that this may influence our results. Another limitation is that we were restricted to pre-specified visiting moments. Therefore, 6 and 10 years after pregnancy may not be the best moments to measure cardiovascular adaptation. However, previous studies in women with singleton pregnancies did find differences for women with PE within this time period [28, 36].
Table 4
Maternal characteristics stratified for response ten years after pregnancy (n = 8198)
 
Visit ten years after pregnancy
(n = 4708)
No visit ten years after pregnancy
(n = 3490)
P-value
Maternal characteristics
 Age at intake (years)
30.6 (4.9)
28.0 (5.4)
< 0.001
 Non-Western ethnicity (%)
1734 (36.8)
1953 (56.0)
< 0.001
 Lower education (%)
2483 (52.7)
2541 (72.8)
< 0.001
 Nulliparous (%)
2900 (61.6)
1905 (54.6)
< 0.001
 Assisted conception (%)
280 (5.9)
274 (7.9)
0.01
 BMI at intake (kg/m2)
24.0 (19.6 to 33.2)
24.4 (19.3 to 35.0)
0.002
 Smoking during pregnancy (%)
1198 (25.4)
1212 (34.7)
< 0.001
Birth
 Gestational age at birth (weeks)
40.1 (36.9 to 42.1)
40.0 (36.3 to 42.1)
< 0.001
 Premature birth < 37 weeks (%)
241 (5.1)
246 (7.1)
< 0.001
 Premature birth < 34 weeks (%)
58 (1.2)
68 (1.9)
0.01
 Birth weight (g)
3411.0 (559.3)
3336.7 (601.0)
< 0.001
 Weight placenta (g)
640.0 (153.7)
644.2 (168.4)
0.79
Data are represented as n (%), mean (SD) or as the median with the 90% range. Differences in baseline characteristics were tested using Student’s t, Mann-Whitney U and Chi-Square tests. Abbreviations: BMI Body mass index

Conclusions

This study demonstrates that in pregnancy, differences in adaptation are present in women with a twin pregnancies compared to women with singleton pregnancies. These differences seem to resolve years after pregnancy. Therefore, women with twin pregnancies show no direct association with CVD later in life compared to women with singleton pregnancies.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12884-020-02994-w.

Acknowledgments

The Generation R Study is conducted by the Erasmus Medical Centre in close collaboration with the School of Law and the Faculty of Social Sciences at the Erasmus University, Rotterdam, the Municipal Health Service, Rotterdam area and the Stichting Trombosedienst and Artsenlaboratorium Rijnmond (Star-MDC), Rotterdam. We gratefully acknowledge the contribution of children and their parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam.
The study has been approved by the Medical Ethical Committee of the Erasmus Medical Centre in Rotterdam on December 17th 2001 (MEC 198.782/2001/31). Written consent was obtained from all participants.
Not applicable.

Competing interests

None declared.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bellamy L, Casas JP, Hingorani AD, et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.PubMedPubMedCentralCrossRef Bellamy L, Casas JP, Hingorani AD, et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Germain AM, Romanik MC, Guerra I, et al. Endothelial dysfunction: a link among preeclampsia, recurrent pregnancy loss, and future cardiovascular events? Hypertension. 2007;49(1):90–5.PubMedCrossRef Germain AM, Romanik MC, Guerra I, et al. Endothelial dysfunction: a link among preeclampsia, recurrent pregnancy loss, and future cardiovascular events? Hypertension. 2007;49(1):90–5.PubMedCrossRef
3.
Zurück zum Zitat Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325(7356):157–60.PubMedPubMedCentralCrossRef Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325(7356):157–60.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Coonrod DV, Hickok DE, Zhu K, et al. Risk factors for preeclampsia in twin pregnancies: a population-based cohort study. Obstet Gynecol. 1995;85(5 Pt 1):645–50.PubMedCrossRef Coonrod DV, Hickok DE, Zhu K, et al. Risk factors for preeclampsia in twin pregnancies: a population-based cohort study. Obstet Gynecol. 1995;85(5 Pt 1):645–50.PubMedCrossRef
5.
Zurück zum Zitat Campbell DM, MacGillivray I. Preeclampsia in twin pregnancies: incidence and outcome. Hypertens Pregnancy. 1999;18(3):197–207.PubMedCrossRef Campbell DM, MacGillivray I. Preeclampsia in twin pregnancies: incidence and outcome. Hypertens Pregnancy. 1999;18(3):197–207.PubMedCrossRef
6.
Zurück zum Zitat Long PA, Oats JN. Preeclampsia in twin pregnancy--severity and pathogenesis. Aust N Z J Obstet Gynaecol. 1987;27(1):1–5.PubMedCrossRef Long PA, Oats JN. Preeclampsia in twin pregnancy--severity and pathogenesis. Aust N Z J Obstet Gynaecol. 1987;27(1):1–5.PubMedCrossRef
7.
Zurück zum Zitat Ros HS, Cnattingius S, Lipworth L. Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. Am J Epidemiol. 1998;147(11):1062–70.PubMedCrossRef Ros HS, Cnattingius S, Lipworth L. Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. Am J Epidemiol. 1998;147(11):1062–70.PubMedCrossRef
8.
Zurück zum Zitat Yu CK, Papageorghiou AT, Boli A, et al. Screening for pre-eclampsia and fetal growth restriction in twin pregnancies at 23 weeks of gestation by transvaginal uterine artery Doppler. Ultrasound Obstet Gynecol. 2002;20(6):535–40.PubMedCrossRef Yu CK, Papageorghiou AT, Boli A, et al. Screening for pre-eclampsia and fetal growth restriction in twin pregnancies at 23 weeks of gestation by transvaginal uterine artery Doppler. Ultrasound Obstet Gynecol. 2002;20(6):535–40.PubMedCrossRef
9.
Zurück zum Zitat Bdolah Y, Lam C, Rajakumar A, et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am J Obstet Gynecol. 2008;198(4):428 e1–6.CrossRef Bdolah Y, Lam C, Rajakumar A, et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am J Obstet Gynecol. 2008;198(4):428 e1–6.CrossRef
10.
Zurück zum Zitat Wang YA, Chughtai AA, Farquhar CM, et al. Increased incidence of gestational hypertension and preeclampsia after assisted reproductive technology treatment. Fertil Steril. 2016;105(4):920–6 e2.PubMedCrossRef Wang YA, Chughtai AA, Farquhar CM, et al. Increased incidence of gestational hypertension and preeclampsia after assisted reproductive technology treatment. Fertil Steril. 2016;105(4):920–6 e2.PubMedCrossRef
11.
Zurück zum Zitat Russell RB, Petrini JR, Damus K, et al. The changing epidemiology of multiple births in the United States. Obstet Gynecol. 2003;101(1):129–35.PubMed Russell RB, Petrini JR, Damus K, et al. The changing epidemiology of multiple births in the United States. Obstet Gynecol. 2003;101(1):129–35.PubMed
12.
Zurück zum Zitat Bortolus R, Parazzini F, Chatenoud L, et al. The epidemiology of multiple births. Hum Reprod Update. 1999;5(2):179–87.PubMedCrossRef Bortolus R, Parazzini F, Chatenoud L, et al. The epidemiology of multiple births. Hum Reprod Update. 1999;5(2):179–87.PubMedCrossRef
13.
Zurück zum Zitat Bulmer. The Biology of Twinning in Man. New York: Clarendon; 1970. Bulmer. The Biology of Twinning in Man. New York: Clarendon; 1970.
14.
15.
Zurück zum Zitat Kooijman MN, Kruithof CJ, van Duijn CM, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–64.PubMedCrossRef Kooijman MN, Kruithof CJ, van Duijn CM, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–64.PubMedCrossRef
16.
Zurück zum Zitat Kruithof CJ, Kooijman MN, van Duijn CM, et al. The generation R study: biobank update 2015. Eur J Epidemiol. 2014;29(12):911–27.PubMedCrossRef Kruithof CJ, Kooijman MN, van Duijn CM, et al. The generation R study: biobank update 2015. Eur J Epidemiol. 2014;29(12):911–27.PubMedCrossRef
17.
Zurück zum Zitat Coolman M, Timmermans S, de Groot CJ, et al. Angiogenic and fibrinolytic factors in blood during the first half of pregnancy and adverse pregnancy outcomes. Obstet Gynecol. 2012;119(6):1190–200.PubMedCrossRef Coolman M, Timmermans S, de Groot CJ, et al. Angiogenic and fibrinolytic factors in blood during the first half of pregnancy and adverse pregnancy outcomes. Obstet Gynecol. 2012;119(6):1190–200.PubMedCrossRef
18.
Zurück zum Zitat Tsiakkas A, Duvdevani N, Wright A, et al. Serum placental growth factor in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45(5):591–8.PubMedCrossRef Tsiakkas A, Duvdevani N, Wright A, et al. Serum placental growth factor in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45(5):591–8.PubMedCrossRef
19.
Zurück zum Zitat Gaillard R, Steegers EA, Tiemeier H, et al. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study. Circulation. 2013;128(20):2202–10.PubMedCrossRef Gaillard R, Steegers EA, Tiemeier H, et al. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study. Circulation. 2013;128(20):2202–10.PubMedCrossRef
20.
Zurück zum Zitat Verburg BO, Steegers EA, De Ridder M, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388–96.PubMedCrossRef Verburg BO, Steegers EA, De Ridder M, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388–96.PubMedCrossRef
21.
Zurück zum Zitat El Assaad MA, Topouchian JA, Darne BM, et al. Validation of the Omron HEM-907 device for blood pressure measurement. Blood Press Monit. 2002;7(4):237–41.PubMedCrossRef El Assaad MA, Topouchian JA, Darne BM, et al. Validation of the Omron HEM-907 device for blood pressure measurement. Blood Press Monit. 2002;7(4):237–41.PubMedCrossRef
22.
Zurück zum Zitat Coolman M, de Groot CJ, Jaddoe VW, et al. Medical record validation of maternally reported history of preeclampsia. J Clin Epidemiol. 2010;63(8):932–7.PubMedCrossRef Coolman M, de Groot CJ, Jaddoe VW, et al. Medical record validation of maternally reported history of preeclampsia. J Clin Epidemiol. 2010;63(8):932–7.PubMedCrossRef
23.
Zurück zum Zitat Brown MA, Lindheimer MD, de Swiet M, et al. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV.PubMedCrossRef Brown MA, Lindheimer MD, de Swiet M, et al. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV.PubMedCrossRef
24.
Zurück zum Zitat Khawaja RA, Qureshi R, Mansure AH, et al. Validation of Datascope Accutorr plus using British hypertension society (BHS) and Association for the Advancement of medical instrumentation (AAMI) protocol guidelines. J Saudi Heart Assoc. 2010;22(1):1–5.PubMedPubMedCentralCrossRef Khawaja RA, Qureshi R, Mansure AH, et al. Validation of Datascope Accutorr plus using British hypertension society (BHS) and Association for the Advancement of medical instrumentation (AAMI) protocol guidelines. J Saudi Heart Assoc. 2010;22(1):1–5.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Bergen NE, Schalekamp-Timmermans S, Roos-Hesselink J, et al. Hypertensive disorders of pregnancy and subsequent maternal cardiovascular health. Eur J Epidemiol. 2018;33(8):763–71.PubMedPubMedCentralCrossRef Bergen NE, Schalekamp-Timmermans S, Roos-Hesselink J, et al. Hypertensive disorders of pregnancy and subsequent maternal cardiovascular health. Eur J Epidemiol. 2018;33(8):763–71.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.PubMedCrossRef Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.PubMedCrossRef
27.
Zurück zum Zitat Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.PubMedCrossRef Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.PubMedCrossRef
28.
Zurück zum Zitat Benschop L, Schalekamp‐Timmermans S, Roeters van Lennep JE, Jaddoe VWV, Wong TY, Cheung CY, Steegers EA, Ikram MK. Gestational hypertensive disorders and retinal microvasculature: the Generation R Study. BMC Med. 2017;15:153. Benschop L, Schalekamp‐Timmermans S, Roeters van Lennep JE, Jaddoe VWV, Wong TY, Cheung CY, Steegers EA, Ikram MK. Gestational hypertensive disorders and retinal microvasculature: the Generation R Study. BMC Med. 2017;15:153.
30.
Zurück zum Zitat Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.PubMedPubMedCentralCrossRef Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Strevens H, Wide-Swensson D, Ingemarsson I. Blood pressure during pregnancy in a Swedish population; impact of parity. Acta Obstet Gynecol Scand. 2001;80(9):824–9.PubMedCrossRef Strevens H, Wide-Swensson D, Ingemarsson I. Blood pressure during pregnancy in a Swedish population; impact of parity. Acta Obstet Gynecol Scand. 2001;80(9):824–9.PubMedCrossRef
32.
Zurück zum Zitat Gaillard R, Bakker R, Willemsen SP, et al. Blood pressure tracking during pregnancy and the risk of gestational hypertensive disorders: the generation R study. Eur Heart J. 2011;32(24):3088–97.PubMedCrossRef Gaillard R, Bakker R, Willemsen SP, et al. Blood pressure tracking during pregnancy and the risk of gestational hypertensive disorders: the generation R study. Eur Heart J. 2011;32(24):3088–97.PubMedCrossRef
33.
Zurück zum Zitat Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15(6):465–71.PubMedCrossRef Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15(6):465–71.PubMedCrossRef
34.
Zurück zum Zitat Roberts JM, Taylor RN, Musci TJ, et al. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–4.PubMedCrossRef Roberts JM, Taylor RN, Musci TJ, et al. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–4.PubMedCrossRef
35.
Zurück zum Zitat Milne F, Redman C, Walker J, et al. The pre-eclampsia community guideline (PRECOG): how to screen for and detect onset of pre-eclampsia in the community. BMJ. 2005;330(7491):576–80.PubMedPubMedCentralCrossRef Milne F, Redman C, Walker J, et al. The pre-eclampsia community guideline (PRECOG): how to screen for and detect onset of pre-eclampsia in the community. BMJ. 2005;330(7491):576–80.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Benschop L, Bergen NE, Schalekamp-Timmermans S, et al. Maternal lipid profile 6 years after a gestational hypertensive disorder. J Clin Lipidol. 2018;12(2):428–36 e4.PubMedCrossRef Benschop L, Bergen NE, Schalekamp-Timmermans S, et al. Maternal lipid profile 6 years after a gestational hypertensive disorder. J Clin Lipidol. 2018;12(2):428–36 e4.PubMedCrossRef
Metadaten
Titel
Maternal cardiovascular adaptation to twin pregnancy: a population-based prospective cohort study
verfasst von
Maria C. Adank
Zoe A. Broere-Brown
Romy Gonçalves
M. Kamran Ikram
Vincent W. V. Jaddoe
Eric A. P. Steegers
Sarah Schalekamp-Timmermans
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Pregnancy and Childbirth / Ausgabe 1/2020
Elektronische ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-020-02994-w

Weitere Artikel der Ausgabe 1/2020

BMC Pregnancy and Childbirth 1/2020 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.