Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2016

02.04.2016 | Research Article

Measurements of RF power reflected and radiated by multichannel transmit MR coils at 7T

verfasst von: Gerd Weidemann, Frank Seifert, Werner Hoffmann, Harald Pfeiffer, Reiner Seemann, Bernd Ittermann

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Objective

The power balance of multichannel transmit coils is a central consideration in assessing performance and safety issues. At ultrahigh fields, in addition to absorption and reflection, radiofrequency (RF) radiation into the far field becomes a concern.

Materials and methods

We engineered a system for in situ measurement of complex-valued scattering parameter (S-parameter) matrices of multichannel transmit coils that allows for the calculation of the reflected and accepted power for arbitrary steering conditions. The radiated power from an RF coil inside a large single-mode waveguide couples to that mode. Finite-difference time-domain simulations were used for the calculations, and E-field probes were used to measure the electric field distribution, and hence the radiated power, in the waveguide. To test this concept, an eight-channel shielded-loop array for 7T imaging was studied inside a 280-cm-long cylindrical waveguide with a 60-cm diameter.

Results

For a 7T parallel-transmit coil, the S-parameters were measured and the reflected power calculated as a function of steering conditions. Maximum radiated power was observed for the circularly polarized mode.

Conclusion

A system was developed for in situ S-parameter measurements combined with a method for determining radiated power, allowing a complete assessment of the power balance of multichannel transmit coils at 7T.
Literatur
1.
Zurück zum Zitat Yee KS (1996) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307 Yee KS (1996) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307
2.
Zurück zum Zitat Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65:1470–1482CrossRefPubMedPubMedCentral Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65:1470–1482CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Lemdiasov RA, Obi AA, Ludwig R (2011) A numerical postprocessing procedure for analyzing radio frequency MRI coils. Concepts Magn Reson Part A 38A:133–147CrossRef Lemdiasov RA, Obi AA, Ludwig R (2011) A numerical postprocessing procedure for analyzing radio frequency MRI coils. Concepts Magn Reson Part A 38A:133–147CrossRef
4.
Zurück zum Zitat Kuehne A, Goluch S, Waxmann P, Seifert F, Ittermann B, Moser E, Laistler E (2015) Power balance and loss mechanism analysis in RF transmit coil arrays. Magn Reson Med 74:1165–1176CrossRefPubMed Kuehne A, Goluch S, Waxmann P, Seifert F, Ittermann B, Moser E, Laistler E (2015) Power balance and loss mechanism analysis in RF transmit coil arrays. Magn Reson Med 74:1165–1176CrossRefPubMed
5.
Zurück zum Zitat Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, Nistler J, Wald LL (2015) Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. Magn Reson Med 73:1137–1150CrossRefPubMedPubMedCentral Guérin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, Nistler J, Wald LL (2015) Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. Magn Reson Med 73:1137–1150CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wu X, Zhang X, Tian J, Schmitter S, Hanna B, Strupp J, Pfeuffer J, Hamm M, Wang D, Nistler J, He B, Vaughan TJ, Ugurbil K, de Moortele P-FV (2015) Comparison of RF body coils for MRI at 3 T: a simulation study using parallel transmission on various anatomical targets. NMR Biomed 28:1332–1344CrossRefPubMed Wu X, Zhang X, Tian J, Schmitter S, Hanna B, Strupp J, Pfeuffer J, Hamm M, Wang D, Nistler J, He B, Vaughan TJ, Ugurbil K, de Moortele P-FV (2015) Comparison of RF body coils for MRI at 3 T: a simulation study using parallel transmission on various anatomical targets. NMR Biomed 28:1332–1344CrossRefPubMed
7.
Zurück zum Zitat El-Sharkawy AM, Qian D, Bottomley PA, Edelstein WA (2012) A multichannel, real-time MRI RF power monitor for independent SAR determination. Med Phys 39:2334–2341CrossRefPubMedPubMedCentral El-Sharkawy AM, Qian D, Bottomley PA, Edelstein WA (2012) A multichannel, real-time MRI RF power monitor for independent SAR determination. Med Phys 39:2334–2341CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Liu W, Kao CP, Collins CM, Smith MB, Yang QX (2013) On consideration of radiated power in RF field simulations for MRI. Magn Reson Med 69:290–294CrossRefPubMedPubMedCentral Liu W, Kao CP, Collins CM, Smith MB, Yang QX (2013) On consideration of radiated power in RF field simulations for MRI. Magn Reson Med 69:290–294CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Deniz CM, Vaidya MV, Sodickson DK, Lattanzi R (2015) Radiofrequency energy deposition and radiofrequency power requirements in parallel transmission with increasing distance from the coil to the sample. Reson Med, Magn. doi:10.1002/mrm.25646 Deniz CM, Vaidya MV, Sodickson DK, Lattanzi R (2015) Radiofrequency energy deposition and radiofrequency power requirements in parallel transmission with increasing distance from the coil to the sample. Reson Med, Magn. doi:10.​1002/​mrm.​25646
10.
Zurück zum Zitat Brunner DO, De Zanche N, Fröhlich J, Paska J, Pruessmann KP (2009) Travelling-wave nuclear magnetic resonance. Nature 457:994–998CrossRefPubMed Brunner DO, De Zanche N, Fröhlich J, Paska J, Pruessmann KP (2009) Travelling-wave nuclear magnetic resonance. Nature 457:994–998CrossRefPubMed
11.
Zurück zum Zitat Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA (2013) Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med 70:875–884CrossRefPubMed Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA (2013) Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med 70:875–884CrossRefPubMed
12.
Zurück zum Zitat Alt S, Müller M, Umathum R, Bolz A, Bachert P, Semmler W, Bock M (2012) Coaxial waveguide MRI. Magn Reson Med 67:1173–1182CrossRefPubMed Alt S, Müller M, Umathum R, Bolz A, Bachert P, Semmler W, Bock M (2012) Coaxial waveguide MRI. Magn Reson Med 67:1173–1182CrossRefPubMed
13.
Zurück zum Zitat Weidemann G, Seifert F, Hoffmann W, Seemann R, Waxmann P, Ittermann B (2015) A system for in situ S-parameter measurements of MR transmit arrays. In: Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 1775 Weidemann G, Seifert F, Hoffmann W, Seemann R, Waxmann P, Ittermann B (2015) A system for in situ S-parameter measurements of MR transmit arrays. In: Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 1775
14.
Zurück zum Zitat Athey TW, Stuchly MA, Stuchly SS (1982) Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part I—experimental results. IEEE Trans Microw Theory Tech 30:82–86CrossRef Athey TW, Stuchly MA, Stuchly SS (1982) Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part I—experimental results. IEEE Trans Microw Theory Tech 30:82–86CrossRef
15.
Zurück zum Zitat Stuchly MA, Athey TW, Samaras GM, Taylor GE (1982) Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part II—experimental results. IEEE Trans Microw Theory Tech 30:87–92CrossRef Stuchly MA, Athey TW, Samaras GM, Taylor GE (1982) Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part II—experimental results. IEEE Trans Microw Theory Tech 30:87–92CrossRef
16.
Zurück zum Zitat Weidemann G, Seifert F, Hoffmann W, Pfeiffer H, Ittermann B (2015) A method for the measurement of the RF power radiated by 7T transmit coils. In: Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 1865 Weidemann G, Seifert F, Hoffmann W, Pfeiffer H, Ittermann B (2015) A method for the measurement of the RF power radiated by 7T transmit coils. In: Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 1865
17.
Zurück zum Zitat Klepsch T, Lindel TD, Hoffmann W, Botterweck H, Ittermann B, Seifert F (2012) Calibration of fibre optic RF E/H-field probes using a magnetic resonance (MR) compatible TEM cell and dedicated MR measurement techniques. Biomed Tech 57(Suppl 1):119–122 Klepsch T, Lindel TD, Hoffmann W, Botterweck H, Ittermann B, Seifert F (2012) Calibration of fibre optic RF E/H-field probes using a magnetic resonance (MR) compatible TEM cell and dedicated MR measurement techniques. Biomed Tech 57(Suppl 1):119–122
Metadaten
Titel
Measurements of RF power reflected and radiated by multichannel transmit MR coils at 7T
verfasst von
Gerd Weidemann
Frank Seifert
Werner Hoffmann
Harald Pfeiffer
Reiner Seemann
Bernd Ittermann
Publikationsdatum
02.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 3/2016
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0551-6

Weitere Artikel der Ausgabe 3/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.