Skip to main content
Erschienen in: Journal of Neuro-Oncology 3/2018

09.11.2018 | Laboratory Investigation

Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma

verfasst von: Christine G. Skibinski, Tara Williamson, Gregory J. Riggins

Erschienen in: Journal of Neuro-Oncology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Meningiomas are a frequent tumor of the central nervous system. Although mostly benign, approximately 5% present as atypical or malignant tumors. Treatments for atypical meningiomas include gross total resection and radiotherapy, but about 33% of patients have recurrent tumors, sometimes as a higher grade. Recently, the brain penetrant anthelmintic drug, mebendazole, has shown promise as an anticancer agent in rodent models of glioblastoma and medulloblastoma.

Methods

The half maximal inhibitory concentration (IC50) effect on colony formation, cell proliferation, and caspase-3/7 markers of apoptosis of mebendazole with and without radiation was measured in vitro. Mice intracranially implanted with KT21MG1 human meningioma were administered mebendazole alone or in combination with radiation. Survival benefit was evaluated, while tumors were investigated by immunohistochemical staining for apoptosis, cell proliferation, and vascular density.

Results

In vitro experiments on meningioma cell lines showed the IC50 for mebendazole in the range of 0.26–0.42 µM. Mebendazole alone induced cytotoxicity, however the combination had a greater reduction in colony formation and resulted in higher levels of cleaved caspase-3. The in vivo study showed both, mebendazole alone and the combination, to have a survival benefit with an increase in apoptosis, and decreases in tumor cell and vascular proliferation.

Conclusion

These preclinical findings indicate that mebendazole alone or in combination with radiation can be considered for the treatment of malignant meningioma. The mechanism of action for this combination may include an increase in apoptosis, a reduction in proliferation and angiogenesis, or a combination of these effects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ostrom QT et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62CrossRef Ostrom QT et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62CrossRef
3.
Zurück zum Zitat Kessler RA et al (2017) Metastatic atypical and anaplastic meningioma: a case series and review of the literature. World Neurosurg 101:47–56CrossRefPubMed Kessler RA et al (2017) Metastatic atypical and anaplastic meningioma: a case series and review of the literature. World Neurosurg 101:47–56CrossRefPubMed
4.
Zurück zum Zitat Moazzam AA, Wagle N, Zada G (2013) Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 35(6):E18CrossRefPubMed Moazzam AA, Wagle N, Zada G (2013) Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 35(6):E18CrossRefPubMed
5.
Zurück zum Zitat Chamberlain MC (2013) IFN-alpha for recurrent surgery- and radiation-refractory high-grade meningioma: a retrospective case series. CNS Oncol 2(3):227–235CrossRefPubMedPubMedCentral Chamberlain MC (2013) IFN-alpha for recurrent surgery- and radiation-refractory high-grade meningioma: a retrospective case series. CNS Oncol 2(3):227–235CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Chamberlain MC, Glantz MJ, Fadul CE (2007) Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurol 69(10):969–973CrossRef Chamberlain MC, Glantz MJ, Fadul CE (2007) Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurol 69(10):969–973CrossRef
7.
8.
Zurück zum Zitat Nygren P et al (2013) Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol 139(12):2133–2140CrossRefPubMedPubMedCentral Nygren P et al (2013) Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol 139(12):2133–2140CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Nygren P, Larsson R (2014) Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol 53(3):427–428CrossRefPubMed Nygren P, Larsson R (2014) Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol 53(3):427–428CrossRefPubMed
10.
Zurück zum Zitat Sawanyawisuth K et al (2014) Effect of the antiparasitic drug mebendazole on cholangiocarcinoma growth. SE Asian J Trop Med Public Health 45(6):1264–1270 Sawanyawisuth K et al (2014) Effect of the antiparasitic drug mebendazole on cholangiocarcinoma growth. SE Asian J Trop Med Public Health 45(6):1264–1270
11.
Zurück zum Zitat Chen HR et al (2016) A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med Genomics 9(1):51CrossRefPubMedPubMedCentral Chen HR et al (2016) A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med Genomics 9(1):51CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Gillessen S et al (2016) Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur Urol 70(6):906–908CrossRefPubMed Gillessen S et al (2016) Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur Urol 70(6):906–908CrossRefPubMed
13.
Zurück zum Zitat Jahchan NS et al (2013) A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov 3(12):1364–1377CrossRefPubMed Jahchan NS et al (2013) A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov 3(12):1364–1377CrossRefPubMed
14.
Zurück zum Zitat McCarty TR, Turkeltaub JA, Hotez PJ (2014) Global progress towards eliminating gastrointestinal helminth infections. Curr Opin Gastroenterol 30(1):18–24CrossRefPubMed McCarty TR, Turkeltaub JA, Hotez PJ (2014) Global progress towards eliminating gastrointestinal helminth infections. Curr Opin Gastroenterol 30(1):18–24CrossRefPubMed
15.
Zurück zum Zitat Vutova K et al (1999) Effect of mebendazole on human cystic echinococcosis: the role of dosage and treatment duration. Ann Trop Med Parasitol 93(4):357–365CrossRefPubMed Vutova K et al (1999) Effect of mebendazole on human cystic echinococcosis: the role of dosage and treatment duration. Ann Trop Med Parasitol 93(4):357–365CrossRefPubMed
16.
17.
Zurück zum Zitat Bai RY et al (2011) Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol 13(9):974–982CrossRefPubMedPubMedCentral Bai RY et al (2011) Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol 13(9):974–982CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Williamson T et al (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7(42):68571–68584CrossRefPubMedPubMedCentral Williamson T et al (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7(42):68571–68584CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Doudican N et al (2008) Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res 6(8):1308–1315CrossRefPubMed Doudican N et al (2008) Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res 6(8):1308–1315CrossRefPubMed
20.
Zurück zum Zitat Sasaki J et al (2002) The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 1(13):1201–1209PubMed Sasaki J et al (2002) The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 1(13):1201–1209PubMed
21.
Zurück zum Zitat Bai RY et al (2015) Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro Oncol 17(4):545–554CrossRefPubMed Bai RY et al (2015) Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro Oncol 17(4):545–554CrossRefPubMed
22.
Zurück zum Zitat Larsen AR et al (2015) Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 14(1):3–13CrossRefPubMed Larsen AR et al (2015) Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 14(1):3–13CrossRefPubMed
23.
Zurück zum Zitat Bai RY et al (2015) Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res 21(15):3462–3470CrossRefPubMedPubMedCentral Bai RY et al (2015) Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res 21(15):3462–3470CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Buglione M et al (2014) Role of external beam radiotherapy in the treatment of relapsing meningioma. Med Oncol 31(3):866CrossRefPubMed Buglione M et al (2014) Role of external beam radiotherapy in the treatment of relapsing meningioma. Med Oncol 31(3):866CrossRefPubMed
25.
Zurück zum Zitat Sun SQ et al (2014) Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection. Neurosurg. 75(4):356–363. (discussion 363)CrossRef Sun SQ et al (2014) Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection. Neurosurg. 75(4):356–363. (discussion 363)CrossRef
26.
Zurück zum Zitat Ho WS et al (2018) LB-100, a novel protein phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett 415:217–226CrossRefPubMed Ho WS et al (2018) LB-100, a novel protein phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Lett 415:217–226CrossRefPubMed
27.
Zurück zum Zitat Rao Gogineni V et al (2010) Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol 36(4):809–816PubMed Rao Gogineni V et al (2010) Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol 36(4):809–816PubMed
28.
Zurück zum Zitat Wilisch-Neumann A et al (2013) The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res 19(19):5402–5412CrossRefPubMed Wilisch-Neumann A et al (2013) The integrin inhibitor cilengitide affects meningioma cell motility and invasion. Clin Cancer Res 19(19):5402–5412CrossRefPubMed
29.
Zurück zum Zitat Baia GS et al (2006) A genetic strategy to overcome the senescence of primary meningioma cell cultures. J Neurooncol 78(2):113–121CrossRefPubMed Baia GS et al (2006) A genetic strategy to overcome the senescence of primary meningioma cell cultures. J Neurooncol 78(2):113–121CrossRefPubMed
30.
31.
Zurück zum Zitat Striedinger K et al (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212CrossRefPubMedPubMedCentral Striedinger K et al (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yamashita AS et al (2014) Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors. J Neurooncol 118(1):83–92CrossRefPubMedPubMedCentral Yamashita AS et al (2014) Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors. J Neurooncol 118(1):83–92CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hasegawa K et al (2006) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12(6):1868–1875CrossRefPubMed Hasegawa K et al (2006) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12(6):1868–1875CrossRefPubMed
34.
Zurück zum Zitat Baia GS et al (2008) An orthotopic skull base model of malignant meningioma. Brain Pathol 18(2):172–179CrossRefPubMed Baia GS et al (2008) An orthotopic skull base model of malignant meningioma. Brain Pathol 18(2):172–179CrossRefPubMed
35.
Zurück zum Zitat Wong J et al (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(5):1591–1599CrossRefPubMedPubMedCentral Wong J et al (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71(5):1591–1599CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12CrossRefPubMed Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12CrossRefPubMed
37.
Zurück zum Zitat Gravina GL et al (2017) The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol 39(6):1010428317695528CrossRefPubMed Gravina GL et al (2017) The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol 39(6):1010428317695528CrossRefPubMed
38.
Zurück zum Zitat Lin CJ et al (2016) Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 7(27):42408–42421CrossRefPubMedPubMedCentral Lin CJ et al (2016) Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 7(27):42408–42421CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Karsy M et al (2016) Medical management of meningiomas: current status, failed treatments, and promising horizons. Neurosurg Clin N Am 27(2):249–260CrossRefPubMed Karsy M et al (2016) Medical management of meningiomas: current status, failed treatments, and promising horizons. Neurosurg Clin N Am 27(2):249–260CrossRefPubMed
40.
Zurück zum Zitat Markowitz D et al (2017) Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 10:5633–5642CrossRefPubMedPubMedCentral Markowitz D et al (2017) Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 10:5633–5642CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Poruchynsky MS et al (2015) Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl Acad Sci USA 112(5):1571–1576CrossRefPubMed Poruchynsky MS et al (2015) Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl Acad Sci USA 112(5):1571–1576CrossRefPubMed
Metadaten
Titel
Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma
verfasst von
Christine G. Skibinski
Tara Williamson
Gregory J. Riggins
Publikationsdatum
09.11.2018
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 3/2018
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-03009-7

Weitere Artikel der Ausgabe 3/2018

Journal of Neuro-Oncology 3/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.