Skip to main content
Erschienen in: Current Hypertension Reports 6/2012

01.12.2012 | Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Mechanisms and Consequences of Inflammatory Signaling in the Myocardium

verfasst von: Jihyun Ahn, Jaetaek Kim

Erschienen in: Current Hypertension Reports | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

To further understand chronic heart disease, such as heart failure and cardiomyopathy, we must fully define signaling pathways within the myocardium. Recent studies suggest that some forms of heart disease are associated with a chronic low-grade inflammation that promotes adverse ventricular remodeling and correlates with disease progression. Several inflammatory mediators, including TNF-α, IL-1β, and IL-6, are involved in cardiac injury subsequent to myocardial ischemia and reperfusion, sepsis, viral myocarditis, and transplant rejection. Once activated, components of the inflammatory response can have both beneficial and deleterious effects on the heart. In this review, we discuss the complex inflammatory signaling pathways in the myocardium and potential therapeutic implications.
Literatur
1.
Zurück zum Zitat Fang J, Mensah GA, Croft JB, et al. Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol. 2008;52:428–34.PubMedCrossRef Fang J, Mensah GA, Croft JB, et al. Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol. 2008;52:428–34.PubMedCrossRef
2.
Zurück zum Zitat Schocken DD, Benjamin EJ, Fonarow GC, et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2008;117:2544–65.PubMedCrossRef Schocken DD, Benjamin EJ, Fonarow GC, et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2008;117:2544–65.PubMedCrossRef
3.
Zurück zum Zitat Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118:2057–62.PubMedCrossRef Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118:2057–62.PubMedCrossRef
4.
Zurück zum Zitat Kalogeropoulos AP, Georgiopoulou VV, Butler J. From risk factors to structural heart disease: the role of inflammation. Heart Fail Clin. 2012;8:113–23.PubMedCrossRef Kalogeropoulos AP, Georgiopoulou VV, Butler J. From risk factors to structural heart disease: the role of inflammation. Heart Fail Clin. 2012;8:113–23.PubMedCrossRef
5.
Zurück zum Zitat •• Marchant D, Boyd J, Lin D, et al. Inflammation in myocardial diseases. Circ Res. 2012;110:126–44. This article addresses the specific pathways and mechanisms contributing to cardiac dysfunction in four classic settings marked by inflammation: ischemia-reperfusion injury, sepsis, myocarditis, and transplant rejection. PubMedCrossRef •• Marchant D, Boyd J, Lin D, et al. Inflammation in myocardial diseases. Circ Res. 2012;110:126–44. This article addresses the specific pathways and mechanisms contributing to cardiac dysfunction in four classic settings marked by inflammation: ischemia-reperfusion injury, sepsis, myocarditis, and transplant rejection. PubMedCrossRef
6.
Zurück zum Zitat Hohensinner PJ, Niessner A, Huber K, et al. Inflammation and cardiac outcome. Curr Opin Infect Dis. 2011;24:259–64.PubMedCrossRef Hohensinner PJ, Niessner A, Huber K, et al. Inflammation and cardiac outcome. Curr Opin Infect Dis. 2011;24:259–64.PubMedCrossRef
7.
Zurück zum Zitat •• Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108:1133–45. This article reviews the biology of innate immune signaling in the heart, suggesting that the innate immune system is involved in the pathogenesis of atherosclerosis, acute coronary syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart failure. PubMedCrossRef •• Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108:1133–45. This article reviews the biology of innate immune signaling in the heart, suggesting that the innate immune system is involved in the pathogenesis of atherosclerosis, acute coronary syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart failure. PubMedCrossRef
8.
Zurück zum Zitat Heymans S, Hirsch E, Anker SD, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11:119–29.PubMedCrossRef Heymans S, Hirsch E, Anker SD, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11:119–29.PubMedCrossRef
9.
Zurück zum Zitat Mohammed SF, Storlie JR, Oehler EA, et al. Variable phenotype in murine transverse aortic constriction. Cardiovasc Pathol. 2012;21:188–98.PubMedCrossRef Mohammed SF, Storlie JR, Oehler EA, et al. Variable phenotype in murine transverse aortic constriction. Cardiovasc Pathol. 2012;21:188–98.PubMedCrossRef
10.
Zurück zum Zitat • Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012;110:174–89. This article reviews the role of ER stress and inflammation, with an emphasis on newly discovered roles for the chemokine monocyte chemoattractant protein-1 (MCP-1) and its downstream effector and novel zinc finger protein, MCP-1-induced protein. PubMedCrossRef • Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012;110:174–89. This article reviews the role of ER stress and inflammation, with an emphasis on newly discovered roles for the chemokine monocyte chemoattractant protein-1 (MCP-1) and its downstream effector and novel zinc finger protein, MCP-1-induced protein. PubMedCrossRef
11.
Zurück zum Zitat Mitchell JA, Ryffel B, Quesniaux VF, et al. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans. 2007;35:1449–52.PubMedCrossRef Mitchell JA, Ryffel B, Quesniaux VF, et al. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans. 2007;35:1449–52.PubMedCrossRef
12.
Zurück zum Zitat Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMedCrossRef Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMedCrossRef
14.
Zurück zum Zitat Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam. 2011;2011:170352.PubMed Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam. 2011;2011:170352.PubMed
15.
Zurück zum Zitat Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296:H1–12.PubMedCrossRef Chao W. Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol. 2009;296:H1–12.PubMedCrossRef
16.
Zurück zum Zitat Antoniak S, Pawlinski R, Mackman N. Protease-activated receptors and myocardial infarction. IUBMB Life. 2011;63:383–9.PubMedCrossRef Antoniak S, Pawlinski R, Mackman N. Protease-activated receptors and myocardial infarction. IUBMB Life. 2011;63:383–9.PubMedCrossRef
17.
Zurück zum Zitat Sabri A, Muske G, Zhang H, et al. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res. 2000;86:1054–61.PubMedCrossRef Sabri A, Muske G, Zhang H, et al. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res. 2000;86:1054–61.PubMedCrossRef
18.
Zurück zum Zitat Glembotski CC, Irons CE, Krown KA, et al. Myocardial α-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem. 1993;268:20646–52.PubMed Glembotski CC, Irons CE, Krown KA, et al. Myocardial α-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem. 1993;268:20646–52.PubMed
19.
Zurück zum Zitat Strande JL, Hsu A, Su J, et al. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol. 2007;4:350–8.CrossRef Strande JL, Hsu A, Su J, et al. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol. 2007;4:350–8.CrossRef
20.
Zurück zum Zitat Antoniak S, Rojas M, Spring D, et al. Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2010;30:2136–42.PubMedCrossRef Antoniak S, Rojas M, Spring D, et al. Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2010;30:2136–42.PubMedCrossRef
21.
Zurück zum Zitat Napoli C, De Nigris F, Cicala C, et al. Protease-activated receptor-2 activation improves efficiency of experimental ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2002;282:H2004–10.PubMed Napoli C, De Nigris F, Cicala C, et al. Protease-activated receptor-2 activation improves efficiency of experimental ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2002;282:H2004–10.PubMed
22.
Zurück zum Zitat Barnes PJ, Karin M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.PubMedCrossRef Barnes PJ, Karin M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.PubMedCrossRef
23.
Zurück zum Zitat Chen LW, Egan L, Li ZW, et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med. 2003;9:575–81.PubMedCrossRef Chen LW, Egan L, Li ZW, et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med. 2003;9:575–81.PubMedCrossRef
24.
Zurück zum Zitat Mustapha S, Kirshner A, De Moissac D, et al. A direct requirement of nuclear factor-κB for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol. 2000;279:H939–45.PubMed Mustapha S, Kirshner A, De Moissac D, et al. A direct requirement of nuclear factor-κB for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol. 2000;279:H939–45.PubMed
25.
Zurück zum Zitat Baetz D, Regula KM, Ens K, et al. Nuclear factor-κB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation. 2005;112:3777–85.PubMedCrossRef Baetz D, Regula KM, Ens K, et al. Nuclear factor-κB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation. 2005;112:3777–85.PubMedCrossRef
26.
Zurück zum Zitat Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005;309:1857–61.PubMedCrossRef Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005;309:1857–61.PubMedCrossRef
27.
Zurück zum Zitat •• Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108:1122–32. This study provides evidence of the duality of beneficial and deleterious effects of NF-κB in the heart such as potentially harmful inflammation as well as promoting cardiomyocyte survival. PubMedCrossRef •• Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108:1122–32. This study provides evidence of the duality of beneficial and deleterious effects of NF-κB in the heart such as potentially harmful inflammation as well as promoting cardiomyocyte survival. PubMedCrossRef
28.
Zurück zum Zitat •• Coggins M, Rosenzweig A. The fire within: cardiac inflammatory signaling in health and disease. Circ Res. 2012;110:116–25. This article introduces inflammatory pathways in the heart, as well as their interactions with signaling pathways regulating cell survival and metabolism. PubMedCrossRef •• Coggins M, Rosenzweig A. The fire within: cardiac inflammatory signaling in health and disease. Circ Res. 2012;110:116–25. This article introduces inflammatory pathways in the heart, as well as their interactions with signaling pathways regulating cell survival and metabolism. PubMedCrossRef
29.
Zurück zum Zitat Van der Heiden K, Cuhlmann S, le Luong A, et al. Role of nuclear factor κB in cardiovascular health and disease. Clin Sci (Lond). 2010;118:593–605.CrossRef Van der Heiden K, Cuhlmann S, le Luong A, et al. Role of nuclear factor κB in cardiovascular health and disease. Clin Sci (Lond). 2010;118:593–605.CrossRef
30.
Zurück zum Zitat Michel MC, Li Y, Heusch G. Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:245–66.PubMedCrossRef Michel MC, Li Y, Heusch G. Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:245–66.PubMedCrossRef
31.
Zurück zum Zitat Demyanets S, Kaun C, Rychli K, et al. The inflammatory cytokine oncostatin M induces PAI-1 in human vascular smooth muscle cells in vitro via PI 3-kinase and ERK1/2-dependent pathways. Am J Physiol Heart Circ Physiol. 2007;293:H1962–8.PubMedCrossRef Demyanets S, Kaun C, Rychli K, et al. The inflammatory cytokine oncostatin M induces PAI-1 in human vascular smooth muscle cells in vitro via PI 3-kinase and ERK1/2-dependent pathways. Am J Physiol Heart Circ Physiol. 2007;293:H1962–8.PubMedCrossRef
32.
Zurück zum Zitat Heidbreder M, Naumann A, Tempel K, et al. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Circ Res. 2008;78:108–15. Heidbreder M, Naumann A, Tempel K, et al. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Circ Res. 2008;78:108–15.
33.
Zurück zum Zitat Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem. 2002;277:10244–50.PubMedCrossRef Aoki H, Kang PM, Hampe J, et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem. 2002;277:10244–50.PubMedCrossRef
34.
Zurück zum Zitat Remondino A, Kwon SH, Communal C, et al. β-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res. 2003;92:136–8.PubMedCrossRef Remondino A, Kwon SH, Communal C, et al. β-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res. 2003;92:136–8.PubMedCrossRef
35.
Zurück zum Zitat Andreka P, Zang J, Dougherty C, et al. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res. 2001;88:305–12.PubMedCrossRef Andreka P, Zang J, Dougherty C, et al. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res. 2001;88:305–12.PubMedCrossRef
36.
Zurück zum Zitat Dougherty CJ, Kubasiak LA, Prentice H, et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J. 2002;362:561–71.PubMedCrossRef Dougherty CJ, Kubasiak LA, Prentice H, et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J. 2002;362:561–71.PubMedCrossRef
37.
Zurück zum Zitat Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against β-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem. 2000;275:19395–400.PubMedCrossRef Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against β-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem. 2000;275:19395–400.PubMedCrossRef
38.
Zurück zum Zitat Schneider S, Chen W, Hou J, et al. Inhibition of p38 MAPK α/β reduces ischemic injury and does not block protective effects of preconditioning. Am J Physiol Heart Circ Physiol. 2001;280:H499–508.PubMed Schneider S, Chen W, Hou J, et al. Inhibition of p38 MAPK α/β reduces ischemic injury and does not block protective effects of preconditioning. Am J Physiol Heart Circ Physiol. 2001;280:H499–508.PubMed
39.
Zurück zum Zitat Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A. 1998;95:5590–4.PubMedCrossRef Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A. 1998;95:5590–4.PubMedCrossRef
40.
Zurück zum Zitat Boengler K, Hilfiker-Kleiner D, Drexler H, et al. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther. 2008;120:172–85.PubMedCrossRef Boengler K, Hilfiker-Kleiner D, Drexler H, et al. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther. 2008;120:172–85.PubMedCrossRef
41.
Zurück zum Zitat Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7.PubMedCrossRef Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7.PubMedCrossRef
42.
Zurück zum Zitat Syed FM, Hahn HS, Odley A, et al. Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circ Res. 2005;96:1103–9.PubMedCrossRef Syed FM, Hahn HS, Odley A, et al. Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circ Res. 2005;96:1103–9.PubMedCrossRef
43.
Zurück zum Zitat Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.PubMedCrossRef Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.PubMedCrossRef
44.
Zurück zum Zitat Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604.PubMedCrossRef Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604.PubMedCrossRef
45.
Zurück zum Zitat Palmer JN, Hartogensis WE, Patten M, et al. Interleukin-1β induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest. 1995;95:2555–64.PubMedCrossRef Palmer JN, Hartogensis WE, Patten M, et al. Interleukin-1β induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest. 1995;95:2555–64.PubMedCrossRef
46.
Zurück zum Zitat Van Tassell BW, Arena RA, Toldo S, et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One. 2012;7:e33438.PubMedCrossRef Van Tassell BW, Arena RA, Toldo S, et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One. 2012;7:e33438.PubMedCrossRef
47.
Zurück zum Zitat Kurdi M, Randon J, Cerutti C, et al. Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats. Mol Cell Biochem. 2005;269:95–101.PubMedCrossRef Kurdi M, Randon J, Cerutti C, et al. Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats. Mol Cell Biochem. 2005;269:95–101.PubMedCrossRef
48.
Zurück zum Zitat Sano M, Fukuda K, Kodama H, et al. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem. 2000;275:29717–23.PubMedCrossRef Sano M, Fukuda K, Kodama H, et al. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem. 2000;275:29717–23.PubMedCrossRef
49.
50.
Zurück zum Zitat Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.PubMedCrossRef Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.PubMedCrossRef
51.
Zurück zum Zitat Kim YM, Kim YM, Lee YM, et al. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem. 2002;277:6799–805.PubMedCrossRef Kim YM, Kim YM, Lee YM, et al. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem. 2002;277:6799–805.PubMedCrossRef
52.
Zurück zum Zitat Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-κB activation in endothelial cells. J Immunol. 2005;175:531–40.PubMed Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-κB activation in endothelial cells. J Immunol. 2005;175:531–40.PubMed
53.
Zurück zum Zitat Min JK, Cho YL, Choi JH, et al. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) increases vascular permeability: impaired permeability and angiogenesis in eNOS-deficient mice. Blood. 2007;109:1495–502.PubMedCrossRef Min JK, Cho YL, Choi JH, et al. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) increases vascular permeability: impaired permeability and angiogenesis in eNOS-deficient mice. Blood. 2007;109:1495–502.PubMedCrossRef
54.
Zurück zum Zitat Ueland T, Yndestad A, Øie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111:2461–8.PubMedCrossRef Ueland T, Yndestad A, Øie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005;111:2461–8.PubMedCrossRef
55.
Zurück zum Zitat Ock S, Ahn J, Lee SH, et al. Receptor activator of nuclear factor-κB ligand is a novel inducer of myocardial inflammation. Cardiovasc Res. 2012;94:105–14.PubMedCrossRef Ock S, Ahn J, Lee SH, et al. Receptor activator of nuclear factor-κB ligand is a novel inducer of myocardial inflammation. Cardiovasc Res. 2012;94:105–14.PubMedCrossRef
56.
Zurück zum Zitat Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond). 2009;117:95–109.CrossRef Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond). 2009;117:95–109.CrossRef
57.
Zurück zum Zitat Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2003;108:2134–40.PubMedCrossRef Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2003;108:2134–40.PubMedCrossRef
58.
Zurück zum Zitat •• Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110:159–73. This review introduces recently identified endogenous inhibitors induced as part of the core inflammatory reaction that serve to reduce post-infarct inflammation. PubMedCrossRef •• Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110:159–73. This review introduces recently identified endogenous inhibitors induced as part of the core inflammatory reaction that serve to reduce post-infarct inflammation. PubMedCrossRef
59.
Zurück zum Zitat Liehn EA, Postea O, Curaj A, et al. Repair after myocardial infarction, between fantasy and reality: the role of chemokines. J Am Coll Cardiol. 2011;58:2357–62.PubMedCrossRef Liehn EA, Postea O, Curaj A, et al. Repair after myocardial infarction, between fantasy and reality: the role of chemokines. J Am Coll Cardiol. 2011;58:2357–62.PubMedCrossRef
60.
Zurück zum Zitat Säemann MD, Haidinger M, Hecking M, et al. The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant. 2009;9:2655–61.PubMedCrossRef Säemann MD, Haidinger M, Hecking M, et al. The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant. 2009;9:2655–61.PubMedCrossRef
61.
Zurück zum Zitat Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29:565–77.PubMedCrossRef Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29:565–77.PubMedCrossRef
62.
Zurück zum Zitat Song X, Kusakari Y, Xiao CY, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299:C1256–66.PubMedCrossRef Song X, Kusakari Y, Xiao CY, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299:C1256–66.PubMedCrossRef
63.
Zurück zum Zitat Deten A, Hölzl A, Leicht M, et al. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol. 2001;33:1191–207.PubMedCrossRef Deten A, Hölzl A, Leicht M, et al. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol. 2001;33:1191–207.PubMedCrossRef
64.
Zurück zum Zitat Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130–5.PubMedCrossRef Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130–5.PubMedCrossRef
65.
Zurück zum Zitat Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81:482–90.PubMedCrossRef Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81:482–90.PubMedCrossRef
66.
Zurück zum Zitat Rosenkranz S. TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63:423–32.PubMedCrossRef Rosenkranz S. TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63:423–32.PubMedCrossRef
67.
Zurück zum Zitat Chapman RE, Spinale FG. Extracellular protease activation and unraveling of the myocardial interstitium: critical steps toward clinical applications. Am J Physiol Heart Circ Physiol. 2004;286:H1–10.PubMedCrossRef Chapman RE, Spinale FG. Extracellular protease activation and unraveling of the myocardial interstitium: critical steps toward clinical applications. Am J Physiol Heart Circ Physiol. 2004;286:H1–10.PubMedCrossRef
68.
Zurück zum Zitat Flores-Arredondo JH, García-Rivas G, Torre-Amione G. Immune modulation in heart failure: past challenges and future hopes. Curr Heart Fail Rep. 2011;8:28–37.PubMedCrossRef Flores-Arredondo JH, García-Rivas G, Torre-Amione G. Immune modulation in heart failure: past challenges and future hopes. Curr Heart Fail Rep. 2011;8:28–37.PubMedCrossRef
69.
Zurück zum Zitat • Kempf T, Zarbock A, Vestweber D, et al. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med (Berl). 2012;90:361–9. This article reviews anti-inflammatory and pro-inflammatory pathways during myocardial infarct healing. CrossRef • Kempf T, Zarbock A, Vestweber D, et al. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med (Berl). 2012;90:361–9. This article reviews anti-inflammatory and pro-inflammatory pathways during myocardial infarct healing. CrossRef
70.
Zurück zum Zitat Madias JE, Hood Jr WB. Effects of methylprednisolone on the ischemic damage in patients with acute myocardial infarction. Circulation. 1982;65:1106–13.PubMedCrossRef Madias JE, Hood Jr WB. Effects of methylprednisolone on the ischemic damage in patients with acute myocardial infarction. Circulation. 1982;65:1106–13.PubMedCrossRef
71.
Zurück zum Zitat Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602.PubMedCrossRef Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602.PubMedCrossRef
72.
Zurück zum Zitat Mann DL, Bozkurt B, Torreamione G, et al. Effect of the soluble TNF-antagonist etanercept on tumor necrosis factor bioactivity and stability. Clin Transl Sci. 2008;1:142–5.PubMedCrossRef Mann DL, Bozkurt B, Torreamione G, et al. Effect of the soluble TNF-antagonist etanercept on tumor necrosis factor bioactivity and stability. Clin Transl Sci. 2008;1:142–5.PubMedCrossRef
73.
Zurück zum Zitat Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40.PubMedCrossRef Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40.PubMedCrossRef
74.
Zurück zum Zitat Kotyla PJ, Owczarek A, Rakoczy J, et al. Infliximab treatment increases left ventricular ejection fraction in patients with rheumatoid arthritis: assessment of heart function by echocardiography, endothelin 1, interleukin 6, and NT-pro brain natriuretic peptide. J Rheumatol. 2012;39:701–6.PubMedCrossRef Kotyla PJ, Owczarek A, Rakoczy J, et al. Infliximab treatment increases left ventricular ejection fraction in patients with rheumatoid arthritis: assessment of heart function by echocardiography, endothelin 1, interleukin 6, and NT-pro brain natriuretic peptide. J Rheumatol. 2012;39:701–6.PubMedCrossRef
75.
Zurück zum Zitat Shaw SM, Shah MK, Williams SG, et al. Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail. 2009;11:113–8.PubMedCrossRef Shaw SM, Shah MK, Williams SG, et al. Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail. 2009;11:113–8.PubMedCrossRef
76.
Zurück zum Zitat Bahrmann P, Hengst UM, Richartz BM, et al. Pentoxifylline in ischemic, hypertensive and idiopathic-dilated cardiomyopathy: effects on left-ventricular function, inflammatory cytokines and symptoms. Eur J Heart Fail. 2004;6:195–201.PubMedCrossRef Bahrmann P, Hengst UM, Richartz BM, et al. Pentoxifylline in ischemic, hypertensive and idiopathic-dilated cardiomyopathy: effects on left-ventricular function, inflammatory cytokines and symptoms. Eur J Heart Fail. 2004;6:195–201.PubMedCrossRef
77.
Zurück zum Zitat Nussinovitch U, Shoenfeld Y. Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev. 2008;7:445–52.PubMedCrossRef Nussinovitch U, Shoenfeld Y. Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev. 2008;7:445–52.PubMedCrossRef
78.
Zurück zum Zitat Suri V, Varma S, Joshi K, et al. Lupus myocarditis: marked improvement in cardiac function after intravenous immunoglobulin therapy. Rheumatol Int. 2010;30:1503–5.PubMedCrossRef Suri V, Varma S, Joshi K, et al. Lupus myocarditis: marked improvement in cardiac function after intravenous immunoglobulin therapy. Rheumatol Int. 2010;30:1503–5.PubMedCrossRef
79.
Zurück zum Zitat McNamara DM, Holubkov R, Starling RC, et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001;103:2254–9.PubMedCrossRef McNamara DM, Holubkov R, Starling RC, et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001;103:2254–9.PubMedCrossRef
80.
Zurück zum Zitat Földes G, von Haehling S, Okonko DO, et al. Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. Int J Cardiol. 2008;124:80–5.PubMedCrossRef Földes G, von Haehling S, Okonko DO, et al. Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. Int J Cardiol. 2008;124:80–5.PubMedCrossRef
81.
Zurück zum Zitat Yang J, Zhang XD, Yang J, et al. The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep. 2011;38:3037–44.PubMedCrossRef Yang J, Zhang XD, Yang J, et al. The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep. 2011;38:3037–44.PubMedCrossRef
82.
Zurück zum Zitat Okopien B, Kowalski J, Krysiak R, et al. Monocyte suppressing action of fenofibrate. Pharmacol Rep. 2005;57:367–72.PubMed Okopien B, Kowalski J, Krysiak R, et al. Monocyte suppressing action of fenofibrate. Pharmacol Rep. 2005;57:367–72.PubMed
83.
Zurück zum Zitat Huang WP, Yin WH, Chen JW, et al. Fenofibrate attenuates endothelial monocyte adhesion in chronic heart failure: an in vitro study. Eur J Clin Invest. 2009;39:775–83.PubMedCrossRef Huang WP, Yin WH, Chen JW, et al. Fenofibrate attenuates endothelial monocyte adhesion in chronic heart failure: an in vitro study. Eur J Clin Invest. 2009;39:775–83.PubMedCrossRef
84.
Zurück zum Zitat Liu H, Li W, Gu W, et al. Immunoregulatory effects of carvedilol on rat experimental autoimmune myocarditis. Scand J Immunol. 2010;71:38–44.PubMedCrossRef Liu H, Li W, Gu W, et al. Immunoregulatory effects of carvedilol on rat experimental autoimmune myocarditis. Scand J Immunol. 2010;71:38–44.PubMedCrossRef
85.
Zurück zum Zitat Satoh M, Ishikawa Y, Minami Y, et al. Eplerenone inhibits tumour necrosis factor α shedding process by tumour necrosis factor α converting enzyme in monocytes from patients with congestive heart failure. Heart. 2006;92:979–80.PubMedCrossRef Satoh M, Ishikawa Y, Minami Y, et al. Eplerenone inhibits tumour necrosis factor α shedding process by tumour necrosis factor α converting enzyme in monocytes from patients with congestive heart failure. Heart. 2006;92:979–80.PubMedCrossRef
86.
Zurück zum Zitat Frangogiannis NG, Dewald O, Xia Y, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115:584–92.PubMedCrossRef Frangogiannis NG, Dewald O, Xia Y, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115:584–92.PubMedCrossRef
87.
Zurück zum Zitat Gilbert J, Lekstrom-Himes J, Donaldson D, et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am J Cardiol. 2011;107:906–11.PubMedCrossRef Gilbert J, Lekstrom-Himes J, Donaldson D, et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am J Cardiol. 2011;107:906–11.PubMedCrossRef
88.
Zurück zum Zitat Arefieva TI, Krasnikova TL, Potekhina AV, et al. Synthetic peptide fragment (65–76) of monocyte chemotactic protein-1 (MCP-1) inhibits MCP-1 binding to heparin and possesses anti-inflammatory activity in stable angina patients after coronary stenting. Inflamm Res. 2011;60:955–64.PubMedCrossRef Arefieva TI, Krasnikova TL, Potekhina AV, et al. Synthetic peptide fragment (65–76) of monocyte chemotactic protein-1 (MCP-1) inhibits MCP-1 binding to heparin and possesses anti-inflammatory activity in stable angina patients after coronary stenting. Inflamm Res. 2011;60:955–64.PubMedCrossRef
89.
Zurück zum Zitat Aukrust P, Gullestad L, Ueland T, et al. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med. 2005;37:74–85.PubMedCrossRef Aukrust P, Gullestad L, Ueland T, et al. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med. 2005;37:74–85.PubMedCrossRef
Metadaten
Titel
Mechanisms and Consequences of Inflammatory Signaling in the Myocardium
verfasst von
Jihyun Ahn
Jaetaek Kim
Publikationsdatum
01.12.2012
Verlag
Current Science Inc.
Erschienen in
Current Hypertension Reports / Ausgabe 6/2012
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-012-0309-0

Weitere Artikel der Ausgabe 6/2012

Current Hypertension Reports 6/2012 Zur Ausgabe

Special Situations in the Management of Hypertension (NK Hollenberg, Section Editor)

Impact of Arterial Hypertension on the Eye

Pediatric Hypertension (JT Flynn, Section Editor)

Ambulatory Blood Pressure Monitoring in Pediatric Renal Transplantation

Special Situations in the Management of Hypertension (T Kotchen, Section Editor)

Hypertension and Mild Cognitive Impairment

Pediatric Hypertension (JT Flynn, Section Editor)

Birth Weight and Childhood Blood Pressure

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Mitochondria, Myocardial Remodeling, and Cardiovascular Disease

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.