Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01.01.2008 | Original Article

Metabolic–dopaminergic mapping of the 6-hydroxydopamine rat model for Parkinson’s disease

verfasst von: Cindy Casteels, Erwin Lauwers, Guy Bormans, Veerle Baekelandt, Koen Van Laere

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The unilateral 6-hydroxydopamine (6-OHDA) lesion rat model is a well-known acute model for Parkinson’s disease (PD). Its validity has been supported by invasive histology, behavioral studies and electrophysiology. Here, we have characterized this model in vivo by multitracer imaging [glucose metabolism and dopamine transporter (DAT)] in relation to behavioral and histological parameters.

Methods

Eighteen female adult Wistar rats (eight 6-OHDA-lesioned, ten controls) were investigated using multitracer [18F]-fluoro-2-deoxy-D-glucose (FDG) and [18F]-FECT {2′-[18F]-fluoroethyl-(1R-2-exo-3-exe)-8-methyl-3-(4-chlorophenyl)-8-azabicyclo(3.2.1)-octane-2-carboxylate} small animal positron emission tomography (PET). Relative glucose metabolism and parametric DAT binding images were anatomically standardized to Paxinos space and analyzed on a voxel-basis using SPM2, supplemented by a template-based predefined volumes-of-interest approach. Behavior was characterized by the limb-use asymmetry test; dopaminergic innervation was validated by in vitro tyrosine hydroxylase staining.

Results

In the 6-OHDA model, significant glucose hypometabolism is present in the ipsilateral sensory-motor cortex (−6.3%; p = 4 × 10−6). DAT binding was severely decreased in the ipsilateral caudate-putamen, nucleus accumbens and substantia nigra (all p < 5 × 10−9), as confirmed by the behavioral and histological outcomes. Correlation analysis revealed a positive relationship between the degree of DAT impairment and the change in glucose metabolism in the ipsilateral hippocampus (p = 3 × 10−5), while cerebellar glucose metabolism was inversely correlated to the level of DAT impairment (p < 3 × 10−4).

Conclusions

In vivo cerebral mapping of 6-OHDA-lesioned rats using [18F]-FDG and [18F]-FECT small animal PET shows molecular–functional correspondence to the cortico-subcortical network impairments observed in PD patients. This provides a further molecular validation supporting the validity of the 6-OHDA lesion model to mimic multiple aspects of human PD.
Literatur
1.
Zurück zum Zitat Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005;2:484–94.PubMedCrossRef Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005;2:484–94.PubMedCrossRef
2.
Zurück zum Zitat Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 1984;5:77–82.PubMed Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 1984;5:77–82.PubMed
3.
Zurück zum Zitat Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996;49:215–66.PubMedCrossRef Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996;49:215–66.PubMedCrossRef
4.
Zurück zum Zitat Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 1996;50:275–331.PubMedCrossRef Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 1996;50:275–331.PubMedCrossRef
5.
Zurück zum Zitat Inaji M, Okauchi T, Ando K, Maeda J, Nagai Y, Yoshizaki T, et al. Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res 2005;1064:136–45.PubMedCrossRef Inaji M, Okauchi T, Ando K, Maeda J, Nagai Y, Yoshizaki T, et al. Correlation between quantitative imaging and behavior in unilaterally 6-OHDA-lesioned rats. Brain Res 2005;1064:136–45.PubMedCrossRef
6.
Zurück zum Zitat Thobois S, Guillouet S, Broussolle E. Contributions of PET and SPECT to the understanding of the pathophysiology of Parkinson’s disease. Neurophysiol Clin 2001;31:321–40.PubMedCrossRef Thobois S, Guillouet S, Broussolle E. Contributions of PET and SPECT to the understanding of the pathophysiology of Parkinson’s disease. Neurophysiol Clin 2001;31:321–40.PubMedCrossRef
7.
Zurück zum Zitat Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005;64:208–15.PubMed Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005;64:208–15.PubMed
8.
Zurück zum Zitat Wienhard K. Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods 2002;27:218–25.PubMedCrossRef Wienhard K. Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods 2002;27:218–25.PubMedCrossRef
9.
Zurück zum Zitat Kuhl DE, Metter EJ, Riege WH. Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F]fluorodeoxyglucose method. Ann Neurol 1984;15:419–24.PubMedCrossRef Kuhl DE, Metter EJ, Riege WH. Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F]fluorodeoxyglucose method. Ann Neurol 1984;15:419–24.PubMedCrossRef
10.
Zurück zum Zitat Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 2004;22:236–45.PubMedCrossRef Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 2004;22:236–45.PubMedCrossRef
11.
Zurück zum Zitat Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006.
12.
Zurück zum Zitat Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.PubMedCrossRef Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.PubMedCrossRef
13.
Zurück zum Zitat Ishida Y, Kawai K, Magata Y, Abe H, Yoshimoto M, Takeda R, et al. Alteration of striatal [11C]raclopride and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake precedes development of methamphetamine-induced rotation following unilateral 6-hydroxydopamine lesions of medial forebrain bundle in rats. Neurosci Lett 2005;389:30–4.PubMedCrossRef Ishida Y, Kawai K, Magata Y, Abe H, Yoshimoto M, Takeda R, et al. Alteration of striatal [11C]raclopride and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake precedes development of methamphetamine-induced rotation following unilateral 6-hydroxydopamine lesions of medial forebrain bundle in rats. Neurosci Lett 2005;389:30–4.PubMedCrossRef
14.
Zurück zum Zitat Strome EM, Cepeda IL, Sossi V, Doudet DJ. Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 2006;8:292–9.PubMedCrossRef Strome EM, Cepeda IL, Sossi V, Doudet DJ. Evaluation of the integrity of the dopamine system in a rodent model of Parkinson’s disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 2006;8:292–9.PubMedCrossRef
15.
Zurück zum Zitat Inaji M, Yoshizaki T, Okauchi T, Maeda J, Nagai Y, Nariai T, et al. In vivo PET measurements with [11C]PE2I to evaluate fetal mesencephalic transplantations to unilateral 6-OHDA-lesioned rats. Cell Transplant 2005;14:655–63.PubMedCrossRef Inaji M, Yoshizaki T, Okauchi T, Maeda J, Nagai Y, Nariai T, et al. In vivo PET measurements with [11C]PE2I to evaluate fetal mesencephalic transplantations to unilateral 6-OHDA-lesioned rats. Cell Transplant 2005;14:655–63.PubMedCrossRef
16.
Zurück zum Zitat Wilson AA, DaSilva JN, Houle S. In vivo evaluation of [11C]- and [18F]-labelled cocaine analogues as potential dopamine transporter ligands for positron emission tomography. Nucl Med Biol 1996;23:141–6.PubMedCrossRef Wilson AA, DaSilva JN, Houle S. In vivo evaluation of [11C]- and [18F]-labelled cocaine analogues as potential dopamine transporter ligands for positron emission tomography. Nucl Med Biol 1996;23:141–6.PubMedCrossRef
17.
Zurück zum Zitat Casteels C, Vermaelen P, Nuyts J, Van Der Linden A, Baekelandt V, Mortelmans L, et al. Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 2006;47:1858–66.PubMed Casteels C, Vermaelen P, Nuyts J, Van Der Linden A, Baekelandt V, Mortelmans L, et al. Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 2006;47:1858–66.PubMed
18.
Zurück zum Zitat Schallert T, Tillerson JL. Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL, Sanberg PR, editors. Central nervous system disease : innovative models of CNS diseases from molecule to therapy. Totowa: Humana Press; 2000. pp. 131–51. Schallert T, Tillerson JL. Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL, Sanberg PR, editors. Central nervous system disease : innovative models of CNS diseases from molecule to therapy. Totowa: Humana Press; 2000. pp. 131–51.
19.
Zurück zum Zitat Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 2005;162:1–10.PubMedCrossRef Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 2005;162:1–10.PubMedCrossRef
20.
Zurück zum Zitat Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 2002;15:120–32.PubMedCrossRef Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 2002;15:120–32.PubMedCrossRef
21.
Zurück zum Zitat Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JL. A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 2003;129:105–13.PubMedCrossRef Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JL. A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 2003;129:105–13.PubMedCrossRef
22.
Zurück zum Zitat Hefti F, Melamed E, Wurtman RJ. Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res 1980;195:123–37.PubMedCrossRef Hefti F, Melamed E, Wurtman RJ. Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res 1980;195:123–37.PubMedCrossRef
23.
Zurück zum Zitat Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001;65:135–72.PubMedCrossRef Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001;65:135–72.PubMedCrossRef
24.
Zurück zum Zitat Carlson JD, Pearlstein RD, Buchholz J, Iacono RP, Maeda G. Regional metabolic changes in the pedunculopontine nucleus of unilateral 6-hydroxydopamine Parkinson’s model rats. Brain Res 1999;828:12–9.PubMedCrossRef Carlson JD, Pearlstein RD, Buchholz J, Iacono RP, Maeda G. Regional metabolic changes in the pedunculopontine nucleus of unilateral 6-hydroxydopamine Parkinson’s model rats. Brain Res 1999;828:12–9.PubMedCrossRef
25.
Zurück zum Zitat Engber TM, Susel Z, Kuo S, Chase TN. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. J Neurosci 1990;10:3889–95.PubMed Engber TM, Susel Z, Kuo S, Chase TN. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. J Neurosci 1990;10:3889–95.PubMed
26.
Zurück zum Zitat Morelli M, Pontieri FE, Linfante I, Orzi F, Di CG. Local cerebral glucose utilization after D1 receptor stimulation in 6-OHDA lesioned rats: effect of sensitization (priming) with a dopaminergic agonist. Synapse 1993;13:264–9.PubMedCrossRef Morelli M, Pontieri FE, Linfante I, Orzi F, Di CG. Local cerebral glucose utilization after D1 receptor stimulation in 6-OHDA lesioned rats: effect of sensitization (priming) with a dopaminergic agonist. Synapse 1993;13:264–9.PubMedCrossRef
27.
Zurück zum Zitat Wooten GF, Collins RC. Metabolic effects of unilateral lesion of the substantia nigra. J Neurosci 1981;1:285–91.PubMed Wooten GF, Collins RC. Metabolic effects of unilateral lesion of the substantia nigra. J Neurosci 1981;1:285–91.PubMed
28.
Zurück zum Zitat Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002;15:991–8.PubMedCrossRef Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002;15:991–8.PubMedCrossRef
29.
Zurück zum Zitat Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.PubMed Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.PubMed
30.
Zurück zum Zitat Berding G, Odin P, Brooks DJ, Nikkhah G, Matthies C, Peschel T, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Mov Disord 2001;16:1014–22.PubMedCrossRef Berding G, Odin P, Brooks DJ, Nikkhah G, Matthies C, Peschel T, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Mov Disord 2001;16:1014–22.PubMedCrossRef
31.
Zurück zum Zitat Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 2007;34:714–23.PubMedCrossRef Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 2007;34:714–23.PubMedCrossRef
32.
Zurück zum Zitat Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 1994;668:71–9.PubMedCrossRef Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 1994;668:71–9.PubMedCrossRef
33.
Zurück zum Zitat Dagher A, Owen AM, Boecker H, Brooks DJ. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 2001;124:1020–32.PubMedCrossRef Dagher A, Owen AM, Boecker H, Brooks DJ. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 2001;124:1020–32.PubMedCrossRef
34.
Zurück zum Zitat Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 2004;24:7–16.PubMedCrossRef Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 2004;24:7–16.PubMedCrossRef
35.
Zurück zum Zitat Chalon S, Emond P, Bodard S, Vilar MP, Thiercelin C, Besnard JC, et al. Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson’s disease. Synapse 1999;31:134–9.PubMedCrossRef Chalon S, Emond P, Bodard S, Vilar MP, Thiercelin C, Besnard JC, et al. Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson’s disease. Synapse 1999;31:134–9.PubMedCrossRef
36.
Zurück zum Zitat Forsback S, Niemi R, Marjamaki P, Eskola O, Bergman J, Gronroos T, et al. Uptake of 6-[18F]fluoro-L-dopa and [18F]CFT reflect nigral neuronal loss in a rat model of Parkinson’s disease. Synapse 2004;51:119–27.PubMedCrossRef Forsback S, Niemi R, Marjamaki P, Eskola O, Bergman J, Gronroos T, et al. Uptake of 6-[18F]fluoro-L-dopa and [18F]CFT reflect nigral neuronal loss in a rat model of Parkinson’s disease. Synapse 2004;51:119–27.PubMedCrossRef
37.
Zurück zum Zitat Jeon BS, Jackson-Lewis V, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 1995;4:131–7.PubMedCrossRef Jeon BS, Jackson-Lewis V, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 1995;4:131–7.PubMedCrossRef
38.
Zurück zum Zitat Andringa G, Drukarch B, Bol JG, de BK, Sorman K, Habraken JB, et al. Pinhole SPECT imaging of dopamine transporters correlates with dopamine transporter immunohistochemical analysis in the MPTP mouse model of Parkinson’s disease. Neuroimage 2005;26:1150–8.PubMedCrossRef Andringa G, Drukarch B, Bol JG, de BK, Sorman K, Habraken JB, et al. Pinhole SPECT imaging of dopamine transporters correlates with dopamine transporter immunohistochemical analysis in the MPTP mouse model of Parkinson’s disease. Neuroimage 2005;26:1150–8.PubMedCrossRef
39.
Zurück zum Zitat Kawachi T, Ishii K, Sakamoto S, Matsui M, Mori T, Sasaki M. Gender differences in cerebral glucose metabolism: a PET study. J Neurol Sci 2002;199:79–83.PubMedCrossRef Kawachi T, Ishii K, Sakamoto S, Matsui M, Mori T, Sasaki M. Gender differences in cerebral glucose metabolism: a PET study. J Neurol Sci 2002;199:79–83.PubMedCrossRef
40.
Zurück zum Zitat Otsuka T, Wei L, Bereczki D, Acuff V, Patlak C, Fenstermacher J. Pentobarbital produces dissimilar changes in glucose influx and utilization in brain. Am J Physiol 1991;261:R265–75.PubMed Otsuka T, Wei L, Bereczki D, Acuff V, Patlak C, Fenstermacher J. Pentobarbital produces dissimilar changes in glucose influx and utilization in brain. Am J Physiol 1991;261:R265–75.PubMed
41.
Zurück zum Zitat Votaw JR, Byas-Smith MG, Voll R, Halkar R, Goodman MM. Isoflurane alters the amount of dopamine transporter expressed on the plasma membrane in humans. Anesthesiology 2004;101:1128–35.PubMedCrossRef Votaw JR, Byas-Smith MG, Voll R, Halkar R, Goodman MM. Isoflurane alters the amount of dopamine transporter expressed on the plasma membrane in humans. Anesthesiology 2004;101:1128–35.PubMedCrossRef
42.
Zurück zum Zitat Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI. Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 2000;166:287–97.PubMedCrossRef Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI. Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 2000;166:287–97.PubMedCrossRef
Metadaten
Titel
Metabolic–dopaminergic mapping of the 6-hydroxydopamine rat model for Parkinson’s disease
verfasst von
Cindy Casteels
Erwin Lauwers
Guy Bormans
Veerle Baekelandt
Koen Van Laere
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0558-3

Weitere Artikel der Ausgabe 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Zur Ausgabe