Skip to main content
Erschienen in: Current HIV/AIDS Reports 6/2021

04.11.2021 | HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)

Microbiome Studies in Non-human Primates

verfasst von: Jason M. Brenchley, Alexandra M. Ortiz

Erschienen in: Current HIV/AIDS Reports | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models.

Recent Findings

Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed.

Summary

Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Literatur
1.
Zurück zum Zitat Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39(9):677–96.PubMedCrossRef Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39(9):677–96.PubMedCrossRef
2.
Zurück zum Zitat Lopez CA, Kingsbury DD, Velazquez EM, Baumler AJ. Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe. 2014;16(2):156–63.PubMedPubMedCentralCrossRef Lopez CA, Kingsbury DD, Velazquez EM, Baumler AJ. Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe. 2014;16(2):156–63.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;7(4):983–94.PubMedPubMedCentralCrossRef Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;7(4):983–94.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39.PubMedCrossRef Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39.PubMedCrossRef
5.
Zurück zum Zitat Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra91. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra91.
6.
Zurück zum Zitat Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe. 2016;19(3):311–22.PubMedPubMedCentralCrossRef Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe. 2016;19(3):311–22.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Ashuro AA, Lobie TA, Ye DQ, Leng RX, Li BZ, Pan HF, et al. Review on the alteration of gut microbiota: the role of HIV infection and old age. AIDS Res Hum Retroviruses. 2020;36(7):556–65.PubMedPubMedCentralCrossRef Ashuro AA, Lobie TA, Ye DQ, Leng RX, Li BZ, Pan HF, et al. Review on the alteration of gut microbiota: the role of HIV infection and old age. AIDS Res Hum Retroviruses. 2020;36(7):556–65.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Alzahrani J, Hussain T, Simar D, Palchaudhuri R, Abdel-Mohsen M, Crowe SM, et al. Inflammatory and immunometabolic consequences of gut dysfunction in HIV: parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine. 2019;46:522–31.PubMedPubMedCentralCrossRef Alzahrani J, Hussain T, Simar D, Palchaudhuri R, Abdel-Mohsen M, Crowe SM, et al. Inflammatory and immunometabolic consequences of gut dysfunction in HIV: parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine. 2019;46:522–31.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Vujkovic-Cvijin I, Somsouk M. HIV and the gut microbiota: composition, consequences, and avenues for amelioration. Curr HIV/AIDS Rep. 2019;16(3):204–13.PubMedPubMedCentralCrossRef Vujkovic-Cvijin I, Somsouk M. HIV and the gut microbiota: composition, consequences, and avenues for amelioration. Curr HIV/AIDS Rep. 2019;16(3):204–13.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Farcasanu M, Kwon DS. The influence of cervicovaginal microbiota on mucosal immunity and prophylaxis in the battle against HIV. Curr HIV/AIDS Rep. 2018;15(1):30–8.PubMedCrossRef Farcasanu M, Kwon DS. The influence of cervicovaginal microbiota on mucosal immunity and prophylaxis in the battle against HIV. Curr HIV/AIDS Rep. 2018;15(1):30–8.PubMedCrossRef
13.
Zurück zum Zitat Bandera A, De Benedetto I, Bozzi G, Gori A. Altered gut microbiome composition in HIV infection: causes, effects and potential intervention. Curr Opin HIV AIDS. 2018;13(1):73–80.PubMedCrossRef Bandera A, De Benedetto I, Bozzi G, Gori A. Altered gut microbiome composition in HIV infection: causes, effects and potential intervention. Curr Opin HIV AIDS. 2018;13(1):73–80.PubMedCrossRef
14.
Zurück zum Zitat Desai SN, Landay AL. HIV and aging: role of the microbiome. Curr Opin HIV AIDS. 2018;13(1):22–7.PubMedCrossRef Desai SN, Landay AL. HIV and aging: role of the microbiome. Curr Opin HIV AIDS. 2018;13(1):22–7.PubMedCrossRef
15.
Zurück zum Zitat Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.PubMedCrossRef Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.PubMedCrossRef
16.
Zurück zum Zitat Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–85.PubMedCrossRef Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–85.PubMedCrossRef
17.
Zurück zum Zitat Merlini E, Bai F, Bellistri GM, Tincati C, d'Arminio Monforte A, Marchetti G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One. 2011;6(4):e18580. Merlini E, Bai F, Bellistri GM, Tincati C, d'Arminio Monforte A, Marchetti G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One. 2011;6(4):e18580.
18.
Zurück zum Zitat Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A, Laboune F et al. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell. 2021;184(15):3899–914 e16. Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A, Laboune F et al. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell. 2021;184(15):3899–914 e16.
19.
Zurück zum Zitat Ericsen AJ, Lauck M, Mohns MS, DiNapoli SR, Mutschler JP, Greene JM et al. Microbial translocation and inflammation occur in hyperacute immunodeficiency virus infection and compromise host control of virus replication. PLoS Pathog. 2016;12(12):e1006048. Ericsen AJ, Lauck M, Mohns MS, DiNapoli SR, Mutschler JP, Greene JM et al. Microbial translocation and inflammation occur in hyperacute immunodeficiency virus infection and compromise host control of virus replication. PLoS Pathog. 2016;12(12):e1006048.
20.
Zurück zum Zitat Klase Z, Ortiz A, Deleage C, Mudd JC, Quinones M, Schwartzman E, et al. Dysbiotic bacteria translocate in progressive SIV infection. Mucosal Immunol. 2015;8(5):1009–20.PubMedPubMedCentralCrossRef Klase Z, Ortiz A, Deleage C, Mudd JC, Quinones M, Schwartzman E, et al. Dysbiotic bacteria translocate in progressive SIV infection. Mucosal Immunol. 2015;8(5):1009–20.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Rhesus Macaque Genome S, Analysis C, Gibbs RA, Rogers J, Katze MG, Bumgarner R et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–34. Rhesus Macaque Genome S, Analysis C, Gibbs RA, Rogers J, Katze MG, Bumgarner R et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–34.
22.
Zurück zum Zitat Chimpanzee S, Analysis C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87.CrossRef Chimpanzee S, Analysis C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87.CrossRef
24.
Zurück zum Zitat Chen Z, Yeoh YK, Hui M, Wong PY, Chan MCW, Ip M, et al. Diversity of macaque microbiota compared to the human counterparts. Sci Rep. 2018;8(1):15573.PubMedPubMedCentralCrossRef Chen Z, Yeoh YK, Hui M, Wong PY, Chan MCW, Ip M, et al. Diversity of macaque microbiota compared to the human counterparts. Sci Rep. 2018;8(1):15573.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog. 2008;4(2):e20. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog. 2008;4(2):e20.
26.
Zurück zum Zitat Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211(1):19–27.PubMedCrossRef Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211(1):19–27.PubMedCrossRef
27.
Zurück zum Zitat McHardy IH, Li X, Tong M, Ruegger P, Jacobs J, Borneman J, et al. HIV infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome. 2013;1(1):26.PubMedPubMedCentralCrossRef McHardy IH, Li X, Tong M, Ruegger P, Jacobs J, Borneman J, et al. HIV infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome. 2013;1(1):26.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10(2):e1003829. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10(2):e1003829.
29.
Zurück zum Zitat Vazquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrus ML, Madrid N, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015;8(4):760–72.PubMedCrossRef Vazquez-Castellanos JF, Serrano-Villar S, Latorre A, Artacho A, Ferrus ML, Madrid N, et al. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunol. 2015;8(4):760–72.PubMedCrossRef
30.
Zurück zum Zitat Armstrong AJS, Shaffer M, Nusbacher NM, Griesmer C, Fiorillo S, Schneider JM, et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome. 2018;6(1):198.PubMedPubMedCentralCrossRef Armstrong AJS, Shaffer M, Nusbacher NM, Griesmer C, Fiorillo S, Schneider JM, et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome. 2018;6(1):198.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Noguera-Julian M, Rocafort M, Guillen Y, Rivera J, Casadella M, Nowak P, et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine. 2016;5:135–46.PubMedPubMedCentralCrossRef Noguera-Julian M, Rocafort M, Guillen Y, Rivera J, Casadella M, Nowak P, et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine. 2016;5:135–46.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kelley CF, Kraft CS, de Man TJ, Duphare C, Lee HW, Yang J, et al. The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention. Mucosal Immunol. 2017;10(4):996–1007.PubMedCrossRef Kelley CF, Kraft CS, de Man TJ, Duphare C, Lee HW, Yang J, et al. The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention. Mucosal Immunol. 2017;10(4):996–1007.PubMedCrossRef
33.
Zurück zum Zitat Vujkovic-Cvijin I, Sortino O, Verheij E, Sklar J, Wit FW, Kootstra NA, et al. HIV-associated gut dysbiosis is independent of sexual practice and correlates with noncommunicable diseases. Nat Commun. 2020;11(1):2448.PubMedPubMedCentralCrossRef Vujkovic-Cvijin I, Sortino O, Verheij E, Sklar J, Wit FW, Kootstra NA, et al. HIV-associated gut dysbiosis is independent of sexual practice and correlates with noncommunicable diseases. Nat Commun. 2020;11(1):2448.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Allers K, Stahl-Hennig C, Fiedler T, Wibberg D, Hofmann J, Kunkel D, et al. The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4(+) T cell depletion and enterocyte damage. Sci Rep. 2020;10(1):10887.PubMedPubMedCentralCrossRef Allers K, Stahl-Hennig C, Fiedler T, Wibberg D, Hofmann J, Kunkel D, et al. The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4(+) T cell depletion and enterocyte damage. Sci Rep. 2020;10(1):10887.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Glavan TW, Gaulke CA, Santos Rocha C, Sankaran-Walters S, Hirao LA, Raffatellu M, et al. Gut immune dysfunction through impaired innate pattern recognition receptor expression and gut microbiota dysbiosis in chronic SIV infection. Mucosal Immunol. 2016;9(3):677–88.PubMedCrossRef Glavan TW, Gaulke CA, Santos Rocha C, Sankaran-Walters S, Hirao LA, Raffatellu M, et al. Gut immune dysfunction through impaired innate pattern recognition receptor expression and gut microbiota dysbiosis in chronic SIV infection. Mucosal Immunol. 2016;9(3):677–88.PubMedCrossRef
36.
Zurück zum Zitat Handley SA, Desai C, Zhao G, Droit L, Monaco CL, Schroeder AC, et al. SIV infection-mediated changes in gastrointestinal bacterial microbiome and virome are associated with immunodeficiency and prevented by vaccination. Cell Host Microbe. 2016;19(3):323–35.PubMedPubMedCentralCrossRef Handley SA, Desai C, Zhao G, Droit L, Monaco CL, Schroeder AC, et al. SIV infection-mediated changes in gastrointestinal bacterial microbiome and virome are associated with immunodeficiency and prevented by vaccination. Cell Host Microbe. 2016;19(3):323–35.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Siddiqui S, Bao D, Doyle-Meyers L, Dufour J, Wu Y, Liu YZ, et al. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci Rep. 2020;10(1):19056.PubMedPubMedCentralCrossRef Siddiqui S, Bao D, Doyle-Meyers L, Dufour J, Wu Y, Liu YZ, et al. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci Rep. 2020;10(1):19056.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Vujkovic-Cvijin I, Swainson LA, Chu SN, Ortiz AM, Santee CA, Petriello A, et al. Gut-resident Lactobacillus abundance associates with IDO1 inhibition and Th17 dynamics in SIV-infected macaques. Cell Rep. 2015;13(8):1589–97.PubMedPubMedCentralCrossRef Vujkovic-Cvijin I, Swainson LA, Chu SN, Ortiz AM, Santee CA, Petriello A, et al. Gut-resident Lactobacillus abundance associates with IDO1 inhibition and Th17 dynamics in SIV-infected macaques. Cell Rep. 2015;13(8):1589–97.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Blum FC, Hardy BL, Bishop-Lilly KA, Frey KG, Hamilton T, Whitney JB, et al. Microbial dysbiosis during simian immunodeficiency virus infection is partially reverted with combination anti-retroviral therapy. Sci Rep. 2020;10(1):6387.PubMedPubMedCentralCrossRef Blum FC, Hardy BL, Bishop-Lilly KA, Frey KG, Hamilton T, Whitney JB, et al. Microbial dysbiosis during simian immunodeficiency virus infection is partially reverted with combination anti-retroviral therapy. Sci Rep. 2020;10(1):6387.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 2012;151(2):253–66.PubMedPubMedCentralCrossRef Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 2012;151(2):253–66.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Klatt NR, Canary LA, Sun X, Vinton CL, Funderburg NT, Morcock DR et al. Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest. 2013;123(2):903–7. Klatt NR, Canary LA, Sun X, Vinton CL, Funderburg NT, Morcock DR et al. Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest. 2013;123(2):903–7.
42.
Zurück zum Zitat •• Ortiz AM, Flynn JK, DiNapoli SR, Vujkovic-Cvijin I, Starke CE, Lai SH et al. Experimental microbial dysbiosis does not promote disease progression in SIV-infected macaques. Nat Med. 2018;24(9):1313–6. This is the first paper to experimentally evaluate a contribution of dysbiosis to SIV disease progression. Vancomycin use in macaques recapitulated the dysbiosis commonly described in PLWH and demonstrated that intestinal bacterial dysbiosis does not necessarily accelerate disease progression. •• Ortiz AM, Flynn JK, DiNapoli SR, Vujkovic-Cvijin I, Starke CE, Lai SH et al. Experimental microbial dysbiosis does not promote disease progression in SIV-infected macaques. Nat Med. 2018;24(9):1313–6. This is the first paper to experimentally evaluate a contribution of dysbiosis to SIV disease progression. Vancomycin use in macaques recapitulated the dysbiosis commonly described in PLWH and demonstrated that intestinal bacterial dysbiosis does not necessarily accelerate disease progression.
43.
Zurück zum Zitat Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–49.PubMedPubMedCentralCrossRef Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–49.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat •• Sui Y, Dzutsev A, Venzon D, Frey B, Thovarai V, Trinchieri G et al. Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunol. 2018;11(4):1219–29. Rhesus macaques originating from different sources and harboring distinct microbiomes were found to have differing susceptibilities to rectal SHIV infection. CD4+ T-cells frequencies and rectal inflammation correlated with susceptibility and intestinal Prevotella:Bacteroides. •• Sui Y, Dzutsev A, Venzon D, Frey B, Thovarai V, Trinchieri G et al. Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunol. 2018;11(4):1219–29. Rhesus macaques originating from different sources and harboring distinct microbiomes were found to have differing susceptibilities to rectal SHIV infection. CD4+ T-cells frequencies and rectal inflammation correlated with susceptibility and intestinal Prevotella:Bacteroides.
45.
Zurück zum Zitat Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587(7834):448–54.PubMedPubMedCentralCrossRef Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587(7834):448–54.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Morris A, Paulson JN, Talukder H, Tipton L, Kling H, Cui L, et al. Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome. 2016;4(1):38.PubMedPubMedCentralCrossRef Morris A, Paulson JN, Talukder H, Tipton L, Kling H, Cui L, et al. Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome. 2016;4(1):38.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Jones R, Kroll K, Broedlow C, Schifanella L, Smith S, Hueber B, et al. Probiotic supplementation reduces inflammatory profiles but does not prevent oral immune perturbations during SIV infection. Sci Rep. 2021;11(1):14507.PubMedPubMedCentralCrossRef Jones R, Kroll K, Broedlow C, Schifanella L, Smith S, Hueber B, et al. Probiotic supplementation reduces inflammatory profiles but does not prevent oral immune perturbations during SIV infection. Sci Rep. 2021;11(1):14507.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Beck JM, Schloss PD, Venkataraman A, Twigg H 3rd, Jablonski KA, Bushman FD, et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am J Respir Crit Care Med. 2015;192(11):1335–44.PubMedPubMedCentralCrossRef Beck JM, Schloss PD, Venkataraman A, Twigg H 3rd, Jablonski KA, Bushman FD, et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am J Respir Crit Care Med. 2015;192(11):1335–44.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, Sodergren E, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013;187(10):1110–7.PubMedPubMedCentralCrossRef Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, Sodergren E, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013;187(10):1110–7.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Twigg HL 3rd, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, et al. Effect of advanced HIV infection on the respiratory microbiome. Am J Respir Crit Care Med. 2016;194(2):226–35.PubMedPubMedCentralCrossRef Twigg HL 3rd, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, et al. Effect of advanced HIV infection on the respiratory microbiome. Am J Respir Crit Care Med. 2016;194(2):226–35.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Ortiz AM, Flynn JK, DiNapoli SR, Sortino O, Vujkovic-Cvijin I, Belkaid Y et al. Antiretroviral therapy administration in healthy rhesus macaques is associated with transient shifts in intestinal bacterial diversity and modest immunological perturbations. J Virol. 2019;93(18). Ortiz AM, Flynn JK, DiNapoli SR, Sortino O, Vujkovic-Cvijin I, Belkaid Y et al. Antiretroviral therapy administration in healthy rhesus macaques is associated with transient shifts in intestinal bacterial diversity and modest immunological perturbations. J Virol. 2019;93(18).
52.
Zurück zum Zitat Perler BK, Reinhart EM, Montgomery M, Maynard M, Shapiro JM, Belenky P, et al. Evaluation of the microbiome in men taking pre-exposure prophylaxis for HIV prevention. AIDS Behav. 2021;25(7):2005–13.PubMedCrossRef Perler BK, Reinhart EM, Montgomery M, Maynard M, Shapiro JM, Belenky P, et al. Evaluation of the microbiome in men taking pre-exposure prophylaxis for HIV prevention. AIDS Behav. 2021;25(7):2005–13.PubMedCrossRef
53.
Zurück zum Zitat Fulcher JA, Li F, Cook RR, Zabih S, Louie A, Okochi H et al. Rectal microbiome alterations associated with oral human immunodeficiency virus pre-exposure prophylaxis. Open Forum Infect Dis. 2019;6(11):ofz463. Fulcher JA, Li F, Cook RR, Zabih S, Louie A, Okochi H et al. Rectal microbiome alterations associated with oral human immunodeficiency virus pre-exposure prophylaxis. Open Forum Infect Dis. 2019;6(11):ofz463.
54.
Zurück zum Zitat Dube MP, Park SY, Ross H, Love TMT, Morris SR, Lee HY. Daily HIV pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate-emtricitabine reduced Streptococcus and increased Erysipelotrichaceae in rectal microbiota. Sci Rep. 2018;8(1):15212.PubMedPubMedCentralCrossRef Dube MP, Park SY, Ross H, Love TMT, Morris SR, Lee HY. Daily HIV pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate-emtricitabine reduced Streptococcus and increased Erysipelotrichaceae in rectal microbiota. Sci Rep. 2018;8(1):15212.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Patel S PC, Bernice F. Vancomycin. Treasure Island (FL): StatPearls Publishing. Patel S PC, Bernice F. Vancomycin. Treasure Island (FL): StatPearls Publishing.
56.
Zurück zum Zitat Collini PJ, Kuijper E, Dockrell DH. Clostridium difficile infection in patients with HIV/AIDS. Curr HIV/AIDS Rep. 2013;10(3):273–82.PubMedCrossRef Collini PJ, Kuijper E, Dockrell DH. Clostridium difficile infection in patients with HIV/AIDS. Curr HIV/AIDS Rep. 2013;10(3):273–82.PubMedCrossRef
57.
Zurück zum Zitat Bisson GP, Zetola N, Collman RG. Persistent high mortality in advanced HIV/TB despite appropriate antiretroviral and antitubercular therapy: an emerging challenge. Curr HIV/AIDS Rep. 2015;12(1):107–16.PubMedPubMedCentralCrossRef Bisson GP, Zetola N, Collman RG. Persistent high mortality in advanced HIV/TB despite appropriate antiretroviral and antitubercular therapy: an emerging challenge. Curr HIV/AIDS Rep. 2015;12(1):107–16.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Department of Health and Human Services. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. [database on the Internet]. Available from: https://clinicalinfo.hiv.gov/sites/default/files/inline-files/adult_oi.pdf. Accessed:August 21, 2021 Department of Health and Human Services. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. [database on the Internet]. Available from: https://​clinicalinfo.​hiv.​gov/​sites/​default/​files/​inline-files/​adult_​oi.​pdf. Accessed:August 21, 2021
59.
Zurück zum Zitat Guillen Y, Noguera-Julian M, Rivera J, Casadella M, Zevin AS, Rocafort M, et al. Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunol. 2019;12(1):232–46.PubMedCrossRef Guillen Y, Noguera-Julian M, Rivera J, Casadella M, Zevin AS, Rocafort M, et al. Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunol. 2019;12(1):232–46.PubMedCrossRef
60.
Zurück zum Zitat Jasinska AJ, Dong TS, Lagishetty V, Katzka W, Jacobs JP, Schmitt CA, et al. Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. Microbiome. 2020;8(1):154.PubMedPubMedCentralCrossRef Jasinska AJ, Dong TS, Lagishetty V, Katzka W, Jacobs JP, Schmitt CA, et al. Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. Microbiome. 2020;8(1):154.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14(3):340–5.PubMedPubMedCentralCrossRef Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14(3):340–5.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Barbian HJ, Li Y, Ramirez M, Klase Z, Lipende I, Mjungu D et al. Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees. Am J Primatol. 2018;80(1). Barbian HJ, Li Y, Ramirez M, Klase Z, Lipende I, Mjungu D et al. Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees. Am J Primatol. 2018;80(1).
63.
Zurück zum Zitat Zevin AS, Xie IY, Birse K, Arnold K, Romas L, Westmacott G et al. Microbiome composition and function drives wound-healing impairment in the female genital tract. PLoS Pathog. 2016;12(9):e1005889. Zevin AS, Xie IY, Birse K, Arnold K, Romas L, Westmacott G et al. Microbiome composition and function drives wound-healing impairment in the female genital tract. PLoS Pathog. 2016;12(9):e1005889.
64.
Zurück zum Zitat Tipton L, Muller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome. 2018;6(1):12.PubMedPubMedCentralCrossRef Tipton L, Muller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome. 2018;6(1):12.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Velazquez EM, Nguyen H, Heasley KT, Saechao CH, Gil LM, Rogers AWL, et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat Microbiol. 2019;4(6):1057–64.PubMedPubMedCentralCrossRef Velazquez EM, Nguyen H, Heasley KT, Saechao CH, Gil LM, Rogers AWL, et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat Microbiol. 2019;4(6):1057–64.PubMedPubMedCentralCrossRef
66.
67.
Zurück zum Zitat Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, Chavez LL, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol. 2008;82(24):12449–63.PubMedPubMedCentralCrossRef Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, Chavez LL, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol. 2008;82(24):12449–63.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F et al. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 2015;349(6249):aab1253. Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F et al. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 2015;349(6249):aab1253.
69.
Zurück zum Zitat Trama AM, Moody MA, Alam SM, Jaeger FH, Lockwood B, Parks R, et al. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 2014;16(2):215–26.PubMedPubMedCentralCrossRef Trama AM, Moody MA, Alam SM, Jaeger FH, Lockwood B, Parks R, et al. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 2014;16(2):215–26.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Han Q, Williams WB, Saunders KO, Seaton KE, Wiehe KJ, Vandergrift N et al. HIV DNA-adenovirus multiclade envelope vaccine induces gp41 antibody immunodominance in rhesus macaques. J Virol. 2017;91(21). Han Q, Williams WB, Saunders KO, Seaton KE, Wiehe KJ, Vandergrift N et al. HIV DNA-adenovirus multiclade envelope vaccine induces gp41 antibody immunodominance in rhesus macaques. J Virol. 2017;91(21).
71.
Zurück zum Zitat Sui Y, Lewis GK, Wang Y, Berckmueller K, Frey B, Dzutsev A, et al. Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. J Clin Invest. 2019;129(3):1314–28.PubMedPubMedCentralCrossRef Sui Y, Lewis GK, Wang Y, Berckmueller K, Frey B, Dzutsev A, et al. Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. J Clin Invest. 2019;129(3):1314–28.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Musich T, Thovarai V, Venzon DJ, Mohanram V, Tuero I, Miller-Novak LK et al. A prime/boost vaccine regimen alters the rectal microbiome and impacts immune responses and viremia control post-simian immunodeficiency virus infection in male and female rhesus macaques. J Virol. 2020;94(24). Musich T, Thovarai V, Venzon DJ, Mohanram V, Tuero I, Miller-Novak LK et al. A prime/boost vaccine regimen alters the rectal microbiome and impacts immune responses and viremia control post-simian immunodeficiency virus infection in male and female rhesus macaques. J Virol. 2020;94(24).
73.
Zurück zum Zitat Elizaldi SR, Verma A, Walter KA, Rolston M, Dinasarapu AR, Durbin-Johnson BP et al. Rectal microbiome composition correlates with humoral immunity to HIV-1 in vaccinated rhesus macaques. mSphere. 2019;4(6). Elizaldi SR, Verma A, Walter KA, Rolston M, Dinasarapu AR, Durbin-Johnson BP et al. Rectal microbiome composition correlates with humoral immunity to HIV-1 in vaccinated rhesus macaques. mSphere. 2019;4(6).
74.
Zurück zum Zitat Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One. 2016;11(5):e0154090. Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One. 2016;11(5):e0154090.
75.
Zurück zum Zitat Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599.
77.
Zurück zum Zitat Gosmann C, Anahtar MN, Handley SA, Farcasanu M, Abu-Ali G, Bowman BA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37.PubMedPubMedCentralCrossRef Gosmann C, Anahtar MN, Handley SA, Farcasanu M, Abu-Ali G, Bowman BA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noel-Romas L, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science. 2017;356(6341):938–45.PubMedCrossRef Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noel-Romas L, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science. 2017;356(6341):938–45.PubMedCrossRef
79.
Zurück zum Zitat Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.PubMedCrossRef Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.PubMedCrossRef
80.
Zurück zum Zitat • Rhoades NS, Hendrickson SM, Gerken DR, Martinez K, Slayden OD, Slifka MK et al. Longitudinal profiling of the macaque vaginal microbiome reveals similarities to diverse human vaginal communities. mSystems. 2021;6(2). This publication comprehensively and longitudinally documents the diversity and instability of the macaque vaginal microbiome and demonstrates its functional similarity to that of women with recurring bacterial vaginosis. • Rhoades NS, Hendrickson SM, Gerken DR, Martinez K, Slayden OD, Slifka MK et al. Longitudinal profiling of the macaque vaginal microbiome reveals similarities to diverse human vaginal communities. mSystems. 2021;6(2). This publication comprehensively and longitudinally documents the diversity and instability of the macaque vaginal microbiome and demonstrates its functional similarity to that of women with recurring bacterial vaginosis.
81.
Zurück zum Zitat Spear GT, Gilbert D, Sikaroodi M, Doyle L, Green L, Gillevet PM, et al. Identification of rhesus macaque genital microbiota by 16S pyrosequencing shows similarities to human bacterial vaginosis: implications for use as an animal model for HIV vaginal infection. AIDS Res Hum Retroviruses. 2010;26(2):193–200.PubMedPubMedCentralCrossRef Spear GT, Gilbert D, Sikaroodi M, Doyle L, Green L, Gillevet PM, et al. Identification of rhesus macaque genital microbiota by 16S pyrosequencing shows similarities to human bacterial vaginosis: implications for use as an animal model for HIV vaginal infection. AIDS Res Hum Retroviruses. 2010;26(2):193–200.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Hallmaier-Wacker LK, Luert S, Roos C, Knauf S. Lactation and menstruation shift the vaginal microbiota in captive rhesus monkeys to be more similar to the male urethral microbiota. Sci Rep. 2019;9(1):17399.PubMedPubMedCentralCrossRef Hallmaier-Wacker LK, Luert S, Roos C, Knauf S. Lactation and menstruation shift the vaginal microbiota in captive rhesus monkeys to be more similar to the male urethral microbiota. Sci Rep. 2019;9(1):17399.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Spear GT, Kersh E, Guenthner P, Vishwanathan SA, Gilbert D, Zariffard MR, et al. Longitudinal assessment of pigtailed macaque lower genital tract microbiota by pyrosequencing reveals dissimilarity to the genital microbiota of healthy humans. AIDS Res Hum Retroviruses. 2012;28(10):1244–9.PubMedPubMedCentralCrossRef Spear GT, Kersh E, Guenthner P, Vishwanathan SA, Gilbert D, Zariffard MR, et al. Longitudinal assessment of pigtailed macaque lower genital tract microbiota by pyrosequencing reveals dissimilarity to the genital microbiota of healthy humans. AIDS Res Hum Retroviruses. 2012;28(10):1244–9.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Nugeyre MT, Tchitchek N, Adapen C, Cannou C, Contreras V, Benjelloun F, et al. Dynamics of vaginal and rectal microbiota over several menstrual cycles in female cynomolgus macaques. Front Cell Infect Microbiol. 2019;9:188.PubMedPubMedCentralCrossRef Nugeyre MT, Tchitchek N, Adapen C, Cannou C, Contreras V, Benjelloun F, et al. Dynamics of vaginal and rectal microbiota over several menstrual cycles in female cynomolgus macaques. Front Cell Infect Microbiol. 2019;9:188.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev. 2013;37(5):762–92.PubMedCrossRef Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev. 2013;37(5):762–92.PubMedCrossRef
86.
Zurück zum Zitat Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, Zhong X et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, Zhong X et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.
87.
Zurück zum Zitat Lagenaur LA, Swedek I, Lee PP, Parks TP. Robust vaginal colonization of macaques with a novel vaginally disintegrating tablet containing a live biotherapeutic product to prevent HIV infection in women. PLoS One. 2015;10(4):e0122730. Lagenaur LA, Swedek I, Lee PP, Parks TP. Robust vaginal colonization of macaques with a novel vaginally disintegrating tablet containing a live biotherapeutic product to prevent HIV infection in women. PLoS One. 2015;10(4):e0122730.
88.
Zurück zum Zitat Yu RR, Cheng AT, Lagenaur LA, Huang W, Weiss DE, Treece J, et al. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development. J Med Primatol. 2009;38(2):125–36.PubMedPubMedCentralCrossRef Yu RR, Cheng AT, Lagenaur LA, Huang W, Weiss DE, Treece J, et al. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development. J Med Primatol. 2009;38(2):125–36.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Daggett GJ Jr, Zhao C, Connor-Stroud F, Oviedo-Moreno P, Moon H, Cho MW, et al. Comparison of the vaginal environment in rhesus and cynomolgus macaques pre- and post-lactobacillus colonization. J Med Primatol. 2017;46(5):232–8.PubMedPubMedCentralCrossRef Daggett GJ Jr, Zhao C, Connor-Stroud F, Oviedo-Moreno P, Moon H, Cho MW, et al. Comparison of the vaginal environment in rhesus and cynomolgus macaques pre- and post-lactobacillus colonization. J Med Primatol. 2017;46(5):232–8.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16(9):567–76.PubMedCrossRef Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16(9):567–76.PubMedCrossRef
91.
Zurück zum Zitat Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–16.PubMedCrossRef Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–16.PubMedCrossRef
93.
Zurück zum Zitat Lumaca A, Galli L, de Martino M, Chiappini E. Paediatric HIV-1 infection: updated strategies of prevention mother-to-child transmission. J Chemother. 2018;30(4):193–202.PubMedCrossRef Lumaca A, Galli L, de Martino M, Chiappini E. Paediatric HIV-1 infection: updated strategies of prevention mother-to-child transmission. J Chemother. 2018;30(4):193–202.PubMedCrossRef
94.
Zurück zum Zitat Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–8.PubMedPubMedCentralCrossRef Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–8.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.PubMedCrossRef Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.PubMedCrossRef
96.
Zurück zum Zitat Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–34.PubMedPubMedCentralCrossRef Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–34.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralCrossRef Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat • Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome. 2021;9(1):68. A detailed comparison of rectal, oral, penile, and vaginal microbiomes of macaques across age and sex demonstrating that once established, these microbiomes are largely conserved with the exception of a dynamic penile microbiome. • Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome. 2021;9(1):68. A detailed comparison of rectal, oral, penile, and vaginal microbiomes of macaques across age and sex demonstrating that once established, these microbiomes are largely conserved with the exception of a dynamic penile microbiome.
99.
Zurück zum Zitat Berard AR, Miller C, Arainga M, Broedlow CA, Noel-Romas L, Schifanella L, et al. Simian immunodeficiency virus susceptibility, immunology, and microbiome in the female genital tract of adolescent versus adult pigtail macaques. AIDS Res Hum Retroviruses. 2021;37(7):510–22.PubMedCrossRef Berard AR, Miller C, Arainga M, Broedlow CA, Noel-Romas L, Schifanella L, et al. Simian immunodeficiency virus susceptibility, immunology, and microbiome in the female genital tract of adolescent versus adult pigtail macaques. AIDS Res Hum Retroviruses. 2021;37(7):510–22.PubMedCrossRef
100.
Zurück zum Zitat Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501(7465):112–5.PubMedPubMedCentralCrossRef Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501(7465):112–5.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Han Q, Bradley T, Williams WB, Cain DW, Montefiori DC, Saunders KO et al. Neonatal rhesus macaques have distinct immune cell transcriptional profiles following HIV envelope immunization. Cell Rep. 2020;30(5):1553–69 e6. Han Q, Bradley T, Williams WB, Cain DW, Montefiori DC, Saunders KO et al. Neonatal rhesus macaques have distinct immune cell transcriptional profiles following HIV envelope immunization. Cell Rep. 2020;30(5):1553–69 e6.
102.
Zurück zum Zitat Baumann-Dudenhoeffer AM, D’Souza AW, Tarr PI, Warner BB, Dantas G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 2018;24(12):1822–9.PubMedPubMedCentralCrossRef Baumann-Dudenhoeffer AM, D’Souza AW, Tarr PI, Warner BB, Dantas G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 2018;24(12):1822–9.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Ardeshir A, Narayan NR, Mendez-Lagares G, Lu D, Rauch M, Huang Y et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med. 2014;6(252):252ra120. Ardeshir A, Narayan NR, Mendez-Lagares G, Lu D, Rauch M, Huang Y et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med. 2014;6(252):252ra120.
104.
Zurück zum Zitat Narayan NR, Mendez-Lagares G, Ardeshir A, Lu D, Van Rompay KK, Hartigan-O’Connor DJ. Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes. 2015;6(4):284–9.PubMedPubMedCentralCrossRef Narayan NR, Mendez-Lagares G, Ardeshir A, Lu D, Van Rompay KK, Hartigan-O’Connor DJ. Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes. 2015;6(4):284–9.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29.PubMedCrossRef Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29.PubMedCrossRef
106.
Zurück zum Zitat Ortiz AM, Klase ZA, DiNapoli SR, Vujkovic-Cvijin I, Carmack K, Perkins MR, et al. IL-21 and probiotic therapy improve Th17 frequencies, microbial translocation, and microbiome in ARV-treated. SIV-infected macaques Mucosal Immunol. 2016;9(2):458–67.PubMedCrossRef Ortiz AM, Klase ZA, DiNapoli SR, Vujkovic-Cvijin I, Carmack K, Perkins MR, et al. IL-21 and probiotic therapy improve Th17 frequencies, microbial translocation, and microbiome in ARV-treated. SIV-infected macaques Mucosal Immunol. 2016;9(2):458–67.PubMedCrossRef
107.
Zurück zum Zitat Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388–405 e21. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388–405 e21.
108.
Zurück zum Zitat Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406–23 e16. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406–23 e16.
109.
Zurück zum Zitat Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.PubMedCrossRef Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.PubMedCrossRef
110.
Zurück zum Zitat Chehoud C, Dryga A, Hwang Y, Nagy-Szakal D, Hollister EB, Luna RA et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. mBio. 2016;7(2):e00322. Chehoud C, Dryga A, Hwang Y, Nagy-Szakal D, Hollister EB, Luna RA et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. mBio. 2016;7(2):e00322.
111.
Zurück zum Zitat DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50. DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50.
112.
Zurück zum Zitat Hensley-McBain T, Zevin AS, Manuzak J, Smith E, Gile J, Miller C, et al. Effects of fecal microbial transplantation on microbiome and immunity in simian immunodeficiency virus-infected macaques. J Virol. 2016;90(10):4981–9.PubMedPubMedCentralCrossRef Hensley-McBain T, Zevin AS, Manuzak J, Smith E, Gile J, Miller C, et al. Effects of fecal microbial transplantation on microbiome and immunity in simian immunodeficiency virus-infected macaques. J Virol. 2016;90(10):4981–9.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Manuzak JA, Hensley-McBain T, Zevin AS, Miller C, Cubas R, Agricola B, et al. Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J Immunol. 2016;196(5):2401–9.PubMedCrossRef Manuzak JA, Hensley-McBain T, Zevin AS, Miller C, Cubas R, Agricola B, et al. Enhancement of microbiota in healthy macaques results in beneficial modulation of mucosal and systemic immune function. J Immunol. 2016;196(5):2401–9.PubMedCrossRef
114.
Zurück zum Zitat Klatt NR, Broedlow C, Osborn JM, Gustin AT, Dross S, O’Connor MA, et al. Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines. 2021;6(1):34.PubMedPubMedCentralCrossRef Klatt NR, Broedlow C, Osborn JM, Gustin AT, Dross S, O’Connor MA, et al. Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines. 2021;6(1):34.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat •• Bochart RM, Busman-Sahay K, Bondoc S, Morrow DW, Ortiz AM, Fennessey CM et al. Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques. PLoS Pathog. 2021;17(5):e1009565. Utilizing a therapeutic antibiotic regimen, this is the first generation of gastrointestinal pathogen-free macaques. Without widespread disruption to the microbiome, these macaques had improved intestinal epithelial barriers, reduced mucosal and systemic inflammation, and reduced susceptibility to rectal SIV challenge. •• Bochart RM, Busman-Sahay K, Bondoc S, Morrow DW, Ortiz AM, Fennessey CM et al. Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques. PLoS Pathog. 2021;17(5):e1009565. Utilizing a therapeutic antibiotic regimen, this is the first generation of gastrointestinal pathogen-free macaques. Without widespread disruption to the microbiome, these macaques had improved intestinal epithelial barriers, reduced mucosal and systemic inflammation, and reduced susceptibility to rectal SIV challenge.
116.
Zurück zum Zitat El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging trends in “Smart Probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol. 2017;8:1889.PubMedPubMedCentralCrossRef El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging trends in “Smart Probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol. 2017;8:1889.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Scott BM, Gutierrez-Vazquez C, Sanmarco LM, da Silva Pereira JA, Li Z, Plasencia A, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27(7):1212–22.PubMedCrossRef Scott BM, Gutierrez-Vazquez C, Sanmarco LM, da Silva Pereira JA, Li Z, Plasencia A, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27(7):1212–22.PubMedCrossRef
118.
Zurück zum Zitat Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe. 2015;17(3):385–91.PubMedPubMedCentralCrossRef Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe. 2015;17(3):385–91.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Lee W, Hayakawa T, Kurihara Y, Hanzawa M, Sawada A, Kaneko A et al. Stomach and colonic microbiome of wild Japanese macaques. Am J Primatol. 2021;83(5):e23242. Lee W, Hayakawa T, Kurihara Y, Hanzawa M, Sawada A, Kaneko A et al. Stomach and colonic microbiome of wild Japanese macaques. Am J Primatol. 2021;83(5):e23242.
120.
121.
Zurück zum Zitat D’Arc M, Furtado C, Siqueira JD, Seuanez HN, Ayouba A, Peeters M, et al. Assessment of the gorilla gut virome in association with natural simian immunodeficiency virus infection. Retrovirology. 2018;15(1):19.PubMedPubMedCentralCrossRef D’Arc M, Furtado C, Siqueira JD, Seuanez HN, Ayouba A, Peeters M, et al. Assessment of the gorilla gut virome in association with natural simian immunodeficiency virus infection. Retrovirology. 2018;15(1):19.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med. 2015;191(8):932–42.PubMedPubMedCentralCrossRef Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med. 2015;191(8):932–42.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Mukherjee PK, Chandra J, Retuerto M, Tatsuoka C, Ghannoum MA, McComsey GA. Dysbiosis in the oral bacterial and fungal microbiome of HIV-infected subjects is associated with clinical and immunologic variables of HIV infection. PLoS One. 2018;13(7):e0200285. Mukherjee PK, Chandra J, Retuerto M, Tatsuoka C, Ghannoum MA, McComsey GA. Dysbiosis in the oral bacterial and fungal microbiome of HIV-infected subjects is associated with clinical and immunologic variables of HIV infection. PLoS One. 2018;13(7):e0200285.
124.
Zurück zum Zitat Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S et al. Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol. 2020;144:103468. Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S et al. Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol. 2020;144:103468.
125.
Zurück zum Zitat Sun B, Xia Y, Garber PA, Amato KR, Gomez A, Xu X et al. Captivity is associated with gut mycobiome composition in Tibetan macaques (Macaca thibetana). Front Microbiol. 2021;12:665853. Sun B, Xia Y, Garber PA, Amato KR, Gomez A, Xu X et al. Captivity is associated with gut mycobiome composition in Tibetan macaques (Macaca thibetana). Front Microbiol. 2021;12:665853.
126.
Zurück zum Zitat Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK et al. Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol. 2018;80(7):e22880. Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK et al. Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol. 2018;80(7):e22880.
Metadaten
Titel
Microbiome Studies in Non-human Primates
verfasst von
Jason M. Brenchley
Alexandra M. Ortiz
Publikationsdatum
04.11.2021
Verlag
Springer US
Erschienen in
Current HIV/AIDS Reports / Ausgabe 6/2021
Print ISSN: 1548-3568
Elektronische ISSN: 1548-3576
DOI
https://doi.org/10.1007/s11904-021-00584-9

Weitere Artikel der Ausgabe 6/2021

Current HIV/AIDS Reports 6/2021 Zur Ausgabe

Central Nervous System and Cognition (SS Spudich, Section Editor)

Validity of Digital Assessments in Screening for HIV-Related Cognitive Impairment: a Review

Central Nervous System and Cognition (S Spudich, Section Editor)

Global Systematic Review of Common Mental Health Disorders in Adults Living with HIV

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.