Skip to main content
Erschienen in: Journal of Radiation Oncology 1/2016

01.03.2016 | Review

Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models

verfasst von: Eric P. Cohen, Brian L. Fish, John D. Imig, John E. Moulder

Erschienen in: Journal of Radiation Oncology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Normal tissue radiation injury is a common complication of radiation therapy and is also a major concern after accidental or belligerent radiation exposure, and until recently, it was deemed untreatable. Both experimental and clinical evidence now show that radiation injury can be alleviated by agents started after irradiation but before manifestation of that injury (a therapeutic approach called “mitigation”). Mitigation of normal tissue injuries would improve clinical radiation therapy, and it will be an essential medical countermeasure for accidental or belligerent radiation exposures. In rat radiation nephropathy models over 30 potential mitigators have been tested, some (e.g., angiotensin converting enzyme inhibitors and angiotensin II receptor blockers) have been found to be quite effective, but many others appear ineffective, and a few have actually made injury worse. For the most part, work with the successful agents, and the agents that made radiation injury worse, is in the peer-reviewed literature. However, we have found it difficult to publish information on the agents that were ineffective, although we suspect that others have tried some of the same agents and also found them ineffective. Here, we review all agents we know of that have been tested to date in rat radiation nephropathy models, with the goal of helping to prevent needless duplication of studies.
Literatur
1.
Zurück zum Zitat Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P (2011) Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 17(2):222–228CrossRefPubMed Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P (2011) Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 17(2):222–228CrossRefPubMed
2.
Zurück zum Zitat Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR, Grdina DJ, Greenberger JS, Hauer-Jensen M, Hill RP, Kolesnick RN, Macvittie TJ, Marks C, McBride WH, Metting N, Pellmar T, Purucker M, Robbins ME, Schiestl RH, Seed TM, Tomaszewski JE, Travis EL, Wallner PE, Wolpert M, Zaharevitz D (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI workshop, December 3–4, 2003. Radiat Res 162(6):711–728CrossRefPubMed Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR, Grdina DJ, Greenberger JS, Hauer-Jensen M, Hill RP, Kolesnick RN, Macvittie TJ, Marks C, McBride WH, Metting N, Pellmar T, Purucker M, Robbins ME, Schiestl RH, Seed TM, Tomaszewski JE, Travis EL, Wallner PE, Wolpert M, Zaharevitz D (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI workshop, December 3–4, 2003. Radiat Res 162(6):711–728CrossRefPubMed
3.
Zurück zum Zitat Hafer N, Cassatt D, Dicarlo A, Ramakrishnan N, Kaminski J, Norman MK, Maidment B, Hatchett R (2010) NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Phys 98(6):903–905CrossRefPubMed Hafer N, Cassatt D, Dicarlo A, Ramakrishnan N, Kaminski J, Norman MK, Maidment B, Hatchett R (2010) NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Phys 98(6):903–905CrossRefPubMed
4.
Zurück zum Zitat Cohen EP, Moulder JE (2011) Radiation nephropathy. In: Cohen EP (ed) Cancer and the kidney. Oxford University Press, Oxford, pp 193–204 Cohen EP, Moulder JE (2011) Radiation nephropathy. In: Cohen EP (ed) Cancer and the kidney. Oxford University Press, Oxford, pp 193–204
5.
Zurück zum Zitat Robbins ME, Diz DI (2006) Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Rad Oncol Biol Phys 64(1):6–12CrossRef Robbins ME, Diz DI (2006) Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Rad Oncol Biol Phys 64(1):6–12CrossRef
6.
Zurück zum Zitat Robbins MEC, Bonsib SM (1995) Radiation nephropathy: a review. Scan Micros 9:535–560 Robbins MEC, Bonsib SM (1995) Radiation nephropathy: a review. Scan Micros 9:535–560
7.
Zurück zum Zitat Singh N, McNeely J, Parikh S, Bhinder A, Rovin BH, Shidham G (2013) Kidney complications of hematopoietic stem cell transplantation. Am J Kidney Dis 61(5):809–821CrossRefPubMed Singh N, McNeely J, Parikh S, Bhinder A, Rovin BH, Shidham G (2013) Kidney complications of hematopoietic stem cell transplantation. Am J Kidney Dis 61(5):809–821CrossRefPubMed
8.
Zurück zum Zitat Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE (2010) Radiation-associated kidney injury. Int J Rad Oncol Biol Phys 76(suppl 1):S108–S115CrossRef Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE (2010) Radiation-associated kidney injury. Int J Rad Oncol Biol Phys 76(suppl 1):S108–S115CrossRef
9.
Zurück zum Zitat Kal HB, van Kempen-Harteveld ML (2006) Renal dysfunction after total body irradiation: dose-effect relationship. Int J Rad Oncol Biol Phys 65(4):1228–1232CrossRef Kal HB, van Kempen-Harteveld ML (2006) Renal dysfunction after total body irradiation: dose-effect relationship. Int J Rad Oncol Biol Phys 65(4):1228–1232CrossRef
10.
Zurück zum Zitat Humphreys MH, Alfrey AC (1986) Vascular diseases of the kidney. In: Brenner BM, Rector FC (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 1175–1220 Humphreys MH, Alfrey AC (1986) Vascular diseases of the kidney. In: Brenner BM, Rector FC (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 1175–1220
11.
Zurück zum Zitat Cohen EP, Fish BL, Moulder JE (2002) The renin-angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139:251–257CrossRefPubMed Cohen EP, Fish BL, Moulder JE (2002) The renin-angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139:251–257CrossRefPubMed
12.
Zurück zum Zitat Geraci JP, Sun MC, Mariano MS (1995) Amelioration of radiation nephropathy in rats by postirradiation treatment with dexamethasone and/or captopril. Radiat Res 143:58–68CrossRefPubMed Geraci JP, Sun MC, Mariano MS (1995) Amelioration of radiation nephropathy in rats by postirradiation treatment with dexamethasone and/or captopril. Radiat Res 143:58–68CrossRefPubMed
13.
Zurück zum Zitat Moulder JE, Fish BL, Cohen EP (1998) Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int J Radiat Biol 73:415–421CrossRefPubMed Moulder JE, Fish BL, Cohen EP (1998) Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int J Radiat Biol 73:415–421CrossRefPubMed
14.
Zurück zum Zitat Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metas Rev 31(3–4):699–712CrossRef Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metas Rev 31(3–4):699–712CrossRef
15.
Zurück zum Zitat Allison RR (2014) Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 10(15):2359–2379CrossRefPubMed Allison RR (2014) Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 10(15):2359–2379CrossRefPubMed
16.
Zurück zum Zitat Cohen EP, Fish BL, Moulder JE (2010) Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Cur Drug Targets 11(11):1423–1429CrossRef Cohen EP, Fish BL, Moulder JE (2010) Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Cur Drug Targets 11(11):1423–1429CrossRef
17.
Zurück zum Zitat Lenarczyk M, Cohen EP, Fish BL, Irving AA, Sharma M, Driscoll CD, Moulder JE (2009) Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat Res 171(2):164–172CrossRefPubMedPubMedCentral Lenarczyk M, Cohen EP, Fish BL, Irving AA, Sharma M, Driscoll CD, Moulder JE (2009) Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat Res 171(2):164–172CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Moulder JE, Cohen EP, Fish BL (2011) Captopril and losartan for mitigation of renal injury caused by single-dose total body irradiation. Radiat Res 175(1):29–36CrossRefPubMedPubMedCentral Moulder JE, Cohen EP, Fish BL (2011) Captopril and losartan for mitigation of renal injury caused by single-dose total body irradiation. Radiat Res 175(1):29–36CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Moulder JE, Fish BL, Cohen EP (1997) Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transplant 19:729–736CrossRefPubMed Moulder JE, Fish BL, Cohen EP (1997) Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transplant 19:729–736CrossRefPubMed
20.
Zurück zum Zitat Juncos LI, Carrasco Dueñas S, Cornejo JC, Broglia CA, Cejas H (1993) Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron 64:249–255CrossRefPubMed Juncos LI, Carrasco Dueñas S, Cornejo JC, Broglia CA, Cejas H (1993) Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron 64:249–255CrossRefPubMed
21.
Zurück zum Zitat Moulder JE, Cohen EP, Fish BL (2014) Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int J Radiat Biol 90(9):762–768CrossRefPubMedPubMedCentral Moulder JE, Cohen EP, Fish BL (2014) Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int J Radiat Biol 90(9):762–768CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE (2007) Role of the angiotensin II type-2 receptor in radiation nephropathy. Trans Res 150(2):106–115CrossRef Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE (2007) Role of the angiotensin II type-2 receptor in radiation nephropathy. Trans Res 150(2):106–115CrossRef
23.
Zurück zum Zitat Sieber F, Muir SA, Cohen EP, Fish BL, Mäder M, Schock AM, Althouse BJ, Moulder JE (2011) Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat Res 176(3):366–374CrossRefPubMedPubMedCentral Sieber F, Muir SA, Cohen EP, Fish BL, Mäder M, Schock AM, Althouse BJ, Moulder JE (2011) Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat Res 176(3):366–374CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmoud J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anti-Cancer Agents Med Chem 11(4):359–372CrossRef Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmoud J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anti-Cancer Agents Med Chem 11(4):359–372CrossRef
25.
Zurück zum Zitat Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM (2009) Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Molec Cell Cardiol 46(6):978–988CrossRef Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM (2009) Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Molec Cell Cardiol 46(6):978–988CrossRef
26.
Zurück zum Zitat Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22(2):317–326CrossRefPubMedPubMedCentral Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22(2):317–326CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Rodriguez-Iturbe B, Franco M, Johnson RJ (2013) Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Curr Opin Nephrol Hypertens 22(1):37–44CrossRefPubMed Rodriguez-Iturbe B, Franco M, Johnson RJ (2013) Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Curr Opin Nephrol Hypertens 22(1):37–44CrossRefPubMed
28.
Zurück zum Zitat Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL (2014) CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63(3):559–564CrossRefPubMedPubMedCentral Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL (2014) CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63(3):559–564CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Geraci JP, Mariano MS, Jackson KL (1993) Amelioration of radiation nephropathy in rats by dexamethasone treatment after irradiation. Radiat Res 134(1):86–93CrossRefPubMed Geraci JP, Mariano MS, Jackson KL (1993) Amelioration of radiation nephropathy in rats by dexamethasone treatment after irradiation. Radiat Res 134(1):86–93CrossRefPubMed
30.
Zurück zum Zitat Cohen EP, Bedi M, Irving AA, Jacobs ER, Tomic R, Klein JP, Lawton CA, Moulder JE (2012) Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int J Rad Oncol Biol Phys 83(1):292–296CrossRef Cohen EP, Bedi M, Irving AA, Jacobs ER, Tomic R, Klein JP, Lawton CA, Moulder JE (2012) Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int J Rad Oncol Biol Phys 83(1):292–296CrossRef
31.
Zurück zum Zitat Cohen EP, Fish BL, Irving AA, Rajapurkar MM, Shah SV, Moulder JE (2009) Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiat Res 172(2):260–264CrossRefPubMedPubMedCentral Cohen EP, Fish BL, Irving AA, Rajapurkar MM, Shah SV, Moulder JE (2009) Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiat Res 172(2):260–264CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Moulder JE, Fish BL, Cohen EP (1998) Brief pharmacologic intervention in experimental radiation nephropathy. Radiat Res 150:535–541CrossRefPubMed Moulder JE, Fish BL, Cohen EP (1998) Brief pharmacologic intervention in experimental radiation nephropathy. Radiat Res 150:535–541CrossRefPubMed
33.
Zurück zum Zitat Cohen EP, Fish BL, Moulder JE (1999) Angiotensin II infusion exacerbates radiation nephropathy. J Lab Clin Med 134:283–291CrossRefPubMed Cohen EP, Fish BL, Moulder JE (1999) Angiotensin II infusion exacerbates radiation nephropathy. J Lab Clin Med 134:283–291CrossRefPubMed
34.
Zurück zum Zitat Lenarczyk M, Su J, Haworth ST, Komorowski RA, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE (2015) Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharm Res Perspec 3(3):e00145CrossRef Lenarczyk M, Su J, Haworth ST, Komorowski RA, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE (2015) Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharm Res Perspec 3(3):e00145CrossRef
35.
Zurück zum Zitat Moulder JE, Robbins MEC, Cohen EP, Hopewell JW, Ward WF (1998) Pharmacologic modification of radiation-induced late normal tissue injury. Cancer Treat Res 93:129–151CrossRefPubMed Moulder JE, Robbins MEC, Cohen EP, Hopewell JW, Ward WF (1998) Pharmacologic modification of radiation-induced late normal tissue injury. Cancer Treat Res 93:129–151CrossRefPubMed
36.
Zurück zum Zitat Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241(1):F85–F93PubMed Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241(1):F85–F93PubMed
37.
Zurück zum Zitat Wenzel U (2008) Aldosterone and progression of renal disease. Curr Opin Nephrol Hypertens 17(1):44–50PubMed Wenzel U (2008) Aldosterone and progression of renal disease. Curr Opin Nephrol Hypertens 17(1):44–50PubMed
38.
Zurück zum Zitat Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X (2014) Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Resp Cell Molec Biol 50(4):723–736CrossRef Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X (2014) Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Resp Cell Molec Biol 50(4):723–736CrossRef
39.
Zurück zum Zitat Peng H, Carretero OA, Liao TD, Peterson EL, Rhaleb NE (2007) Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension 49(3):695–703CrossRefPubMedPubMedCentral Peng H, Carretero OA, Liao TD, Peterson EL, Rhaleb NE (2007) Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension 49(3):695–703CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Zhao WL, Robbins MEC (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143CrossRefPubMed Zhao WL, Robbins MEC (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143CrossRefPubMed
41.
Zurück zum Zitat Cohen EP, Lenarczyk M, Fish BL, Jia S, Hessner MJ, Moulder JE (2013) Evaluation of genomic evidence for oxidative stress in experimental radiation nephropathy. J Genet Disorders Genet Rep 2:Article 1 Cohen EP, Lenarczyk M, Fish BL, Jia S, Hessner MJ, Moulder JE (2013) Evaluation of genomic evidence for oxidative stress in experimental radiation nephropathy. J Genet Disorders Genet Rep 2:Article 1
42.
Zurück zum Zitat Fritz G, Henninger C, Huelsenbeck J (2011) Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull 97:17–26CrossRefPubMed Fritz G, Henninger C, Huelsenbeck J (2011) Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull 97:17–26CrossRefPubMed
43.
Zurück zum Zitat Small W, James JL, Moore TD, Fintel DJ, Lutz ST, Movsas B, Suntharalingam M, Grarces YI, Ivker R, Moulder JE, Pugh S, Berk LB (2015) Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer: Results from NRG Oncology RTOG 0123. Amer J. Clin. Oncol. (in press). Small W, James JL, Moore TD, Fintel DJ, Lutz ST, Movsas B, Suntharalingam M, Grarces YI, Ivker R, Moulder JE, Pugh S, Berk LB (2015) Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer: Results from NRG Oncology RTOG 0123. Amer J. Clin. Oncol. (in press).
45.
Zurück zum Zitat Singh VK, Romaine PLP, Seed TM (2015) Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval status and inclusion into the Strategic National Stockpile. Health Phys 108(6):607–630CrossRefPubMedPubMedCentral Singh VK, Romaine PLP, Seed TM (2015) Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval status and inclusion into the Strategic National Stockpile. Health Phys 108(6):607–630CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Ward WF, Lin PJ, Wong PS, Behnia R, Jalali N (1993) Radiation pneumonitis in rats and its modification by the angiotensin-converting enzyme inhibitor captopril evaluated by high-resolution computed tomography. Radiat Res 135:81–87CrossRefPubMed Ward WF, Lin PJ, Wong PS, Behnia R, Jalali N (1993) Radiation pneumonitis in rats and its modification by the angiotensin-converting enzyme inhibitor captopril evaluated by high-resolution computed tomography. Radiat Res 135:81–87CrossRefPubMed
47.
Zurück zum Zitat Medhora M, Gao F, Jacobs E, Moulder JE, Fish BL (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182(5):545–555CrossRefPubMedPubMedCentral Medhora M, Gao F, Jacobs E, Moulder JE, Fish BL (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182(5):545–555CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Molteni A, Wolfe LF, Ward WF, Ts’ao CH, Molteni LB, Veno P, Fish BL, Taylor JM, Quintalilla N, Herndon B, Moulder JE (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-β (TGF-β) and α-actomyosin (αSMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Design 13(13):1307–1316CrossRef Molteni A, Wolfe LF, Ward WF, Ts’ao CH, Molteni LB, Veno P, Fish BL, Taylor JM, Quintalilla N, Herndon B, Moulder JE (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-β (TGF-β) and α-actomyosin (αSMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Design 13(13):1307–1316CrossRef
49.
Zurück zum Zitat Kharofa JR, Cohen EP, Tomic R, Xiang Q, Gore E (2012) Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Rad Oncol Biol Phys 84(1):238–243CrossRef Kharofa JR, Cohen EP, Tomic R, Xiang Q, Gore E (2012) Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Rad Oncol Biol Phys 84(1):238–243CrossRef
50.
Zurück zum Zitat Kohl RR, Kolozsvary A, Brown SL, Zhu G, Kim JH (2007) Differential radiation effect in tumor and normal tissue after treatment with ramipril, an angiotensin-converting enzyme inhibitor. Radiat Res 168(4):440–445CrossRefPubMed Kohl RR, Kolozsvary A, Brown SL, Zhu G, Kim JH (2007) Differential radiation effect in tumor and normal tissue after treatment with ramipril, an angiotensin-converting enzyme inhibitor. Radiat Res 168(4):440–445CrossRefPubMed
51.
Zurück zum Zitat Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, Carretero OA (2004) Modification of radiation injury by Ramipril, inhibitor of angiotensin converting enzyme, on optic neuropathy in the rat. Radiat Res 161(2):137–142CrossRefPubMed Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, Carretero OA (2004) Modification of radiation injury by Ramipril, inhibitor of angiotensin converting enzyme, on optic neuropathy in the rat. Radiat Res 161(2):137–142CrossRefPubMed
52.
Zurück zum Zitat Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI (2010) Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Cur Drug Targets 11(11):1413–1422CrossRef Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI (2010) Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Cur Drug Targets 11(11):1413–1422CrossRef
53.
Zurück zum Zitat Jenrow KA, Brown SL, Liu J, Kolozsvary A, Kim JH (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol 5 (1):Article 6 Jenrow KA, Brown SL, Liu J, Kolozsvary A, Kim JH (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol 5 (1):Article 6
Metadaten
Titel
Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models
verfasst von
Eric P. Cohen
Brian L. Fish
John D. Imig
John E. Moulder
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Radiation Oncology / Ausgabe 1/2016
Print ISSN: 1948-7894
Elektronische ISSN: 1948-7908
DOI
https://doi.org/10.1007/s13566-015-0222-7

Weitere Artikel der Ausgabe 1/2016

Journal of Radiation Oncology 1/2016 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.