Skip to main content
Erschienen in: Current Nutrition Reports 3/2023

29.06.2023 | REVIEW

Mitochondrial Damage and Hypertension: Another Dark Side of Sodium Excess

verfasst von: Baris Afsar, Rengin Elsurer Afsar

Erschienen in: Current Nutrition Reports | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Essential or primary hypertension (HT) is a worldwide health problem with no definitive cure. Although the exact pathogenesis of HT is not known, genetic factors, increased renin-angiotensin and sympathetic system activity, endothelial dysfunction, oxidative stress, and inflammation play a role in its development. Environmental factors such as sodium intake are also important for BP regulation, and excess sodium intake in the form of salt (NaCl, sodium chloride) increases blood pressure in salt-sensitive people. Excess salt intake increases extracellular volume, oxidative stress, inflammation, and endothelial dysfunction. Recent evidence suggests that increased salt intake also disturbs mitochondrial function both structurally and functionally which is important as mitochondrial dysfunction is associated with HT. In the current review, we have summarized the experimental and clinical data regarding the impact of salt intake on mitochondrial structure and function.

Recent Findings

Excess salt intake damage mitochondrial structure (e.g., shorter mitochondria with less cristae, increased mitochondrial fission, increased mitochondrial vacuolization). Functionally, high salt intake impairs mitochondrial oxidative phosphorylation and electron transport chain, ATP production, mitochondrial calcium homeostasis, mitochondrial membrane potential, and mitochondrial uncoupling protein function. Excess salt intake also increases mitochondrial oxidative stress and modifies Krebs cycle protein expressions.

Summary

Studies have shown that high salt intake impairs mitochondrial structure and function. These maladaptive mitochondrial changes facilitate the development of HT especially in salt-sensitive individuals.

Graphical Abstract

High salt intake impairs many functional and structural components of mitochondria. These mitochondrial alterations along with increased salt intake promote the development of hypertension.
Literatur
1.
Zurück zum Zitat Mozaffarian D, Fahimi S, Singh GM, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371(7):624–34.PubMedCrossRef Mozaffarian D, Fahimi S, Singh GM, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371(7):624–34.PubMedCrossRef
2.
Zurück zum Zitat Bibbins-Domingo K, Chertow GM, Coxson PG, et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010;362(7):590–9.PubMedPubMedCentralCrossRef Bibbins-Domingo K, Chertow GM, Coxson PG, et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010;362(7):590–9.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Jaques DA, Wuerzner G, Ponte B. Sodium intake as a cardiovascular risk factor: a narrative review. Nutrients. 2021;13(9). Jaques DA, Wuerzner G, Ponte B. Sodium intake as a cardiovascular risk factor: a narrative review. Nutrients. 2021;13(9).
4.
Zurück zum Zitat Elijovich F, Weinberger MH, Anderson CA, et al. Salt sensitivity of blood pressure: a scientific statement from the american heart association. Hypertension. 2016;68(3):e7–46.PubMedCrossRef Elijovich F, Weinberger MH, Anderson CA, et al. Salt sensitivity of blood pressure: a scientific statement from the american heart association. Hypertension. 2016;68(3):e7–46.PubMedCrossRef
5.
Zurück zum Zitat Balafa O, Kalaitzidis RG. Salt sensitivity and hypertension. J Hum Hypertens. 2021;35(3):184–92.PubMedCrossRef Balafa O, Kalaitzidis RG. Salt sensitivity and hypertension. J Hum Hypertens. 2021;35(3):184–92.PubMedCrossRef
6.
Zurück zum Zitat • Dikalov S, Dikalova A. Mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension. Curr Opin Nephrol Hypertens. 2022;31(2):151–6. This review explains how Sirt3 is critical for vascular cell homeostasis and how the impairment of Sirt3 leads to mitochondrial dysfunction and hypertension.PubMedCrossRef • Dikalov S, Dikalova A. Mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension. Curr Opin Nephrol Hypertens. 2022;31(2):151–6. This review explains how Sirt3 is critical for vascular cell homeostasis and how the impairment of Sirt3 leads to mitochondrial dysfunction and hypertension.PubMedCrossRef
7.
Zurück zum Zitat Ma S, Ma L, Yang D, et al. Uncoupling protein 2 ablation exacerbates high-salt intake-induced vascular dysfunction. Am J Hypertens. 2010;23(8):822–8.PubMedCrossRef Ma S, Ma L, Yang D, et al. Uncoupling protein 2 ablation exacerbates high-salt intake-induced vascular dysfunction. Am J Hypertens. 2010;23(8):822–8.PubMedCrossRef
8.
Zurück zum Zitat Bernal-Mizrachi C, Gates AC, Weng S, et al. Vascular respiratory uncoupling increases blood pressure and atherosclerosis. Nature. 2005;435(7041):502–6.PubMedCrossRef Bernal-Mizrachi C, Gates AC, Weng S, et al. Vascular respiratory uncoupling increases blood pressure and atherosclerosis. Nature. 2005;435(7041):502–6.PubMedCrossRef
9.
Zurück zum Zitat Tian Z, Liu Y, Usa K, et al. Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension. 2009;54(2):255–60.PubMedCrossRef Tian Z, Liu Y, Usa K, et al. Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension. 2009;54(2):255–60.PubMedCrossRef
10.
Zurück zum Zitat Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 2011;22(2):256–65.PubMedPubMedCentralCrossRef Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 2011;22(2):256–65.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Iwamoto T, Kita S. Hypertension, Na+/Ca2+ exchanger, and Na+, K+-ATPase. Kidney Int. 2006;69(12):2148–54.PubMedCrossRef Iwamoto T, Kita S. Hypertension, Na+/Ca2+ exchanger, and Na+, K+-ATPase. Kidney Int. 2006;69(12):2148–54.PubMedCrossRef
12.
Zurück zum Zitat Babsky A, Doliba N, Doliba N, Savchenko A, Wehrli S, Osbakken M. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med (Maywood). 2001;226(6):543–51.PubMedCrossRef Babsky A, Doliba N, Doliba N, Savchenko A, Wehrli S, Osbakken M. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med (Maywood). 2001;226(6):543–51.PubMedCrossRef
13.
Zurück zum Zitat Ying WZ, Sanders PW. Cytochrome c mediates apoptosis in hypertensive nephrosclerosis in Dahl/Rapp rats. Kidney Int. 2001;59(2):662–72.PubMedCrossRef Ying WZ, Sanders PW. Cytochrome c mediates apoptosis in hypertensive nephrosclerosis in Dahl/Rapp rats. Kidney Int. 2001;59(2):662–72.PubMedCrossRef
14.
Zurück zum Zitat Chandramohan G, Bai Y, Norris K, Rodriguez-Iturbe B, Vaziri ND. Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys. Am J Nephrol. 2008;28(1):158–67.PubMedCrossRef Chandramohan G, Bai Y, Norris K, Rodriguez-Iturbe B, Vaziri ND. Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys. Am J Nephrol. 2008;28(1):158–67.PubMedCrossRef
15.
Zurück zum Zitat Zheleznova NN, Yang C, Ryan RP, et al. Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiol Genomics. 2012;44(17):829–42.PubMedPubMedCentralCrossRef Zheleznova NN, Yang C, Ryan RP, et al. Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiol Genomics. 2012;44(17):829–42.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Whaley-Connell AT, Habibi J, Aroor A, et al. Salt loading exacerbates diastolic dysfunction and cardiac remodeling in young female Ren2 rats. Metabolism. 2013;62(12):1761–71.PubMedCrossRef Whaley-Connell AT, Habibi J, Aroor A, et al. Salt loading exacerbates diastolic dysfunction and cardiac remodeling in young female Ren2 rats. Metabolism. 2013;62(12):1761–71.PubMedCrossRef
17.
Zurück zum Zitat Hernández-Ríos R, Hernández-Estrada S, Cruz-Robles D, et al. Low fructose and low salt diets increase mitochondrial DNA in white blood cells of overweight subjects. Exp Clin Endocrinol Diabetes. 2013;121(9):535–8.PubMedCrossRef Hernández-Ríos R, Hernández-Estrada S, Cruz-Robles D, et al. Low fructose and low salt diets increase mitochondrial DNA in white blood cells of overweight subjects. Exp Clin Endocrinol Diabetes. 2013;121(9):535–8.PubMedCrossRef
18.
Zurück zum Zitat He X, Liu Y, Usa K, Tian Z, Cowley AW Jr, Liang M. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2014;306(10):F1190-1197.PubMedPubMedCentralCrossRef He X, Liu Y, Usa K, Tian Z, Cowley AW Jr, Liang M. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2014;306(10):F1190-1197.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Lv J, Zhang P, Zhang Y, et al. Maternal high-salt intake during pregnancy reprogrammed renin-angiotensin system-mediated cardiomyocyte apoptosis in the adult offspring heart. Reprod Sci. 2014;21(1):52–62.PubMedPubMedCentralCrossRef Lv J, Zhang P, Zhang Y, et al. Maternal high-salt intake during pregnancy reprogrammed renin-angiotensin system-mediated cardiomyocyte apoptosis in the adult offspring heart. Reprod Sci. 2014;21(1):52–62.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Ma S, Wang Q, Zhang Y, et al. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Am J Hypertens. 2014;27(3):345–54.PubMedCrossRef Ma S, Wang Q, Zhang Y, et al. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Am J Hypertens. 2014;27(3):345–54.PubMedCrossRef
21.
Zurück zum Zitat Binger KJ, Gebhardt M, Heinig M, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125(11):4223–38.PubMedPubMedCentralCrossRef Binger KJ, Gebhardt M, Heinig M, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125(11):4223–38.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Lang H, Li Q, Yu H, et al. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br J Pharmacol. 2015;172(23):5548–58.PubMedPubMedCentralCrossRef Lang H, Li Q, Yu H, et al. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br J Pharmacol. 2015;172(23):5548–58.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Wang Z, Sun Q, Sun N, Liang M, Tian Z. Mitochondrial dysfunction and altered renal metabolism in Dahl salt-sensitive rats. Kidney Blood Press Res. 2017;42(3):587–97.PubMedCrossRef Wang Z, Sun Q, Sun N, Liang M, Tian Z. Mitochondrial dysfunction and altered renal metabolism in Dahl salt-sensitive rats. Kidney Blood Press Res. 2017;42(3):587–97.PubMedCrossRef
24.
Zurück zum Zitat Lang H, Xiang Y, Ai Z, et al. UCP3 ablation exacerbates high-salt induced cardiac hypertrophy and cardiac dysfunction. Cell Physiol Biochem. 2018;46(4):1683–92.PubMedCrossRef Lang H, Xiang Y, Ai Z, et al. UCP3 ablation exacerbates high-salt induced cardiac hypertrophy and cardiac dysfunction. Cell Physiol Biochem. 2018;46(4):1683–92.PubMedCrossRef
25.
Zurück zum Zitat • Lu Z, Cui Y, Wei X, et al. Deficiency of PKD2L1 (TRPP3) exacerbates pathological cardiac hypertrophy by augmenting NCX1-mediated mitochondrial calcium overload. Cell Rep. 2018;24(6):1639–52. This study showed that a deficiency of mitochondrial TRPP3 leads to cardiac hypertrophy and hypertension.PubMedCrossRef • Lu Z, Cui Y, Wei X, et al. Deficiency of PKD2L1 (TRPP3) exacerbates pathological cardiac hypertrophy by augmenting NCX1-mediated mitochondrial calcium overload. Cell Rep. 2018;24(6):1639–52. This study showed that a deficiency of mitochondrial TRPP3 leads to cardiac hypertrophy and hypertension.PubMedCrossRef
26.
Zurück zum Zitat Stocher DP, Klein CP, Saccomori AB, et al. Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring’s brain. Br J Nutr. 2018;119(9):1003–11.PubMedCrossRef Stocher DP, Klein CP, Saccomori AB, et al. Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring’s brain. Br J Nutr. 2018;119(9):1003–11.PubMedCrossRef
27.
Zurück zum Zitat • Hasan P, Saotome M, Ikoma T, et al. Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol. 2018;121:103–6. This study showed that in high salt conditions, dynamin-related protein1 may be involved in blood pressure elevation and blockage of dynamin-related protein1 has beneficial effects.PubMedCrossRef • Hasan P, Saotome M, Ikoma T, et al. Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol. 2018;121:103–6. This study showed that in high salt conditions, dynamin-related protein1 may be involved in blood pressure elevation and blockage of dynamin-related protein1 has beneficial effects.PubMedCrossRef
28.
Zurück zum Zitat •• Domondon M, Polina I, Nikiforova AB, et al. Renal glomerular mitochondria function in salt-sensitive hypertension. Front Physiol. 2019;10:1588. This study showed that glomerular mitochondria in SS hypertension are functionally and structurally defective, leading to loss of podocytes and proteinuria.PubMedCrossRef •• Domondon M, Polina I, Nikiforova AB, et al. Renal glomerular mitochondria function in salt-sensitive hypertension. Front Physiol. 2019;10:1588. This study showed that glomerular mitochondria in SS hypertension are functionally and structurally defective, leading to loss of podocytes and proteinuria.PubMedCrossRef
29.
Zurück zum Zitat Jiang L, Chen Q, Wu M, et al. Short-term high salt intake impairs hepatic mitochondrial bioenergetics and biosynthesis in SIRT3 knockout mice. Free Radic Res. 2019;53(4):387–96.PubMedCrossRef Jiang L, Chen Q, Wu M, et al. Short-term high salt intake impairs hepatic mitochondrial bioenergetics and biosynthesis in SIRT3 knockout mice. Free Radic Res. 2019;53(4):387–96.PubMedCrossRef
30.
Zurück zum Zitat Ma T, Lin S, Wang B, et al. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun. 2019;519(4):674–81.PubMedCrossRef Ma T, Lin S, Wang B, et al. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun. 2019;519(4):674–81.PubMedCrossRef
31.
Zurück zum Zitat Liu Y, Yang C, Feng X, et al. Prenatal high-salt diet-induced metabolic disorders via decreasing peroxisome proliferator-activated receptor gamma coactivator 1α in adult male rat offspring. Mol Nutr Food Res. 2020;64(14): e2000196.PubMedCrossRef Liu Y, Yang C, Feng X, et al. Prenatal high-salt diet-induced metabolic disorders via decreasing peroxisome proliferator-activated receptor gamma coactivator 1α in adult male rat offspring. Mol Nutr Food Res. 2020;64(14): e2000196.PubMedCrossRef
32.
Zurück zum Zitat Woodman AG, Mah R, Keddie DL, et al. Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res. 2020;116(1):183–92.PubMedCrossRef Woodman AG, Mah R, Keddie DL, et al. Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res. 2020;116(1):183–92.PubMedCrossRef
33.
Zurück zum Zitat •• Geisberger S, Bartolomaeus H, Neubert P, et al. Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation. 2021;144(2):144–58. This study showed that both acute and chronic high salt intake impairs mitochondrial energy function directly.PubMedPubMedCentralCrossRef •• Geisberger S, Bartolomaeus H, Neubert P, et al. Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation. 2021;144(2):144–58. This study showed that both acute and chronic high salt intake impairs mitochondrial energy function directly.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Côrte-Real BF, Hamad I, Arroyo Hornero R, et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 2023;35(2):299-315.e298.PubMedCrossRef Côrte-Real BF, Hamad I, Arroyo Hornero R, et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 2023;35(2):299-315.e298.PubMedCrossRef
35.
Zurück zum Zitat Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–52.PubMedPubMedCentralCrossRef Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–52.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Karamanlidis G, Lee CF, Garcia-Menendez L, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18(2):239–50.PubMedPubMedCentralCrossRef Karamanlidis G, Lee CF, Garcia-Menendez L, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18(2):239–50.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78.PubMedCrossRef Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78.PubMedCrossRef
38.
Zurück zum Zitat Feng S, Li H, Tai Y, et al. Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci U S A. 2013;110(27):11011–6.PubMedPubMedCentralCrossRef Feng S, Li H, Tai Y, et al. Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci U S A. 2013;110(27):11011–6.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Samanta K, Mirams GR, Parekh AB. Sequential forward and reverse transport of the Na(+) Ca(2+) exchanger generates Ca(2+) oscillations within mitochondria. Nat Commun. 2018;9(1):156.PubMedPubMedCentralCrossRef Samanta K, Mirams GR, Parekh AB. Sequential forward and reverse transport of the Na(+) Ca(2+) exchanger generates Ca(2+) oscillations within mitochondria. Nat Commun. 2018;9(1):156.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Mitchell P, Moyle J. Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation. Nature. 1965;208(5016):1205–6.PubMedCrossRef Mitchell P, Moyle J. Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation. Nature. 1965;208(5016):1205–6.PubMedCrossRef
41.
Zurück zum Zitat Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol. 2000;529 Pt 1(Pt 1):3–10. Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol. 2000;529 Pt 1(Pt 1):3–10.
42.
Zurück zum Zitat Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2(2):85–93.PubMedCrossRef Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2(2):85–93.PubMedCrossRef
43.
Zurück zum Zitat Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, et al. Na(+) controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 2020;586(7828):287–91.PubMedPubMedCentralCrossRef Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, et al. Na(+) controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 2020;586(7828):287–91.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Tian Z, Greene AS, Usa K, et al. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension. 2008;51(4):899–904.PubMedCrossRef Tian Z, Greene AS, Usa K, et al. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension. 2008;51(4):899–904.PubMedCrossRef
45.
Zurück zum Zitat He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429(6988):188–93.PubMedCrossRef He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429(6988):188–93.PubMedCrossRef
46.
Zurück zum Zitat Wang L, Hou E, Wang Z, et al. Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem Biophys Res Commun. 2014;450(1):863–869. Wang L, Hou E, Wang Z, et al. Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem Biophys Res Commun. 2014;450(1):863–869.
47.
Zurück zum Zitat Usa K, Liu Y, Geurts AM, et al. Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain. Physiol Genomics. 2017;49(9):496–504.PubMedPubMedCentralCrossRef Usa K, Liu Y, Geurts AM, et al. Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain. Physiol Genomics. 2017;49(9):496–504.PubMedPubMedCentralCrossRef
48.
49.
Zurück zum Zitat Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxid Med Cell Longev. 2016;2016:1067801.PubMedPubMedCentralCrossRef Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxid Med Cell Longev. 2016;2016:1067801.PubMedPubMedCentralCrossRef
Metadaten
Titel
Mitochondrial Damage and Hypertension: Another Dark Side of Sodium Excess
verfasst von
Baris Afsar
Rengin Elsurer Afsar
Publikationsdatum
29.06.2023
Verlag
Springer US
Erschienen in
Current Nutrition Reports / Ausgabe 3/2023
Elektronische ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-023-00486-9

Weitere Artikel der Ausgabe 3/2023

Current Nutrition Reports 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.