Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2016

Open Access 01.12.2016 | Technical innovations

Modified high dorsal procedure for performing isolated anatomic total caudate lobectomy (with video)

verfasst von: Toshiya Ochiai, Hiromichi Ishii, Atsushi Toma, Takeshi Ishimoto, Yusuke Yamamoto, Ryo Morimura, Hisashi Ikoma, Eigo Otsuji

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2016

Abstract

Background

Isolated anatomic total caudate lobectomy is indicated in patients who have liver tumors limited to the caudate lobe. However, isolated caudate lobe resection is a challenging surgical procedure that required safe and reliable techniques. All portal and hepatic veins that connect this area originate from the first branch of the portal vein or vena cava; therefore, the operator must be cautious of the potential for massive bleeding.

Methods

The important points regarding the safety of our procedure include creating an optimal surgical view and preparing for accidental bleeding before parenchymal dissection. Sufficient mobilization and removal of Spiegel’s lobe from the left to the right side of the vena cava allows the operator to perform parenchymal dissection under a right- or front-side view.

Results

We have performed this technique in two patients with HCC and one patient with primary cystadenocarcinoma. The average operative time and amount of blood loss were 435 min and 1137 ml, respectively. No operative mortalities or postoperative complications were observed in any of the patients. Our three patients are currently doing well without any recurrence.

Conclusion

Our modified high dorsal resection procedure can be used to safely remove the entire caudate lobe.
Begleitmaterial
Additional file 1:
Parenchymal dissection under a right- or front-side view : The cutting line was movedupward due to the technique, and the parenchyma could be dissectedfrom the right or front side under an optical surgical view. Parenchymal dissection started beneath the right hepatic vein using an ultrasonic dissector according to Pringle's method. The root of the middle hepatic vein was located near the right hepatic vein, therefore, the area beneath the middle hepatic vein could be easily exposed subsequent to that of the right hepatic vein. (MPG 10236 kb)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12957-016-0896-3) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TO wrote the first draft of this report. TO, HI, HI, YY, and RM performed the operations. TO, AT, YY, and TI performed the postoperative management. EO supervised the writing of the manuscript. TO is the guarantor of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
HCC
hepatocellular carcinoma
TACE
transarterial chemoembolization

Background

The caudate lobe is located in the deep dorsal area of the liver in front of the vena cava. This lobe consists of Spiegel’s lobe, the paracaval portion and the caudate process portion, which is bordered on the front side by the right and middle hepatic veins, on the back side by the vena cava and on the bottom side by a hilar plate (Fig. 1). Therefore, it is difficult to safely perform total caudate lobe resection due to accidental massive bleeding from the vena cava through short or long hepatic veins. Many surgeons have reported isolated caudate lobe resection to be a challenging surgical procedure that required safe and reliable techniques [13]. These anatomical and surgical obstacles are factors preventing surgeons from performing this procedure. Most patients who require total resection of the caudate lobe have previously received extended left or right lobectomy. However, for patients with liver dysfunction or a small tumor originating in the caudate lobe, performing extended lobectomy is sometimes impossible or considered to be excessive surgery. It is therefore necessary to perform isolated caudate lobectomy in such patients.
Anatomic total caudate lobe resection was first described by Takayama et al. as high dorsal resection of the liver in 1994 [4]. This procedure makes it potentially possible to remove the primary tumor in addition to histologically intrahepatic lesions spread throughout the portal branches of the caudate lobe. In this manuscript, we describe a safe technique for performing anatomic total caudate lobectomy of high dorsal resection approach.

Methods

Patient

Case 1

A small hepatocellular carcinoma (HCC) (diameter 5 mm) was detected in the paracaval caudate lobe of a 63-year-old female patient during a regular follow-up magnetic resonance imaging examination in 2012 (Fig. 2). Her indocyanine green retention rate at 15 min was 6 %. She had sufficient liver function (Child-Pugh A) to undergo hepatectomy. In 2007, she had received combination therapy involving transarterial chemoembolization (TACE) and radiofrequency ablation for a solitary HCC in segment III and recovered. At first, she refused to undergo hepatectomy. So, TACE and percutaneous intrahepatic ethanol injection therapy were performed. However, the lesion was hypovascular and was too small to be punctured under ultrasonography for injection therapy. As the result, the non-surgical therapies were not effective. Therefore, we proposed a total caudate lobectomy, i.e., a high dorsal resection, in which the whole anatomical area including the small HCC would be removed. The high dorsal resection was performed using our safe procedure. The patient’s postoperative course was uneventful, and she was discharged on the 14th postoperative day. A pathological examination demonstrated that the nodule was a moderately differentiated HCC without ductal infiltration. The patient has not developed recurrence for 3 years.

Case 2 (cyst adenocarcinoma)

A cyst adenocarcinoma (diameter 4 cm) was accidentally detected in the caudate lobe of a 64-year-old female patient by ultrasonography. The lesion consisted of a thick cystic capsule and papillary tumor without extra-capsule growth (Fig. 3). It was surrounded by hepatic veins and vena cava. Considering curability and remnant liver function, we proposed a high dorsal resection.

Case 3 (HCC)

A small HCC was detected at the caudate lobe of an 80-year-old female patient with serum high alpha-feto-protein level, which was recognized only by arterial phase of dynamic computed tomography (Fig. 4). Therefore, it was impossible to treat image-guided punctual therapies or seemed to be ineffective by TACE for this lesion. We proposed a high dorsal resection, in which the whole anatomical area including the small HCC would be removed.

Surgical technique

Laparotomy was created via an inverted T-shaped incision in the upper abdomen. Before mobilizing the right and left lobes of the liver, we encircled the infrahepatic vena cava and secure it with rubber tape prepared for accidental bleeding. Then, Arantius’ ligament, the bilateral vena cava ligaments, and all short hepatic veins in the hepatic area of the vena cava were safely ligated and divided. This procedure created a free posterior surface of the caudate lobe. The roots of the right and middle-left hepatic veins were encircled by rubber tape prepared for bleeding from the branches of the hepatic veins at the site of hepatic parenchymal dissection. Following cholecystectomy, the right and left Glissonean pedicles at the hepatic hilar plates were also bluntly encircled with rubber tape (the Glissonean pedicle transection method) [5]. At this time, one or two portal branches extending to Spiegel’s lobe were ligated and separated. The cutting line of the border between the posterior section and paracaval portion or caudate process was determined according to the counterstain technique [6, 7].
Sufficient mobilization of the right and Spiegel’s lobe allowed the operator to easily dissect the parenchyma in this area due to the optimal surgical view. Pulling the tape encircling the Glissonean pedicles in the hepatic hilus, all Glisson’s capsules of the caudate lobe were ligated and divided. As a result, the bottom of the caudate lobe was freed from the hepatic hilum and the mobile area of the caudate lobe was enlarged. Spiegel’s lobe could be pulled out from the left side of the vena cava to the right side (Fig. 5a, b). Although the caudate lobe was normally located in a deep area of the abdomen, the cutting line was moved upward due to the technique, and the parenchyma could be dissected from the front or right side under an optimal surgical view. Parenchymal dissection was started beneath the right hepatic vein using an ultrasonic dissector according to Pringle’s method. The root of the middle hepatic vein was located near that of the right hepatic vein; therefore, the area beneath the middle hepatic vein could be easily exposed subsequent to that of the right hepatic vein. When the cutting line arrived at Arantius’ ligament, the entire caudate lobe was anatomically resected (Additional file 1).

Ethic approval

This research was performed in accordance with the Declaration of Helsinki and was approved by the medical ethics committee of Kyoto Prefectural University of Medicine (RBMR-E-282-1). All of the patients agree that their clinical details and accompanying images are published.

Results and discussion

We have performed this technique in two patients with HCC and one patient with primary cystadenocarcinoma and have had no experience with failing to remove Spiegel’s lobe, even in patients with histologic cirrhotic livers. The average operative time and amount of blood loss were 435 min and 1137 ml, respectively (Table 1). No operative mortalities or postoperative complications were observed in any of the patients. Although high dorsal resection requires a relatively long operative time, and a significant amount of intraoperative bleeding can occur compared with limited resection, the first priority is the postoperative prognosis of the patient. Our three patients are currently doing well without any recurrence.
Table 1
Clinical data of patients received nmodified high dorsal resection
Gender
Age
Disease tumor size
Operation
Op. time (min)
Op. bleeding (g)
Complication
Prognosis
Female (case l)
63
HCC 5 mm
High dorsal resection
284
730
36 months
Alive
No recurrence
Female (case 2)
64
Cyst adenocarcinoma 3 cm
High dorsal resection
580
1061
75 months
Alive
No recurrence
Female (case 3)
80
HCC 1 cm
High dorsal resection
441
1620
36 months
Alive
No recurrence
High dorsal resection involves theoretically sophisticated anatomical resection of the caudate lobe. This procedure is indicated in patients who have liver tumors limited to the caudate lobe. HCC of the caudate lobe is difficult to treat with image-guided punctual therapy or TACE. Additionally, according to recommendation of HCC treatment guidelines [8, 9], solitary HCC lesion should be removed by surgery. We have previously published a technique of mesohepatectomy with total caudate lobectomy [10]. This technique should be applied to basically huge tumors located at anterior or medial sections infiltrating to caudate lobe. Our modified high dorsal procedure is feasible for relatively small liver tumors without ductal infiltration, which limited to the caudate lobe. With regard to performing isolated anatomic total caudate lobectomy, anatomic resection has been superior to non-anatomic resection in postoperative prognosis of HCC [11, 12]. Theoretically, anatomic hepatectomy is the best way to prevent intrahepatic metastasis occurring via vascular invasion. However, the number of high dorsal resections has not significantly increased since 1994 [4]. Most liver tumors located in the caudate lobe are resected using limited resection or extended lobectomy. The rarity of cases indicated for this operation is one reason for the small number of procedures performed. Additionally, all portal and hepatic veins that connect this area originate from the first branch of the portal vein or vena cava; therefore, the operator must be cautious of the potential for massive bleeding. It is difficult to stop bleeding in this area because the row cut surface generally faces the area beneath the liver. This is another primary reason for the low number of operations. In order to overcome these obstacles, anterior hepatic transection for use during caudate lobectomy has been developed [13]. This procedure has been assessed to be safe, with an optimal surgical view. For huge liver tumors but limited to the caudate lobe, this anterior approach seems to be better than our modified high dorsal procedure [14]. However, the weakest point of this operation is the splitting of the liver parenchyma through Rex-Cantlie’s plane. Splitting takes time and results in bleeding during surgery. Several branches of the middle hepatic vein, which drain blood from the anterior or medial segments, are dissected during splitting. Moreover, splitting is performed after removing the caudate lobe.
The important points regarding the safety of our procedure include creating an optimal surgical view and preparing for accidental bleeding before parenchymal dissection. Sufficient mobilization and removal of Spiegel’s lobe from the left to right side of the vena cava allows the operator to perform parenchymal dissection under a right- or front-side view. Therefore, we can dissect the right hepatic vein correctly and easily, which is the anatomic border of paracaval portion and segment VII. Moreover, we can also expose the middle hepatic vein, which is the anatomic border of caudate lobe and segment IV (Fig. 6a, b).
Laparoscopic hepatectomy may be suitable for this procedure to secure an optimal surgical view at parenchymal dissection of deep area. There have been some reports of laparoscopic caudate hepatectomy, but they are almost limited resection or laparoscopic combined caudate and left hemihepatectomy [15, 16]. For a left-sided position, techniques and devices to stop bleeding from the beneath of hepatic vein and vena cava and sufficient mobilization with laparoscopic devices are needed. Authors referred that this approach is safe and feasible only in selected patients and by hepatobiliary surgeon with abundant experience in laparoscopic liver surgery. There seems to be several steps to perform laparoscopic high dorsal resection safely as general surgery.

Conclusions

Our modified high dorsal resection procedure can be used to safely remove the isolated entire caudate lobe.
Written informed consent was obtained from all patients for publication of clinical details and accompanying images. A copy of the written consent is available for review by the Editor of this journal.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TO wrote the first draft of this report. TO, HI, HI, YY, and RM performed the operations. TO, AT, YY, and TI performed the postoperative management. EO supervised the writing of the manuscript. TO is the guarantor of the manuscript. All authors read and approved the final manuscript.
Anhänge

Additional file

Additional file 1:
Parenchymal dissection under a right- or front-side view : The cutting line was movedupward due to the technique, and the parenchyma could be dissectedfrom the right or front side under an optical surgical view. Parenchymal dissection started beneath the right hepatic vein using an ultrasonic dissector according to Pringle's method. The root of the middle hepatic vein was located near the right hepatic vein, therefore, the area beneath the middle hepatic vein could be easily exposed subsequent to that of the right hepatic vein. (MPG 10236 kb)
Literatur
1.
Zurück zum Zitat Yanaga K, Matsumata T, Hayashi H, Shimada M, Urata K, Sugimachi K. Isolated resection of segment I (caudate lobe): is it justified? HPB Surg. 1996;10:121–8.CrossRef Yanaga K, Matsumata T, Hayashi H, Shimada M, Urata K, Sugimachi K. Isolated resection of segment I (caudate lobe): is it justified? HPB Surg. 1996;10:121–8.CrossRef
2.
Zurück zum Zitat Sarmiento JM, Que FG, Nagomey DM. Surgical outcomes of isolated caudate lobe resection: a single series of 19 patients. Surgery. 2002;132:697–706.CrossRefPubMed Sarmiento JM, Que FG, Nagomey DM. Surgical outcomes of isolated caudate lobe resection: a single series of 19 patients. Surgery. 2002;132:697–706.CrossRefPubMed
3.
Zurück zum Zitat Xu LN, Huang ZQ. Resection of hepatic caudate lobe hemangioma: experience with 11 patients. Hepatobiliary Pancreat Dis Int. 2010;9:487–91.PubMed Xu LN, Huang ZQ. Resection of hepatic caudate lobe hemangioma: experience with 11 patients. Hepatobiliary Pancreat Dis Int. 2010;9:487–91.PubMed
4.
Zurück zum Zitat Takayama T, Tanaka T, Higaki T, Katou K, Teshima Y, Makuuchi M. High dorsal resection of the liver. J Am Coll Surg. 1994;179:72–5.PubMed Takayama T, Tanaka T, Higaki T, Katou K, Teshima Y, Makuuchi M. High dorsal resection of the liver. J Am Coll Surg. 1994;179:72–5.PubMed
5.
Zurück zum Zitat Yamamoto M, Katagiri S, Ariizumi S, Kotera Y, Takahashi Y. Glissonean pedicle transection method for liver surgery. J Hepatobiliary Pancreat Sci. 2012;19:3–8.CrossRefPubMedPubMedCentral Yamamoto M, Katagiri S, Ariizumi S, Kotera Y, Takahashi Y. Glissonean pedicle transection method for liver surgery. J Hepatobiliary Pancreat Sci. 2012;19:3–8.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Takayama T, Makuuchi M, Watanabe K, Kosuge T, Takayasu K, Yamazaki S, Hasegawa H. A new method for mapping hepatic subsegment: counterstaining identification technique. Surgery. 1991;109:226–9. Takayama T, Makuuchi M, Watanabe K, Kosuge T, Takayasu K, Yamazaki S, Hasegawa H. A new method for mapping hepatic subsegment: counterstaining identification technique. Surgery. 1991;109:226–9.
7.
Zurück zum Zitat Midorikawa Y, Takayama T. Caudate lobectomy (segmentectomy 1) (with video). J Hepatobiliary Pancreat Sci. 2012;19:48–53.CrossRefPubMed Midorikawa Y, Takayama T. Caudate lobectomy (segmentectomy 1) (with video). J Hepatobiliary Pancreat Sci. 2012;19:48–53.CrossRefPubMed
8.
Zurück zum Zitat Kokudo N, Makuuchi M. Evidence-based clinical practice guidelines for hepatocellular carcinoma in Japan: the J-HCC guidelines. J Gastroenterol. 2009;44 Suppl 19:119–21.CrossRefPubMed Kokudo N, Makuuchi M. Evidence-based clinical practice guidelines for hepatocellular carcinoma in Japan: the J-HCC guidelines. J Gastroenterol. 2009;44 Suppl 19:119–21.CrossRefPubMed
9.
Zurück zum Zitat Llovet JM, Fuster J, Bruix J. The Barcelona Approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl. 2004;10(Suppl):S115–20.CrossRefPubMed Llovet JM, Fuster J, Bruix J. The Barcelona Approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl. 2004;10(Suppl):S115–20.CrossRefPubMed
10.
Zurück zum Zitat Ishii H, Ogino S, Ikemoto K, Toma A, Nakamura K, Itoh T, Ochiai T. Mesohepatectomy with total caudate lobectomy of the liver for hepatocellular carcinoma. World J Surg Oncol. 2013;11:82. Ishii H, Ogino S, Ikemoto K, Toma A, Nakamura K, Itoh T, Ochiai T. Mesohepatectomy with total caudate lobectomy of the liver for hepatocellular carcinoma. World J Surg Oncol. 2013;11:82.
11.
Zurück zum Zitat Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, Sano K, Sugawara Y, Takayama T, Makuuchi M. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005;242:252–9. Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, Sano K, Sugawara Y, Takayama T, Makuuchi M. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005;242:252–9.
12.
Zurück zum Zitat Eguchi S, Kanematsu T, Arii S, Okazaki M, Okita K, Omata M, Ikai I, Kudo M, Kojiro M, Makuuchi M, Monden M, Matsuyama Y, Nakanuma Y, Takayasu K. Comparison of the outcomes between an anatomical subsegmentectomy and a non-anatomical minor hepatectomy for single hepatocellular carcinomas based on a Japanese nationwide survey. Surgery. 2008;143:469–75. Eguchi S, Kanematsu T, Arii S, Okazaki M, Okita K, Omata M, Ikai I, Kudo M, Kojiro M, Makuuchi M, Monden M, Matsuyama Y, Nakanuma Y, Takayasu K. Comparison of the outcomes between an anatomical subsegmentectomy and a non-anatomical minor hepatectomy for single hepatocellular carcinomas based on a Japanese nationwide survey. Surgery. 2008;143:469–75.
13.
Zurück zum Zitat Asahara T, Dohi K, Hino H, Nakahara H, Katayama K, Itamoto T, Ono E, Moriwaki K, Yuge O, Nakanishi T, Kitamoto M. Isolated caudate lobectomy by anterior approach for hepatocellular carcinoma originating in the paracaval portion of the caudate lobe. J Hepatobiliary Pancreat Surg. 1995;5:416–21. Asahara T, Dohi K, Hino H, Nakahara H, Katayama K, Itamoto T, Ono E, Moriwaki K, Yuge O, Nakanishi T, Kitamoto M. Isolated caudate lobectomy by anterior approach for hepatocellular carcinoma originating in the paracaval portion of the caudate lobe. J Hepatobiliary Pancreat Surg. 1995;5:416–21.
14.
Zurück zum Zitat Dai WD, Huang JS, Hu JX. Isolated caudate lobe resection for huge hepatocellular carcinoma (10 cm or greater in diameter). Am Surg. 2014;80:159–65.PubMed Dai WD, Huang JS, Hu JX. Isolated caudate lobe resection for huge hepatocellular carcinoma (10 cm or greater in diameter). Am Surg. 2014;80:159–65.PubMed
15.
Zurück zum Zitat Yoon YS, Han HS, Cho JY, Kim JH, Kwon Y. Laparoscopic liver resection for centrally located tumors close to the hilum, major hepatic veins, or inferior vena cava. Surgery. 2013;153:502–9.CrossRefPubMed Yoon YS, Han HS, Cho JY, Kim JH, Kwon Y. Laparoscopic liver resection for centrally located tumors close to the hilum, major hepatic veins, or inferior vena cava. Surgery. 2013;153:502–9.CrossRefPubMed
16.
Zurück zum Zitat Cai X, Zhao J, Wang Y, Yu H, Liang X, Jin R, Meng N, Chen J. A left-sided, purely laparoscopic approach for anatomic caudate hepatectomy: a single-center experience. J Laparoendosc Adv Surg Tech A. 2016;26:103–8. Cai X, Zhao J, Wang Y, Yu H, Liang X, Jin R, Meng N, Chen J. A left-sided, purely laparoscopic approach for anatomic caudate hepatectomy: a single-center experience. J Laparoendosc Adv Surg Tech A. 2016;26:103–8.
Metadaten
Titel
Modified high dorsal procedure for performing isolated anatomic total caudate lobectomy (with video)
verfasst von
Toshiya Ochiai
Hiromichi Ishii
Atsushi Toma
Takeshi Ishimoto
Yusuke Yamamoto
Ryo Morimura
Hisashi Ikoma
Eigo Otsuji
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2016
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-016-0896-3

Weitere Artikel der Ausgabe 1/2016

World Journal of Surgical Oncology 1/2016 Zur Ausgabe

Recycling im OP – möglich, aber teuer

02.05.2024 DCK 2024 Kongressbericht

Auch wenn sich Krankenhäuser nachhaltig und grün geben – sie tragen aktuell erheblich zu den CO2-Emissionen bei und produzieren jede Menge Müll. Ein Pilotprojekt aus Bonn zeigt, dass viele Op.-Abfälle wiederverwertet werden können.

Ambulantisierung: Erste Erfahrungen mit dem Hybrid-DRG

02.05.2024 DCK 2024 Kongressbericht

Die Hybrid-DRG-Verordnung soll dazu führen, dass mehr chirurgische Eingriffe ambulant durchgeführt werden, wie es in anderen Ländern schon länger üblich ist. Die gleiche Vergütung im ambulanten und stationären Sektor hatten Niedergelassene schon lange gefordert. Aber die Umsetzung bereitet ihnen doch Kopfzerbrechen.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.