Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2008

01.09.2008

Molecular markers of radiation-related normal tissue toxicity

verfasst von: Paul Okunieff, Yuhchyau Chen, David J. Maguire, Amy K. Huser

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Over the past five decades, those interested in markers of radiation effect have focused primarily on tumor response. More recently, however, the view has broadened to include irradiated normal tissues—markers that predict unusual risk of side-effects, prognosticate during the prodromal and therapeutic phases, diagnose a particular toxicity as radiation-related, and, in the case of bioterror, allow for tissue-specific biodosimetry. Currently, there are few clinically useful radiation-related biomarkers. Notably, levels of some hormones such as thyroid-stimulating hormone (TSH) have been used successfully as markers of dysfunction, indicative of the need for replacement therapy, and for prevention of cancers. The most promising macromolecular markers are cytokines: TGFβ, IL-1, IL-6, and TNFα being lead molecules in this class as both markers and targets for therapy. Genomics and proteomics are still in nascent stages and are actively being studied and developed.
Literatur
1.
Zurück zum Zitat Radford, I. R. (1986). Evidence for a general relationship between the induced level of DNA double-strand breakage and cell-killing after X-irradiation of mammalian cells. International Journal of Radiation Biology, 49(4), 611–620.CrossRef Radford, I. R. (1986). Evidence for a general relationship between the induced level of DNA double-strand breakage and cell-killing after X-irradiation of mammalian cells. International Journal of Radiation Biology, 49(4), 611–620.CrossRef
2.
Zurück zum Zitat Chapman, J. D., & Allalunis-Turner, M. J. (1991). Cellular and molecular targets in normal tissue radiation injury. In P. H. Gutin, S. A. Liebel, & G. E. Sheline (Eds.) Radiation injury to the nervous system (pp. 1–16). New York: Raven. Chapman, J. D., & Allalunis-Turner, M. J. (1991). Cellular and molecular targets in normal tissue radiation injury. In P. H. Gutin, S. A. Liebel, & G. E. Sheline (Eds.) Radiation injury to the nervous system (pp. 1–16). New York: Raven.
3.
Zurück zum Zitat Anscher, M. S., Crocker, I. R., & Jirtle, R. L. (1990). Transforming growth factor-beta 1 expression in irradiated liver. Radiation Research, 122(1), 77–85.PubMedCrossRef Anscher, M. S., Crocker, I. R., & Jirtle, R. L. (1990). Transforming growth factor-beta 1 expression in irradiated liver. Radiation Research, 122(1), 77–85.PubMedCrossRef
4.
Zurück zum Zitat Finkelstein, J. N., Johnston, C. J., Baggs, R., & Rubin, P. (1994). Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. International Journal of Radiation Oncology, Biology, Physics, 28(3), 621–631.PubMed Finkelstein, J. N., Johnston, C. J., Baggs, R., & Rubin, P. (1994). Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. International Journal of Radiation Oncology, Biology, Physics, 28(3), 621–631.PubMed
5.
Zurück zum Zitat Piguet, P. F. (1990). Is “tumor necrosis factor” the major effector of pulmonary fibrosis? European Cytokine Network, 1(4), 257–258.PubMed Piguet, P. F. (1990). Is “tumor necrosis factor” the major effector of pulmonary fibrosis? European Cytokine Network, 1(4), 257–258.PubMed
6.
Zurück zum Zitat Rubin, P., Johnston, C. J., Williams, J. P., McDonald, S., & Finkelstein, J. N. (1995). A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. International Journal of Radiation Oncology, Biology, Physics, 33(1), 99–109.PubMed Rubin, P., Johnston, C. J., Williams, J. P., McDonald, S., & Finkelstein, J. N. (1995). A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. International Journal of Radiation Oncology, Biology, Physics, 33(1), 99–109.PubMed
7.
Zurück zum Zitat McBride, W. H. (1995). Cytokine cascades in late normal tissue radiation responses. International Journal of Radiation Oncology, Biology, Physics, 33(1), 233–234.PubMed McBride, W. H. (1995). Cytokine cascades in late normal tissue radiation responses. International Journal of Radiation Oncology, Biology, Physics, 33(1), 233–234.PubMed
8.
Zurück zum Zitat Stone, H. B., Coleman, C. N., Anscher, M. S., & McBride, W. H. (2003). Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncology, 4(9), 529–536.PubMedCrossRef Stone, H. B., Coleman, C. N., Anscher, M. S., & McBride, W. H. (2003). Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncology, 4(9), 529–536.PubMedCrossRef
9.
Zurück zum Zitat Kruse, J. J., & Stewart, F. A. (2007). Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World Journal of Gastroenterology, 13(19), 2669–2674.PubMed Kruse, J. J., & Stewart, F. A. (2007). Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World Journal of Gastroenterology, 13(19), 2669–2674.PubMed
10.
Zurück zum Zitat Fleckenstein, K., Gauter-Fleckenstein, B., Jackson, I. L., Rabbani, Z., Anscher, M., & Vujaskovic, Z. (2007). Using biological markers to predict risk of radiation injury. Seminars in Radiation Oncology, 17(2), 89–98.PubMedCrossRef Fleckenstein, K., Gauter-Fleckenstein, B., Jackson, I. L., Rabbani, Z., Anscher, M., & Vujaskovic, Z. (2007). Using biological markers to predict risk of radiation injury. Seminars in Radiation Oncology, 17(2), 89–98.PubMedCrossRef
11.
Zurück zum Zitat Hartsell, W. F., Scott, C. B., Dundas, G. S., Mohiuddin, M., Meredith, R. F., Rubin, P., et al. (2007). Can serum markers be used to predict acute and late toxicity in patients with lung cancer? Analysis of RTOG 91-03. American Journal of Clinical Oncology, 30(4), 368–376.PubMedCrossRef Hartsell, W. F., Scott, C. B., Dundas, G. S., Mohiuddin, M., Meredith, R. F., Rubin, P., et al. (2007). Can serum markers be used to predict acute and late toxicity in patients with lung cancer? Analysis of RTOG 91-03. American Journal of Clinical Oncology, 30(4), 368–376.PubMedCrossRef
12.
Zurück zum Zitat Brush, J., Lipnick, S. L., Phillips, T., Sitko, J., McDonald, J. T., & McBride, W. H. (2007). Molecular mechanisms of late normal tissue injury. Seminars in Radiation Oncology, 17(2), 121–130.PubMedCrossRef Brush, J., Lipnick, S. L., Phillips, T., Sitko, J., McDonald, J. T., & McBride, W. H. (2007). Molecular mechanisms of late normal tissue injury. Seminars in Radiation Oncology, 17(2), 121–130.PubMedCrossRef
13.
Zurück zum Zitat Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., et al. (2004). Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiation Research, 162(6), 711–728.PubMedCrossRef Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., et al. (2004). Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiation Research, 162(6), 711–728.PubMedCrossRef
14.
Zurück zum Zitat Al Rashid, S. T., Dellaire, G., Cuddihy, A., Jalali, F., Vaid, M., Coackley, C., et al. (2005). Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Research, 65(23), 10810–10821.PubMedCrossRef Al Rashid, S. T., Dellaire, G., Cuddihy, A., Jalali, F., Vaid, M., Coackley, C., et al. (2005). Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Research, 65(23), 10810–10821.PubMedCrossRef
15.
Zurück zum Zitat Yu, T., MacPhail, S. H., Banath, J. P., Klokov, D., & Olive, P. L. (2006). Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair, 5(8), 935–946.PubMedCrossRef Yu, T., MacPhail, S. H., Banath, J. P., Klokov, D., & Olive, P. L. (2006). Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair, 5(8), 935–946.PubMedCrossRef
16.
Zurück zum Zitat Klokov, D., MacPhail, S. M., Banath, J. P., Byrne, J. P., & Olive, P. L. (2006). Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiotherapy and Oncology, 80(2), 223–229.PubMedCrossRef Klokov, D., MacPhail, S. M., Banath, J. P., Byrne, J. P., & Olive, P. L. (2006). Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiotherapy and Oncology, 80(2), 223–229.PubMedCrossRef
17.
Zurück zum Zitat West, C. M., Elliott, R. M., & Burnet, N. G. (2007). The genomics revolution and radiotherapy. Clinical Oncology (Royal College of Radiology, 19(6), 470–480. West, C. M., Elliott, R. M., & Burnet, N. G. (2007). The genomics revolution and radiotherapy. Clinical Oncology (Royal College of Radiology, 19(6), 470–480.
18.
Zurück zum Zitat Fernet, M., & Hall, J. (2004). Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair, 3(8–9), 1237–1243.PubMedCrossRef Fernet, M., & Hall, J. (2004). Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair, 3(8–9), 1237–1243.PubMedCrossRef
19.
Zurück zum Zitat Meyer, A., John, E., Dork, T., Sohn, C., Karstens, J. H., & Bremer, M. (2004). Breast cancer in female carriers of ATM gene alterations: Outcome of adjuvant radiotherapy. Radiotherapy and Oncology, 72(3), 319–323.PubMedCrossRef Meyer, A., John, E., Dork, T., Sohn, C., Karstens, J. H., & Bremer, M. (2004). Breast cancer in female carriers of ATM gene alterations: Outcome of adjuvant radiotherapy. Radiotherapy and Oncology, 72(3), 319–323.PubMedCrossRef
20.
Zurück zum Zitat Andreassen, C. N. (2005). Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncológica, 44(8), 801–815.PubMedCrossRef Andreassen, C. N. (2005). Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncológica, 44(8), 801–815.PubMedCrossRef
21.
Zurück zum Zitat Wichers, M., & Maes, M. (2002). The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. International Journal of Neuropsychopharmacology, 5(4), 375–388.PubMedCrossRef Wichers, M., & Maes, M. (2002). The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. International Journal of Neuropsychopharmacology, 5(4), 375–388.PubMedCrossRef
22.
Zurück zum Zitat Ryan, J. L., Carroll, J. K., Ryan, E. P., Mustian, K. M., Fiscella, K., & Morrow, G. R. (2007). Mechanisms of cancer-related fatigue. Oncologist, 12(Suppl 1), 22–34.PubMedCrossRef Ryan, J. L., Carroll, J. K., Ryan, E. P., Mustian, K. M., Fiscella, K., & Morrow, G. R. (2007). Mechanisms of cancer-related fatigue. Oncologist, 12(Suppl 1), 22–34.PubMedCrossRef
23.
Zurück zum Zitat Okunieff, P., Augustine, E., Hicks, J. E., Cornelison, T. L., Altemus, R. M., Naydich, B. G., et al. (2004). Pentoxifylline in the treatment of radiation-induced fibrosis. Journal of Clinical Oncology, 22(11), 2207–2213.PubMedCrossRef Okunieff, P., Augustine, E., Hicks, J. E., Cornelison, T. L., Altemus, R. M., Naydich, B. G., et al. (2004). Pentoxifylline in the treatment of radiation-induced fibrosis. Journal of Clinical Oncology, 22(11), 2207–2213.PubMedCrossRef
24.
Zurück zum Zitat Daigle, J. L., Hong, J. H., Chiang, C. S., & McBride, W. H. (2001). The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Research, 61(24), 8859–8865.PubMed Daigle, J. L., Hong, J. H., Chiang, C. S., & McBride, W. H. (2001). The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Research, 61(24), 8859–8865.PubMed
25.
Zurück zum Zitat Noble, M., & Dietrich, J. (2002). Intersections between neurobiology and oncology: Tumor origin, treatment and repair of treatment-associated damage. Trends in Neurosciences, 25(2), 103–107.PubMedCrossRef Noble, M., & Dietrich, J. (2002). Intersections between neurobiology and oncology: Tumor origin, treatment and repair of treatment-associated damage. Trends in Neurosciences, 25(2), 103–107.PubMedCrossRef
26.
Zurück zum Zitat Fike, J. R., Rola, R., & Limoli, C. L. (2007). Radiation response of neural precursor cells. Neurosurgery Clinics of North America, 18(1), 115–127.PubMedCrossRef Fike, J. R., Rola, R., & Limoli, C. L. (2007). Radiation response of neural precursor cells. Neurosurgery Clinics of North America, 18(1), 115–127.PubMedCrossRef
27.
Zurück zum Zitat Siman, R., Zhang, C., Roberts, V. L., Pitts-Kiefer, A., & Neumar, R. W. (2005). Novel surrogate markers for acute brain damage: Cerebrospinal fluid levels correlate with severity of ischemic neurodegeneration in the rat. Journal of Cerebral Blood Flow and Metabolism, 25(11), 1433–1444.PubMedCrossRef Siman, R., Zhang, C., Roberts, V. L., Pitts-Kiefer, A., & Neumar, R. W. (2005). Novel surrogate markers for acute brain damage: Cerebrospinal fluid levels correlate with severity of ischemic neurodegeneration in the rat. Journal of Cerebral Blood Flow and Metabolism, 25(11), 1433–1444.PubMedCrossRef
28.
Zurück zum Zitat Guan, W., Yang, Y. L., Xia, W. M., Li, L., & Gong, D. S. (2003). Significance of serum neuron-specific enolase in patients with acute traumatic brain injury. Chinese Journal of Traumatology, 6(4), 218–221.PubMed Guan, W., Yang, Y. L., Xia, W. M., Li, L., & Gong, D. S. (2003). Significance of serum neuron-specific enolase in patients with acute traumatic brain injury. Chinese Journal of Traumatology, 6(4), 218–221.PubMed
29.
Zurück zum Zitat McDonald, S., Meyerowitz, C., Smudzin, T., & Rubin, P. (1994). Preliminary results of a pilot study using WR-2721 before fractionated irradiation of the head and neck to reduce salivary gland dysfunction. International Journal of Radiation Oncology, Biology, Physics, 29(4), 747–754.PubMed McDonald, S., Meyerowitz, C., Smudzin, T., & Rubin, P. (1994). Preliminary results of a pilot study using WR-2721 before fractionated irradiation of the head and neck to reduce salivary gland dysfunction. International Journal of Radiation Oncology, Biology, Physics, 29(4), 747–754.PubMed
30.
Zurück zum Zitat Burlage, F. R., Roesink, J. M., Kampinga, H. H., Coppes, R. P., Terhaard, C., Langendijk, J. A., et al. (2008). Protection of salivary function by concomitant pilocarpine during radiotherapy: A double-blind, randomized, placebo-controlled study. International Journal of Radiation Oncology, Biology, Physics, 70(1), 14–22 Sep 14.PubMed Burlage, F. R., Roesink, J. M., Kampinga, H. H., Coppes, R. P., Terhaard, C., Langendijk, J. A., et al. (2008). Protection of salivary function by concomitant pilocarpine during radiotherapy: A double-blind, randomized, placebo-controlled study. International Journal of Radiation Oncology, Biology, Physics, 70(1), 14–22 Sep 14.PubMed
31.
Zurück zum Zitat Thula, T. T., Schultz, G., Tran-Son-Tay, R., & Batich, C. (2005). Effects of EGF and bFGF on irradiated parotid glands. Annals of Biomedical Engineering, 33(5), 685–695.PubMedCrossRef Thula, T. T., Schultz, G., Tran-Son-Tay, R., & Batich, C. (2005). Effects of EGF and bFGF on irradiated parotid glands. Annals of Biomedical Engineering, 33(5), 685–695.PubMedCrossRef
32.
Zurück zum Zitat Beaven, A. W., & Shea, T. C. (2007). Recombinant human keratinocyte growth factor palifermin reduces oral mucositis and improves patient outcomes after stem cell transplant. Drugs of Today (Barcelona, Spain), 43(7), 461–473.CrossRef Beaven, A. W., & Shea, T. C. (2007). Recombinant human keratinocyte growth factor palifermin reduces oral mucositis and improves patient outcomes after stem cell transplant. Drugs of Today (Barcelona, Spain), 43(7), 461–473.CrossRef
33.
Zurück zum Zitat Dubray, B., Girinski, T., Thames, H. D., Becciolini, A., Porciani, S., Hennequin, C., et al. (1992). Post-irradiation hyperamylasemia as a biological dosimeter. Radiotherapy and Oncology, 24(1), 21–26.PubMedCrossRef Dubray, B., Girinski, T., Thames, H. D., Becciolini, A., Porciani, S., Hennequin, C., et al. (1992). Post-irradiation hyperamylasemia as a biological dosimeter. Radiotherapy and Oncology, 24(1), 21–26.PubMedCrossRef
34.
Zurück zum Zitat Farrell, C. L., Bready, J. V., Rex, K. L., Chen, J. N., DiPalma, C. R., Whitcomb, K. L., et al. (1998). Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Research, 58(5), 933–939.PubMed Farrell, C. L., Bready, J. V., Rex, K. L., Chen, J. N., DiPalma, C. R., Whitcomb, K. L., et al. (1998). Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Research, 58(5), 933–939.PubMed
35.
Zurück zum Zitat Farrell, C. L., Rex, K. L., Chen, J. N., Bready, J. V., DiPalma, C. R., Kaufman, S. A., et al. (2002). The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Proliferation, 35(Suppl 1), 78–85.PubMedCrossRef Farrell, C. L., Rex, K. L., Chen, J. N., Bready, J. V., DiPalma, C. R., Kaufman, S. A., et al. (2002). The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Proliferation, 35(Suppl 1), 78–85.PubMedCrossRef
36.
Zurück zum Zitat Rubin, P., Finkelstein, J. N., Siemann, D. W., Shapiro, D. L., Van Houtte, P., & Penney, D. P. (1986). Predictive biochemical assays for late radiation effects. International Journal of Radiation Oncology, Biology, Physics, 12(4), 469–476.PubMed Rubin, P., Finkelstein, J. N., Siemann, D. W., Shapiro, D. L., Van Houtte, P., & Penney, D. P. (1986). Predictive biochemical assays for late radiation effects. International Journal of Radiation Oncology, Biology, Physics, 12(4), 469–476.PubMed
37.
Zurück zum Zitat Rubin, P., McDonald, S., Maasilta, P., Finkelstein, J. N., Shapiro, D. L., Penney, D., et al. (1989). Serum markers for prediction of pulmonary radiation syndromes. Part I: Surfactant apoprotein. International Journal of Radiation Oncology, Biology, Physics, 17(3), 553–558.PubMed Rubin, P., McDonald, S., Maasilta, P., Finkelstein, J. N., Shapiro, D. L., Penney, D., et al. (1989). Serum markers for prediction of pulmonary radiation syndromes. Part I: Surfactant apoprotein. International Journal of Radiation Oncology, Biology, Physics, 17(3), 553–558.PubMed
38.
Zurück zum Zitat Gross, N. J. (1991). Surfactant subtypes in experimental lung damage: Radiation pneumonitis. American Journal of Physiology, 260(4 Pt 1), L302–L310.PubMed Gross, N. J. (1991). Surfactant subtypes in experimental lung damage: Radiation pneumonitis. American Journal of Physiology, 260(4 Pt 1), L302–L310.PubMed
39.
Zurück zum Zitat Chen, Y., Rubin, P., Williams, J., Hernady, E., Smudzin, T., & Okunieff, P. (2001). Circulating IL-6 as a predictor of radiation pneumonitis. International Journal of Radiation Oncology, Biology, Physics, 49(3), 641–648.PubMed Chen, Y., Rubin, P., Williams, J., Hernady, E., Smudzin, T., & Okunieff, P. (2001). Circulating IL-6 as a predictor of radiation pneumonitis. International Journal of Radiation Oncology, Biology, Physics, 49(3), 641–648.PubMed
40.
Zurück zum Zitat Chen, Y., Hyrien, O., Williams, J., Okunieff, P., Smudzin, T., & Rubin, P. (2005). Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis. International Journal of Radiation Oncology, Biology, Physics, 62(1), 260–266.PubMedCrossRef Chen, Y., Hyrien, O., Williams, J., Okunieff, P., Smudzin, T., & Rubin, P. (2005). Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis. International Journal of Radiation Oncology, Biology, Physics, 62(1), 260–266.PubMedCrossRef
41.
Zurück zum Zitat Evans, E. S., Kocak, Z., Zhou, S. M., Kahn, D. A., Huang, H., Hollis, D. R., et al. (2006). Does transforming growth factor-beta1 predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine, 35(3–4), 186–192.PubMedCrossRef Evans, E. S., Kocak, Z., Zhou, S. M., Kahn, D. A., Huang, H., Hollis, D. R., et al. (2006). Does transforming growth factor-beta1 predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine, 35(3–4), 186–192.PubMedCrossRef
42.
Zurück zum Zitat Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49(23), 6449–6465.PubMed Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49(23), 6449–6465.PubMed
43.
Zurück zum Zitat Classen, J., Belka, C., Paulsen, F., Budach, W., Hoffmann, W., & Bamberg, M. (1998). Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlentherapie und Onkologie, 174(Suppl 3), 82–84.PubMed Classen, J., Belka, C., Paulsen, F., Budach, W., Hoffmann, W., & Bamberg, M. (1998). Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlentherapie und Onkologie, 174(Suppl 3), 82–84.PubMed
44.
Zurück zum Zitat Cionini, L., Becciolini, A., Dalla Palma, L., & De Giuli, G. (1971). Intestinal absorption of radioiodine labeled human serum albumin, mono-iodotyrosine and di-iodotyrosine following abdominal radiation therapy. Acta Radiologica. Therapy, Physics, Biology, 10(3), 341–352.PubMed Cionini, L., Becciolini, A., Dalla Palma, L., & De Giuli, G. (1971). Intestinal absorption of radioiodine labeled human serum albumin, mono-iodotyrosine and di-iodotyrosine following abdominal radiation therapy. Acta Radiologica. Therapy, Physics, Biology, 10(3), 341–352.PubMed
45.
Zurück zum Zitat Walden, T. L., & Farzaneh, N. K. (1991). Biochemical response of normal tissues to ionizing radiation. In P. H. Gutin, S. A. Liebel, & G. E. Sheline (Eds.) Radiation injury to the nervous system (pp. 17–36). New York: Raven. Walden, T. L., & Farzaneh, N. K. (1991). Biochemical response of normal tissues to ionizing radiation. In P. H. Gutin, S. A. Liebel, & G. E. Sheline (Eds.) Radiation injury to the nervous system (pp. 17–36). New York: Raven.
46.
Zurück zum Zitat Prosser, C. L. (1947). Clinical sequence of physiological effects of ionizing radiation in animals. Radiology, 49, 299–312. Prosser, C. L. (1947). Clinical sequence of physiological effects of ionizing radiation in animals. Radiology, 49, 299–312.
47.
Zurück zum Zitat Osborn, G. K., Jones, D. C., & Kimeldorf, D. J. (1964). The effect of age at exposure on radiation-induced polydipsia in the rat. Radiation Research, 23, 119–127.PubMedCrossRef Osborn, G. K., Jones, D. C., & Kimeldorf, D. J. (1964). The effect of age at exposure on radiation-induced polydipsia in the rat. Radiation Research, 23, 119–127.PubMedCrossRef
48.
Zurück zum Zitat Pento, J. T., & Kenny, A. D. (1975). The influence of whole-body irradiation on calcium and phosphate homeostasis in the rat. Radiation Research, 63(3), 468–473.PubMedCrossRef Pento, J. T., & Kenny, A. D. (1975). The influence of whole-body irradiation on calcium and phosphate homeostasis in the rat. Radiation Research, 63(3), 468–473.PubMedCrossRef
49.
Zurück zum Zitat Edelmann, A., & Eversole, W. J. (1950). Changes in antidiuretic activity in rat serum after X-irradiation. American Journal of Physiology, 163, 709. Edelmann, A., & Eversole, W. J. (1950). Changes in antidiuretic activity in rat serum after X-irradiation. American Journal of Physiology, 163, 709.
50.
Zurück zum Zitat Goodman, R. D., Lewis, A. E., & Schuck, E. A. (1952). Effects of x-irradiation on gastrointestinal transit and absorption availability. American Journal of Physiology, 169(1), 242–247.PubMed Goodman, R. D., Lewis, A. E., & Schuck, E. A. (1952). Effects of x-irradiation on gastrointestinal transit and absorption availability. American Journal of Physiology, 169(1), 242–247.PubMed
51.
Zurück zum Zitat Dublineau, I., Ksas, B., Joubert, C., Aigueperse, J., Gourmelon, P., & Griffiths, N. M. (2002). Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: Influence of neutron component and irradiation dose. International Journal of Radiation Biology, 78(12), 1127–1138.PubMedCrossRef Dublineau, I., Ksas, B., Joubert, C., Aigueperse, J., Gourmelon, P., & Griffiths, N. M. (2002). Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: Influence of neutron component and irradiation dose. International Journal of Radiation Biology, 78(12), 1127–1138.PubMedCrossRef
52.
Zurück zum Zitat Shideler, C. E., Johns, M. E., Cantrell, R. W., Shipe, J. R., Wills, M. R., & Savory, J. (1981). Erythrocyte polyamine determinations in patients with head and neck cancer. Archives of Otolaryngology, 107(12), 752–754.PubMed Shideler, C. E., Johns, M. E., Cantrell, R. W., Shipe, J. R., Wills, M. R., & Savory, J. (1981). Erythrocyte polyamine determinations in patients with head and neck cancer. Archives of Otolaryngology, 107(12), 752–754.PubMed
53.
Zurück zum Zitat Dicker, A. P. (2003). COX-2 inhibitors and cancer therapeutics: Potential roles for inhibitors of COX-2 in combination with cytotoxic therapy: Reports from a symposium held in conjunction with the Radiation Therapy Oncology Group June 2001 Meeting. American Journal of Clinical Oncology, 26(4), S46–S47.PubMedCrossRef Dicker, A. P. (2003). COX-2 inhibitors and cancer therapeutics: Potential roles for inhibitors of COX-2 in combination with cytotoxic therapy: Reports from a symposium held in conjunction with the Radiation Therapy Oncology Group June 2001 Meeting. American Journal of Clinical Oncology, 26(4), S46–S47.PubMedCrossRef
54.
Zurück zum Zitat Liang, L., Hu, D., Liu, W., Williams, J. P., Okunieff, P., & Ding, I. (2003). Celecoxib reduces skin damage after radiation: Selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. American Journal of Clinical Oncology, 26(4), S114–S121.PubMedCrossRef Liang, L., Hu, D., Liu, W., Williams, J. P., Okunieff, P., & Ding, I. (2003). Celecoxib reduces skin damage after radiation: Selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. American Journal of Clinical Oncology, 26(4), S114–S121.PubMedCrossRef
55.
Zurück zum Zitat Hancock, S. L., McDougall, I. R., & Constine, L. S. (1995). Thyroid abnormalities after therapeutic external radiation. International Journal of Radiation Oncology, Biology, Physics, 31(5), 1165–1170.PubMed Hancock, S. L., McDougall, I. R., & Constine, L. S. (1995). Thyroid abnormalities after therapeutic external radiation. International Journal of Radiation Oncology, Biology, Physics, 31(5), 1165–1170.PubMed
56.
Zurück zum Zitat Constine, L. S., Woolf, P. D., Cann, D., Mick, G., McCormick, K., Raubertas, R. F., et al. (1993). Hypothalamic–pituitary dysfunction after radiation for brain tumors. New England Journal of Medicine, 328(2), 87–94.PubMedCrossRef Constine, L. S., Woolf, P. D., Cann, D., Mick, G., McCormick, K., Raubertas, R. F., et al. (1993). Hypothalamic–pituitary dysfunction after radiation for brain tumors. New England Journal of Medicine, 328(2), 87–94.PubMedCrossRef
57.
Zurück zum Zitat Mitchell, J. B., Biaglow, J. E., & Russo, A. (1988). Role of glutathione and other endogenous thiols in radiation protection. Pharmacology & Therapeutics, 39(1–3), 269–274.CrossRef Mitchell, J. B., Biaglow, J. E., & Russo, A. (1988). Role of glutathione and other endogenous thiols in radiation protection. Pharmacology & Therapeutics, 39(1–3), 269–274.CrossRef
58.
Zurück zum Zitat Okunieff, P., & Suit, H. D. (1987). Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. Journal of the National Cancer Institute, 79(2), 377–381.PubMed Okunieff, P., & Suit, H. D. (1987). Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. Journal of the National Cancer Institute, 79(2), 377–381.PubMed
59.
Zurück zum Zitat Delanian, S., Porcher, R., Rudant, J., & Lefaix, J. L. (2005). Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. Journal of Clinical Oncology, 23(34), 8570–8579.PubMedCrossRef Delanian, S., Porcher, R., Rudant, J., & Lefaix, J. L. (2005). Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. Journal of Clinical Oncology, 23(34), 8570–8579.PubMedCrossRef
60.
Zurück zum Zitat Greenberger, J. S., Epperly, M. W., Gretton, J., Jefferson, M., Nie, S., Bernarding, M., et al. (2003). Radioprotective gene therapy. Current Gene Therapy, 3(3), 183–195.PubMedCrossRef Greenberger, J. S., Epperly, M. W., Gretton, J., Jefferson, M., Nie, S., Bernarding, M., et al. (2003). Radioprotective gene therapy. Current Gene Therapy, 3(3), 183–195.PubMedCrossRef
61.
Zurück zum Zitat Greenberger, J. S., & Epperly, M. W. (2007). Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo, 21(2), 141–146.PubMed Greenberger, J. S., & Epperly, M. W. (2007). Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo, 21(2), 141–146.PubMed
62.
Zurück zum Zitat Belikova, N. A., Jiang, J., Tyurina, Y. Y., Zhao, Q., Epperly, M. W., Greenberger, J., et al. (2007). Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. International Journal of Radiation Oncology, Biology, Physics, 69(1), 176–186.PubMed Belikova, N. A., Jiang, J., Tyurina, Y. Y., Zhao, Q., Epperly, M. W., Greenberger, J., et al. (2007). Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. International Journal of Radiation Oncology, Biology, Physics, 69(1), 176–186.PubMed
63.
Zurück zum Zitat Okunieff, P., Li, M., Liu, W., Sun, J., Fenton, B., Zhang, L., et al. (2001). Keratinocyte growth factors radioprotect bowel and bone marrow but not KHT sarcoma. American Journal of Clinical Oncology, 24(5), 491–495.PubMedCrossRef Okunieff, P., Li, M., Liu, W., Sun, J., Fenton, B., Zhang, L., et al. (2001). Keratinocyte growth factors radioprotect bowel and bone marrow but not KHT sarcoma. American Journal of Clinical Oncology, 24(5), 491–495.PubMedCrossRef
64.
Zurück zum Zitat Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297.PubMedCrossRef Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297.PubMedCrossRef
65.
Zurück zum Zitat Okunieff, P., Mester, M., Wang, J., Maddox, T., Gong, X., Tang, D., et al. (1998). In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiation Research, 150(2), 204–211.PubMedCrossRef Okunieff, P., Mester, M., Wang, J., Maddox, T., Gong, X., Tang, D., et al. (1998). In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiation Research, 150(2), 204–211.PubMedCrossRef
66.
Zurück zum Zitat Miller, S. M., Ferrarotto, C. L., Vlahovich, S., Wilkins, R. C., Boreham, D. R., & Dolling, J. A. (2007). Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents. International Journal of Radiation Biology, 83(7), 471–477.PubMedCrossRef Miller, S. M., Ferrarotto, C. L., Vlahovich, S., Wilkins, R. C., Boreham, D. R., & Dolling, J. A. (2007). Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents. International Journal of Radiation Biology, 83(7), 471–477.PubMedCrossRef
67.
Zurück zum Zitat Blakely, W. F., Salter, C. A., & Prasanna, P. G. (2005). Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Physics, 89(5), 494–504.PubMedCrossRef Blakely, W. F., Salter, C. A., & Prasanna, P. G. (2005). Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Physics, 89(5), 494–504.PubMedCrossRef
68.
Zurück zum Zitat Thierens, H., De Ruyck, K., Vral, A., de Gelder, V., Whitehouse, C. A., Tawn, E. J., et al. (2005). Cytogenetic biodosimetry of an accidental exposure of a radiological worker using multiple assays. Radiation Protection Dosimetry, 113(4), 408–414.PubMedCrossRef Thierens, H., De Ruyck, K., Vral, A., de Gelder, V., Whitehouse, C. A., Tawn, E. J., et al. (2005). Cytogenetic biodosimetry of an accidental exposure of a radiological worker using multiple assays. Radiation Protection Dosimetry, 113(4), 408–414.PubMedCrossRef
69.
Zurück zum Zitat Dertinger, S. D., Miller, R. K., Brewer, K., Smudzin, T., Torous, D. K., Roberts, D. J., et al. (2007). Automated human blood micronucleated reticulocyte measurements for rapid assessment of chromosomal damage. Mutation Research, 626(1–2), 111–119.PubMed Dertinger, S. D., Miller, R. K., Brewer, K., Smudzin, T., Torous, D. K., Roberts, D. J., et al. (2007). Automated human blood micronucleated reticulocyte measurements for rapid assessment of chromosomal damage. Mutation Research, 626(1–2), 111–119.PubMed
70.
Zurück zum Zitat Moiseenko, V. V., Battista, J. J., Hill, R. P., Travis, E. L., & Van Dyk, J. (2000). In-field and out-of-field effects in partial volume lung irradiation in rodents: Possible correlation between early DNA damage and functional endpoints. International Journal of Radiation Oncology, Biology, Physics, 48(5), 1539–1548.PubMed Moiseenko, V. V., Battista, J. J., Hill, R. P., Travis, E. L., & Van Dyk, J. (2000). In-field and out-of-field effects in partial volume lung irradiation in rodents: Possible correlation between early DNA damage and functional endpoints. International Journal of Radiation Oncology, Biology, Physics, 48(5), 1539–1548.PubMed
71.
Zurück zum Zitat Swartz, H. M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Khan, N., et al. (2006). In vivo EPR dosimetry to quantify exposures to clinically significant doses of ionising radiation. Radiation Protection Dosimetry, 120(1–4), 163–170.PubMedCrossRef Swartz, H. M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Khan, N., et al. (2006). In vivo EPR dosimetry to quantify exposures to clinically significant doses of ionising radiation. Radiation Protection Dosimetry, 120(1–4), 163–170.PubMedCrossRef
72.
Zurück zum Zitat Anscher, M. S., Peters, W. P., Reisenbichler, H., Petros, W. P., & Jirtle, R. L. (1993). Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. New England Journal of Medicine, 328(22), 1592–1598.PubMedCrossRef Anscher, M. S., Peters, W. P., Reisenbichler, H., Petros, W. P., & Jirtle, R. L. (1993). Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. New England Journal of Medicine, 328(22), 1592–1598.PubMedCrossRef
73.
Zurück zum Zitat Zhao, L., Sheldon, K., Chen, M., Yin, M. S., Hayman, J. A., Kalemkerian, G. P., et al. (2007). The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer, 59(2), 232–239 Sep 28.PubMedCrossRef Zhao, L., Sheldon, K., Chen, M., Yin, M. S., Hayman, J. A., Kalemkerian, G. P., et al. (2007). The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer, 59(2), 232–239 Sep 28.PubMedCrossRef
74.
Zurück zum Zitat Bentzen, S. M., Skoczylas, J. Z., Overgaard, M., & Overgaard, J. (1996). Radiotherapy-related lung fibrosis enhanced by tamoxifen. Journal of the National Cancer Institute, 88(13), 918–922.PubMedCrossRef Bentzen, S. M., Skoczylas, J. Z., Overgaard, M., & Overgaard, J. (1996). Radiotherapy-related lung fibrosis enhanced by tamoxifen. Journal of the National Cancer Institute, 88(13), 918–922.PubMedCrossRef
75.
Zurück zum Zitat Marchetti, F., Coleman, M. A., Jones, I. M., & Wyrobek, A. J. (2006). Candidate protein biodosimeters of human exposure to ionizing radiation. International Journal of Radiation Biology, 82(9), 605–639.PubMedCrossRef Marchetti, F., Coleman, M. A., Jones, I. M., & Wyrobek, A. J. (2006). Candidate protein biodosimeters of human exposure to ionizing radiation. International Journal of Radiation Biology, 82(9), 605–639.PubMedCrossRef
76.
Zurück zum Zitat Chaudhry, M. A. (2006). Bystander effect: Biological endpoints and microarray analysis. Mutation Research, 597(1–2), 98–112.PubMed Chaudhry, M. A. (2006). Bystander effect: Biological endpoints and microarray analysis. Mutation Research, 597(1–2), 98–112.PubMed
77.
Zurück zum Zitat Rieger, K. E., Hong, W. J., Tusher, V. G., Tang, J., Tibshirani, R., & Chu, G. (2004). Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6635–6640.PubMedCrossRef Rieger, K. E., Hong, W. J., Tusher, V. G., Tang, J., Tibshirani, R., & Chu, G. (2004). Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6635–6640.PubMedCrossRef
78.
Zurück zum Zitat Quarmby, S., West, C., Magee, B., Stewart, A., Hunter, R., & Kumar, S. (2002). Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiation Research, 157(3), 243–248.PubMedCrossRef Quarmby, S., West, C., Magee, B., Stewart, A., Hunter, R., & Kumar, S. (2002). Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiation Research, 157(3), 243–248.PubMedCrossRef
79.
Zurück zum Zitat Ho, A. Y., Atencio, D. P., Peters, S., Stock, R. G., Formenti, S. C., Cesaretti, J. A., et al. (2006). Genetic predictors of adverse radiotherapy effects: The Gene-PARE project. International Journal of Radiation Oncology, Biology, Physics, 65(3), 646–655.PubMed Ho, A. Y., Atencio, D. P., Peters, S., Stock, R. G., Formenti, S. C., Cesaretti, J. A., et al. (2006). Genetic predictors of adverse radiotherapy effects: The Gene-PARE project. International Journal of Radiation Oncology, Biology, Physics, 65(3), 646–655.PubMed
80.
Zurück zum Zitat Mayo, M. S., Gajewski, B. J., & Morris, J. S. (2006). Some statistical issues in microarray gene expression data. Radiation Research, 165(6), 745–748.PubMedCrossRef Mayo, M. S., Gajewski, B. J., & Morris, J. S. (2006). Some statistical issues in microarray gene expression data. Radiation Research, 165(6), 745–748.PubMedCrossRef
81.
Zurück zum Zitat Williams, J. R., Zhang, Y., Russell, J., Koch, C., & Little, J. B. (2007). Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncológica, 46(5), 628–638.PubMedCrossRef Williams, J. R., Zhang, Y., Russell, J., Koch, C., & Little, J. B. (2007). Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncológica, 46(5), 628–638.PubMedCrossRef
82.
Zurück zum Zitat Chen, Y., Williams, J., Ding, I., Hernady, E., Liu, W., Smudzin, T., et al. (2002). Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology, 12(1 Suppl 1), 26–33.PubMedCrossRef Chen, Y., Williams, J., Ding, I., Hernady, E., Liu, W., Smudzin, T., et al. (2002). Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology, 12(1 Suppl 1), 26–33.PubMedCrossRef
83.
Zurück zum Zitat Andreassen, C. N., Alsner, J., Overgaard, M., Sorensen, F. B., & Overgaard, J. (2006). Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM—A study based on DNA from formalin fixed paraffin embedded tissue samples. International Journal of Radiation Biology, 82(8), 577–586.PubMedCrossRef Andreassen, C. N., Alsner, J., Overgaard, M., Sorensen, F. B., & Overgaard, J. (2006). Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM—A study based on DNA from formalin fixed paraffin embedded tissue samples. International Journal of Radiation Biology, 82(8), 577–586.PubMedCrossRef
Metadaten
Titel
Molecular markers of radiation-related normal tissue toxicity
verfasst von
Paul Okunieff
Yuhchyau Chen
David J. Maguire
Amy K. Huser
Publikationsdatum
01.09.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9138-7

Weitere Artikel der Ausgabe 3/2008

Cancer and Metastasis Reviews 3/2008 Zur Ausgabe

OriginalPaper

Preface

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.