Skip to main content
Erschienen in: Journal of Medical Systems 5/2011

01.10.2011 | Original Paper

Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram

verfasst von: Kaiqiong Sun, Zhen Chen, Shaofeng Jiang, Yu Wang

Erschienen in: Journal of Medical Systems | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

This paper presented an automatic morphological method to extract a vascular tree using an angiogram. Under the assumption that vessels are connected in a local linear pattern in a noisy environment, the algorithm decomposes the vessel extraction problem into several consecutive morphological operators, aiming to characterize and distinguish different patterns on the angiogram: background, approximate vessel region and the boundary. It started with a contrast enhancement and background suppression process implemented by subtracting the background from the original angiogram. The background was estimated using multiscale morphology opening operators by varying the size of structuring element on each pixel. Subsequently, the algorithm simplified the enhanced angiogram with a combined fuzzy morphological opening operation, with linear rotating structuring element, in order to fit the vessel pattern. This filtering process was then followed by simply setting a threshold to produce approximate vessel region. Finally, the vessel boundaries were detected using watershed techniques with the obtained approximate vessel centerline, thinned result of the obtained vessel region, as prior marker for vessel structure. Experimental results using clinical digitized vascular angiogram and some comparative performance of the proposed algorithm were reported.
Literatur
1.
Zurück zum Zitat Chen, S. J., and Carroll, J. D., 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans. Med. Imag. 19(4):318–336, 2000.CrossRef Chen, S. J., and Carroll, J. D., 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans. Med. Imag. 19(4):318–336, 2000.CrossRef
2.
Zurück zum Zitat Tom, B. C. S., Efstratiadis, S. N., and Katsaggelos, A. K., Motion estimation of skeletonized angiographic images using elastic registration. IEEE Trans. Med. Imag. 13(9):450–460, 1994.CrossRef Tom, B. C. S., Efstratiadis, S. N., and Katsaggelos, A. K., Motion estimation of skeletonized angiographic images using elastic registration. IEEE Trans. Med. Imag. 13(9):450–460, 1994.CrossRef
3.
Zurück zum Zitat Kirbas, C., and Quek, F., A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2):81–121, 2004.CrossRef Kirbas, C., and Quek, F., A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2):81–121, 2004.CrossRef
4.
Zurück zum Zitat Otsu, N., A threshold selectin method from grey level histogram. IEEE Trans. Syst. Man Cybern. 8:62–66, 1978.CrossRef Otsu, N., A threshold selectin method from grey level histogram. IEEE Trans. Syst. Man Cybern. 8:62–66, 1978.CrossRef
5.
Zurück zum Zitat Chaudhuri, S., Chatterjee, S., Katz, N., et al., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3):263–269, 1989.CrossRef Chaudhuri, S., Chatterjee, S., Katz, N., et al., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3):263–269, 1989.CrossRef
6.
Zurück zum Zitat Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.CrossRef Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.CrossRef
7.
Zurück zum Zitat Sofka, M., and Stewart, C. V., Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imag. 25(12):1531–1546, 2006.CrossRef Sofka, M., and Stewart, C. V., Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imag. 25(12):1531–1546, 2006.CrossRef
8.
Zurück zum Zitat Vermeer, K. A., Vos, F. M., Lemij, H. G., and Vossepoel, A. M., A model based method for retinal blood vessel detection. Comput. Biol. Med. 34:209–219, 2004.CrossRef Vermeer, K. A., Vos, F. M., Lemij, H. G., and Vossepoel, A. M., A model based method for retinal blood vessel detection. Comput. Biol. Med. 34:209–219, 2004.CrossRef
9.
Zurück zum Zitat Figueiredo, M. A. T., and Leitao, J. M. N., A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imag. 14(7):162–172, 1995.CrossRef Figueiredo, M. A. T., and Leitao, J. M. N., A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imag. 14(7):162–172, 1995.CrossRef
10.
Zurück zum Zitat Haris, K., Efstratiadis, S., Maglaveras, N., Pappas, C., Gourassas, J., and Louridas, G., Model-based morphological segmentation and labeling of coronary angiograms. IEEE Trans. Med. Imag. 18(10):1003–1015, 1999.CrossRef Haris, K., Efstratiadis, S., Maglaveras, N., Pappas, C., Gourassas, J., and Louridas, G., Model-based morphological segmentation and labeling of coronary angiograms. IEEE Trans. Med. Imag. 18(10):1003–1015, 1999.CrossRef
11.
Zurück zum Zitat Thackray, B. D., and Nelson, A. C., Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans. Med. Imag. 12(3):385–392, 1993.CrossRef Thackray, B. D., and Nelson, A. C., Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans. Med. Imag. 12(3):385–392, 1993.CrossRef
12.
Zurück zum Zitat Zana, F., and Klein, J. C., Segmentation of vessel-like pattern using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7):1010–1019, 2001.CrossRefMATH Zana, F., and Klein, J. C., Segmentation of vessel-like pattern using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7):1010–1019, 2001.CrossRefMATH
13.
Zurück zum Zitat Sun, K. Q., Sang, N., and Zhao, E. D., Extraction of vascular tree on angiogram with fuzzy morphological method. Int. J. Inf. Technol. 11(9):119–127, 2005. Sun, K. Q., Sang, N., and Zhao, E. D., Extraction of vascular tree on angiogram with fuzzy morphological method. Int. J. Inf. Technol. 11(9):119–127, 2005.
14.
Zurück zum Zitat Tang, P. H., Liu, H., and Sun, K. Q., Enhancement of coronary angiogram by estimation of local background. In: Proceedings of SPIE Medical Imaging: Image Processing. Vol. 6789, p. 678918.1–6, 2007. Tang, P. H., Liu, H., and Sun, K. Q., Enhancement of coronary angiogram by estimation of local background. In: Proceedings of SPIE Medical Imaging: Image Processing. Vol. 6789, p. 678918.1–6, 2007.
15.
Zurück zum Zitat Sun, K. Q., Jiang, S. F., and Wang. Y., Segmentation of coronary artery on angiogram by combined morphological operations and watershed. In: Proceedings of the 2nd International Conference on BioMedical Engineering and Informatics. Vol. 2, pp. 679–682, 2009. Sun, K. Q., Jiang, S. F., and Wang. Y., Segmentation of coronary artery on angiogram by combined morphological operations and watershed. In: Proceedings of the 2nd International Conference on BioMedical Engineering and Informatics. Vol. 2, pp. 679–682, 2009.
16.
Zurück zum Zitat Serra, J., Image Analysis and Mathematical Morphology. Vol. 1. New York: Academic, 1982.MATH Serra, J., Image Analysis and Mathematical Morphology. Vol. 1. New York: Academic, 1982.MATH
17.
Zurück zum Zitat Haralick, R. M., Sternberg, S. R., and Zhuang, X. H., Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(7):532–550, 1987.CrossRef Haralick, R. M., Sternberg, S. R., and Zhuang, X. H., Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(7):532–550, 1987.CrossRef
18.
Zurück zum Zitat Maccarone, M. C., Fuzzy mathematical morphology concepts and applications. Vistas Astron. 40(4):469–477, 1996.CrossRef Maccarone, M. C., Fuzzy mathematical morphology concepts and applications. Vistas Astron. 40(4):469–477, 1996.CrossRef
19.
Zurück zum Zitat Mukhopadhyay, S., and Chanda, B., A multiscale morphological approach to local contrast enhancement. Signal Process. 80:685–696, 2000.CrossRefMATH Mukhopadhyay, S., and Chanda, B., A multiscale morphological approach to local contrast enhancement. Signal Process. 80:685–696, 2000.CrossRefMATH
20.
Zurück zum Zitat Vincent, L., and Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6):583–598, 1991.CrossRef Vincent, L., and Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6):583–598, 1991.CrossRef
21.
Zurück zum Zitat Vincent, L., Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 2(8):176–201, 1993.CrossRefMathSciNet Vincent, L., Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 2(8):176–201, 1993.CrossRefMathSciNet
22.
Zurück zum Zitat Wink, O., Niessen, W. J., and Viergever, M. A., Multiscale vessel tracking. IEEE Trans. Med. Imag. 23(1):130–133, 2004.CrossRef Wink, O., Niessen, W. J., and Viergever, M. A., Multiscale vessel tracking. IEEE Trans. Med. Imag. 23(1):130–133, 2004.CrossRef
Metadaten
Titel
Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram
verfasst von
Kaiqiong Sun
Zhen Chen
Shaofeng Jiang
Yu Wang
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2011
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9466-3

Weitere Artikel der Ausgabe 5/2011

Journal of Medical Systems 5/2011 Zur Ausgabe