Skip to main content
Erschienen in: Journal of Medical Systems 5/2011

01.10.2011 | Original Paper

Unbiased Group-Wise Image Registration: Applications in Brain Fiber Tract Atlas Construction and Functional Connectivity Analysis

verfasst von: Xiujuan Geng, Hong Gu, Wanyong Shin, Thomas J. Ross, Yihong Yang

Erschienen in: Journal of Medical Systems | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

We propose an unbiased implicit-reference group-wise (IRG) image registration method and demonstrate its applications in the construction of a brain white matter fiber tract atlas and the analysis of resting-state functional MRI (fMRI) connectivity. Most image registration techniques pair-wise align images to a selected reference image and group analyses are performed in the reference space, which may produce bias. The proposed method jointly estimates transformations, with an elastic deformation model, registering all images to an implicit reference corresponding to the group average. The unbiased registration is applied to build a fiber tract atlas by registering a group of diffusion tensor images. Compared to reference-based registration, the IRG registration improves the fiber track overlap within the group. After applying the method in the fMRI connectivity analysis, results suggest a general improvement in functional connectivity maps at a group level in terms of larger cluster size and higher average t-scores.
Literatur
1.
Zurück zum Zitat Toga, A. W., and Thompson, P. M., The role of image registration in brain mapping. Image Vis. Comput. 19:3–24, 2001.CrossRef Toga, A. W., and Thompson, P. M., The role of image registration in brain mapping. Image Vis. Comput. 19:3–24, 2001.CrossRef
2.
Zurück zum Zitat Maintz, J. B., and Viergever, M. A., A survey of medical image registration. Med. Image Anal. 2:1–36, 1998.CrossRef Maintz, J. B., and Viergever, M. A., A survey of medical image registration. Med. Image Anal. 2:1–36, 1998.CrossRef
3.
Zurück zum Zitat Alexander, D. C., Pierpaoli, C., Basser, P. J., and Gee, J. C., Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20:1131–1139, 2001.CrossRef Alexander, D. C., Pierpaoli, C., Basser, P. J., and Gee, J. C., Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20:1131–1139, 2001.CrossRef
4.
Zurück zum Zitat Chiang, M. C., Leow, A. D., Klunder, A. D., Dutton, R. A., Barysheva, M., Rose, S. E., McMahon, K. L., de Zubicaray, G. I., Toga, A. W., and Thompson, P. M., Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27:442–456, 2008.CrossRef Chiang, M. C., Leow, A. D., Klunder, A. D., Dutton, R. A., Barysheva, M., Rose, S. E., McMahon, K. L., de Zubicaray, G. I., Toga, A. W., and Thompson, P. M., Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27:442–456, 2008.CrossRef
5.
Zurück zum Zitat Yeo, B. T., Vercauteren, T., Fillard, P., Peyrat, J. M., Pennec, X., Golland, P., Ayache, N., and Clatz, O., DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 28:1914–1928, 2009.CrossRef Yeo, B. T., Vercauteren, T., Fillard, P., Peyrat, J. M., Pennec, X., Golland, P., Ayache, N., and Clatz, O., DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 28:1914–1928, 2009.CrossRef
6.
Zurück zum Zitat Ziyan, U., Sabuncu, M. R., O’Donnell, L. J., and Westin, C. F., Nonlinear registration of diffusion MR images based on fiber bundles. Med. Image Comput.Comput. Assist. Interv. 10:351–358, 2007. Ziyan, U., Sabuncu, M. R., O’Donnell, L. J., and Westin, C. F., Nonlinear registration of diffusion MR images based on fiber bundles. Med. Image Comput.Comput. Assist. Interv. 10:351–358, 2007.
7.
Zurück zum Zitat Joshi, S., Davis, B., Jomier, M., and Gerig, G., Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23(Suppl 1):S151–S160, 2004.CrossRef Joshi, S., Davis, B., Jomier, M., and Gerig, G., Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23(Suppl 1):S151–S160, 2004.CrossRef
8.
Zurück zum Zitat Zhang, H., Yushkevich, P. A., Rueckert, D., and Gee, J. C., Unbiased white matter atlas construction using diffusion tensor images. Med. Image Comput. Comput. Assist. Interv. 10:211–218, 2007. Zhang, H., Yushkevich, P. A., Rueckert, D., and Gee, J. C., Unbiased white matter atlas construction using diffusion tensor images. Med. Image Comput. Comput. Assist. Interv. 10:211–218, 2007.
9.
Zurück zum Zitat Geng, X., Christensen, G. E., Gu, H., Ross, T. J., and Yang, Y., Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47:1341–1351, 2009.CrossRef Geng, X., Christensen, G. E., Gu, H., Ross, T. J., and Yang, Y., Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47:1341–1351, 2009.CrossRef
10.
Zurück zum Zitat Christensen, G. E., and Johnson, H. J., Consistent image registration. IEEE Trans. Med. Imaging 20:568–582, 2001.CrossRef Christensen, G. E., and Johnson, H. J., Consistent image registration. IEEE Trans. Med. Imaging 20:568–582, 2001.CrossRef
11.
Zurück zum Zitat Basser, P. J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103:247–254, 1994.CrossRef Basser, P. J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103:247–254, 1994.CrossRef
12.
Zurück zum Zitat Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., and Di Chiro, G., Diffusion tensor MR imaging of the human brain. Radiology 201:637–648, 1996. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., and Di Chiro, G., Diffusion tensor MR imaging of the human brain. Radiology 201:637–648, 1996.
13.
Zurück zum Zitat Peng, H., Orlichenko, A., Dawe, R. J., Agam, G., Zhang, S., and Arfanakis, K., Development of a human brain diffusion tensor template. Neuroimage 46:967–980, 2009.CrossRef Peng, H., Orlichenko, A., Dawe, R. J., Agam, G., Zhang, S., and Arfanakis, K., Development of a human brain diffusion tensor template. Neuroimage 46:967–980, 2009.CrossRef
14.
Zurück zum Zitat Mori, S., Oishi, K., and Faria, A. V., White matter atlases based on diffusion tensor imaging. Curr. Opin. Neurol. 22:362–369, 2009.CrossRef Mori, S., Oishi, K., and Faria, A. V., White matter atlases based on diffusion tensor imaging. Curr. Opin. Neurol. 22:362–369, 2009.CrossRef
15.
Zurück zum Zitat Phan, K. L., Orlichenko, A., Boyd, E., Angstadt, M., Coccaro, E. F., Liberzon, I., and Arfanakis, K., Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biol. Psychiatry 66:691–694, 2009.CrossRef Phan, K. L., Orlichenko, A., Boyd, E., Angstadt, M., Coccaro, E. F., Liberzon, I., and Arfanakis, K., Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biol. Psychiatry 66:691–694, 2009.CrossRef
16.
Zurück zum Zitat McIntosh, A. M., Maniega, S. M., Lymer, G. K., McKirdy, J., Hall, J., Sussmann, J. E., Bastin, M. E., Clayden, J. D., Johnstone, E. C., and Lawrie, S. M., White matter tractography in bipolar disorder and schizophrenia. Biol. Psychiatry 64:1088–1092, 2008.CrossRef McIntosh, A. M., Maniega, S. M., Lymer, G. K., McKirdy, J., Hall, J., Sussmann, J. E., Bastin, M. E., Clayden, J. D., Johnstone, E. C., and Lawrie, S. M., White matter tractography in bipolar disorder and schizophrenia. Biol. Psychiatry 64:1088–1092, 2008.CrossRef
17.
Zurück zum Zitat Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537–541, 1995.CrossRef Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537–541, 1995.CrossRef
18.
Zurück zum Zitat Lowe, M. J., Mock, B. J., and Sorenson, J. A., Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132, 1998.CrossRef Lowe, M. J., Mock, B. J., and Sorenson, J. A., Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132, 1998.CrossRef
19.
Zurück zum Zitat Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100:253–258, 2003.CrossRef Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100:253–258, 2003.CrossRef
20.
Zurück zum Zitat Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13:43–53, 2001.CrossRef Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13:43–53, 2001.CrossRef
21.
Zurück zum Zitat Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101:4637–4642, 2004.CrossRef Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101:4637–4642, 2004.CrossRef
22.
Zurück zum Zitat Cox, R. W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29:162–173, 1996.CrossRef Cox, R. W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29:162–173, 1996.CrossRef
23.
Zurück zum Zitat Wang, R., Benner, T., Sorensen, A. G, and Wedeen, V. J., Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med., 2007. Wang, R., Benner, T., Sorensen, A. G, and Wedeen, V. J., Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med., 2007.
24.
Zurück zum Zitat Schmahmann, J. D., and Pandya, D. N., Fiber Pathways of the Brain, 2006 Schmahmann, J. D., and Pandya, D. N., Fiber Pathways of the Brain, 2006
25.
Zurück zum Zitat Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., and Zilles, K., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335, 2005.CrossRef Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., and Zilles, K., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335, 2005.CrossRef
26.
Zurück zum Zitat Geng, X., Transitive inverse-consistent image registration and evaluation, 2007. Geng, X., Transitive inverse-consistent image registration and evaluation, 2007.
27.
Zurück zum Zitat Tuch, D. S., Reese, T. G., Wiegell, M. R., and Wedeen, V. J., Diffusion MRI of complex neural architecture. Neuron 40:885–895, 2003.CrossRef Tuch, D. S., Reese, T. G., Wiegell, M. R., and Wedeen, V. J., Diffusion MRI of complex neural architecture. Neuron 40:885–895, 2003.CrossRef
28.
Zurück zum Zitat Geng, X., Ross, T. J., Zhan, W., Gu, H., Chao, Y. P., Lin, C. P., Christensen, G. E., Schuff, N., and Yang, Y., Diffusion MRI registration using orientation distribution functions. Inf. Process. Med. Imaging 21:626–637, 2009.CrossRef Geng, X., Ross, T. J., Zhan, W., Gu, H., Chao, Y. P., Lin, C. P., Christensen, G. E., Schuff, N., and Yang, Y., Diffusion MRI registration using orientation distribution functions. Inf. Process. Med. Imaging 21:626–637, 2009.CrossRef
Metadaten
Titel
Unbiased Group-Wise Image Registration: Applications in Brain Fiber Tract Atlas Construction and Functional Connectivity Analysis
verfasst von
Xiujuan Geng
Hong Gu
Wanyong Shin
Thomas J. Ross
Yihong Yang
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2011
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9509-9

Weitere Artikel der Ausgabe 5/2011

Journal of Medical Systems 5/2011 Zur Ausgabe