Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2008

01.06.2008 | NON-THEMATIC REVIEW

MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer

verfasst von: Anjum Sohail, Qing Sun, Huiren Zhao, M. Margarida Bernardo, Jin-Ah Cho, Rafael Fridman

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
Literatur
1.
Zurück zum Zitat McCawley, L. J., & Matrisian, L. M. (2000). Matrix metalloproteinases: Multifunctional contributors to tumor progression. Molecular Medicine Today, 6, 149–156.PubMedCrossRef McCawley, L. J., & Matrisian, L. M. (2000). Matrix metalloproteinases: Multifunctional contributors to tumor progression. Molecular Medicine Today, 6, 149–156.PubMedCrossRef
2.
Zurück zum Zitat Stamenkovic, I. (2000). Matrix metalloproteinases in tumor invasion and metastasis. Seminars in Cancer Biology, 10, 415–433.PubMedCrossRef Stamenkovic, I. (2000). Matrix metalloproteinases in tumor invasion and metastasis. Seminars in Cancer Biology, 10, 415–433.PubMedCrossRef
3.
Zurück zum Zitat Itoh, Y., & Nagase, H. (2002). Matrix metalloproteinases in cancer. Essays in Biochemistry, 38, 21–36.PubMed Itoh, Y., & Nagase, H. (2002). Matrix metalloproteinases in cancer. Essays in Biochemistry, 38, 21–36.PubMed
4.
Zurück zum Zitat Lafleur, M. A., Handsley, M. M., & Edwards, D. R. (2003). Metalloproteinases and their inhibitors in angiogenesis. Expert Reviews in Molecular Medicine, 5, 1–39.PubMedCrossRef Lafleur, M. A., Handsley, M. M., & Edwards, D. R. (2003). Metalloproteinases and their inhibitors in angiogenesis. Expert Reviews in Molecular Medicine, 5, 1–39.PubMedCrossRef
5.
Zurück zum Zitat Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25, 9–34.PubMedCrossRef Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25, 9–34.PubMedCrossRef
6.
Zurück zum Zitat Fingleton, B. (2006). Matrix metalloproteinases: Roles in cancer and metastasis. Frontiers in Bioscience, 11, 479–491.CrossRef Fingleton, B. (2006). Matrix metalloproteinases: Roles in cancer and metastasis. Frontiers in Bioscience, 11, 479–491.CrossRef
7.
Zurück zum Zitat Martin, M. D., & Matrisian, L. M. (2007). The other side of MMPs: Protective roles in tumor progression. Cancer and Metastasis Reviews, 26, 717–724.PubMedCrossRef Martin, M. D., & Matrisian, L. M. (2007). The other side of MMPs: Protective roles in tumor progression. Cancer and Metastasis Reviews, 26, 717–724.PubMedCrossRef
8.
Zurück zum Zitat Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19, 52–60.CrossRef Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19, 52–60.CrossRef
9.
Zurück zum Zitat Jodele, S., Blavier, L., Yoonm, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 25, 35–43.PubMedCrossRef Jodele, S., Blavier, L., Yoonm, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 25, 35–43.PubMedCrossRef
10.
Zurück zum Zitat Zucker, S., Pei, D., Cao, J., & Lopez-Otin, C. (2003). Membrane type-matrix metalloproteinases (MT-MMP). Current Topics in Developmental Biology, 54, 1–74.PubMedCrossRef Zucker, S., Pei, D., Cao, J., & Lopez-Otin, C. (2003). Membrane type-matrix metalloproteinases (MT-MMP). Current Topics in Developmental Biology, 54, 1–74.PubMedCrossRef
11.
Zurück zum Zitat Holmbeck, K., Bianco, P., Yamada, S., & Birkedal-Hansen, H. (2004). MT1-MMP: A tethered collagenase. Journal of Cellular Physiology, 200, 11–19.PubMedCrossRef Holmbeck, K., Bianco, P., Yamada, S., & Birkedal-Hansen, H. (2004). MT1-MMP: A tethered collagenase. Journal of Cellular Physiology, 200, 11–19.PubMedCrossRef
12.
Zurück zum Zitat Hotary, K., Li, X. Y., Allen, E., Stevens, S. L., & Weiss, S. J. (2006). A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes & Development, 20, 2673–2686.CrossRef Hotary, K., Li, X. Y., Allen, E., Stevens, S. L., & Weiss, S. J. (2006). A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes & Development, 20, 2673–2686.CrossRef
13.
Zurück zum Zitat Barbolina, M. V., & Stack, M. S. (2008). Membrane type 1-matrix metalloproteinase: Substrate diversity in pericellular proteolysis. Seminars in Cell & Developmental Biology, 19, 24–33.CrossRef Barbolina, M. V., & Stack, M. S. (2008). Membrane type 1-matrix metalloproteinase: Substrate diversity in pericellular proteolysis. Seminars in Cell & Developmental Biology, 19, 24–33.CrossRef
14.
Zurück zum Zitat Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.PubMedCrossRef Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.PubMedCrossRef
15.
Zurück zum Zitat Osenkowski, P., Toth, M., & Fridman, R. (2004). Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). Journal of Cellular Physiology, 200, 2–10.PubMedCrossRef Osenkowski, P., Toth, M., & Fridman, R. (2004). Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). Journal of Cellular Physiology, 200, 2–10.PubMedCrossRef
16.
Zurück zum Zitat Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., et al. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 370, 61–65.PubMedCrossRef Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., et al. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 370, 61–65.PubMedCrossRef
17.
Zurück zum Zitat Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., & Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. Journal of Biological Chemistry, 270, 5331–5338.PubMedCrossRef Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., & Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. Journal of Biological Chemistry, 270, 5331–5338.PubMedCrossRef
18.
Zurück zum Zitat Arroyo, A. G., Genis, L., Gonzalo, P., Matias-Roman, S., Pollan, A., & Galvez, B. G. (2007). Matrix metalloproteinases: New routes to the use of MT1-MMP as a therapeutic target in angiogenesis-related disease. Current Pharmaceutical Design, 13, 1787–1802.PubMedCrossRef Arroyo, A. G., Genis, L., Gonzalo, P., Matias-Roman, S., Pollan, A., & Galvez, B. G. (2007). Matrix metalloproteinases: New routes to the use of MT1-MMP as a therapeutic target in angiogenesis-related disease. Current Pharmaceutical Design, 13, 1787–1802.PubMedCrossRef
19.
Zurück zum Zitat Tanaka, M., Sato, H., Takino, T., Iwata, K., Inoue, M., & Seiki, M. (1997). Isolation of a mouse MT2-MMP gene from a lung cDNA library and identification of its product. FEBS Letters, 402, 219–222.PubMedCrossRef Tanaka, M., Sato, H., Takino, T., Iwata, K., Inoue, M., & Seiki, M. (1997). Isolation of a mouse MT2-MMP gene from a lung cDNA library and identification of its product. FEBS Letters, 402, 219–222.PubMedCrossRef
20.
Zurück zum Zitat Takino, T., Sato, H., Shinagawa, A., & Seiki, M. (1995). Identification of the second membrane-type matrix metalloproteinase (MT- MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. Journal of Biological Chemistry, 270, 23013–23020.PubMedCrossRef Takino, T., Sato, H., Shinagawa, A., & Seiki, M. (1995). Identification of the second membrane-type matrix metalloproteinase (MT- MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. Journal of Biological Chemistry, 270, 23013–23020.PubMedCrossRef
21.
Zurück zum Zitat Pei, D. (1999). Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. Journal of Biological Chemistry, 274, 8925–8932.PubMedCrossRef Pei, D. (1999). Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. Journal of Biological Chemistry, 274, 8925–8932.PubMedCrossRef
22.
Zurück zum Zitat Llano, E., Pendas, A. M., Freije, J. P., Nakano, A., Knauper, V., Murphy, G., et al. (1999). Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Research, 59, 2570–2576.PubMed Llano, E., Pendas, A. M., Freije, J. P., Nakano, A., Knauper, V., Murphy, G., et al. (1999). Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Research, 59, 2570–2576.PubMed
23.
Zurück zum Zitat Kajita, M., Kinoh, H., Ito, N., Takamura, A., Itoh, Y., Okada, A., et al. (1999). Human membrane type-4 matrix metalloproteinase (MT4-MMP) is encoded by a novel major transcript: Isolation of complementary DNA clones for human and mouse mt4-mmp transcripts. FEBS Letters, 457, 353–356.PubMedCrossRef Kajita, M., Kinoh, H., Ito, N., Takamura, A., Itoh, Y., Okada, A., et al. (1999). Human membrane type-4 matrix metalloproteinase (MT4-MMP) is encoded by a novel major transcript: Isolation of complementary DNA clones for human and mouse mt4-mmp transcripts. FEBS Letters, 457, 353–356.PubMedCrossRef
24.
Zurück zum Zitat Puente, X. S., Pendas, A. M., Llano, E., Velasco, G., & Lopez-Otin, C. (1996). Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Research, 56, 944–949.PubMed Puente, X. S., Pendas, A. M., Llano, E., Velasco, G., & Lopez-Otin, C. (1996). Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Research, 56, 944–949.PubMed
25.
Zurück zum Zitat Pei, D. (1999). Leukolysin/MMP25/MT6-MMP: A novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Research, 9, 291–303.PubMedCrossRef Pei, D. (1999). Leukolysin/MMP25/MT6-MMP: A novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Research, 9, 291–303.PubMedCrossRef
26.
Zurück zum Zitat Velasco, G., Cal, S., Merlos-Suarez, A., Ferrando, A. A., Alvarez, S., Nakano, A., et al. (2000). Human MT6-matrix metalloproteinase: Identification, progelatinase A activation, and expression in brain tumors. Cancer Research, 60, 877–882.PubMed Velasco, G., Cal, S., Merlos-Suarez, A., Ferrando, A. A., Alvarez, S., Nakano, A., et al. (2000). Human MT6-matrix metalloproteinase: Identification, progelatinase A activation, and expression in brain tumors. Cancer Research, 60, 877–882.PubMed
27.
Zurück zum Zitat Overall, C. M. (2001). Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods in Molecular Biology, 151, 79–120.PubMed Overall, C. M. (2001). Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods in Molecular Biology, 151, 79–120.PubMed
28.
Zurück zum Zitat Udenfriend, S., & Kodukula, K. (1995). How glycosylphosphatidylinositol-anchored membrane proteins are made. Annual Review in Biochemistry, 64, 563–591. Udenfriend, S., & Kodukula, K. (1995). How glycosylphosphatidylinositol-anchored membrane proteins are made. Annual Review in Biochemistry, 64, 563–591.
29.
Zurück zum Zitat Itoh, Y., Kajita, M., Kinoh, H., Mori, H., Okada, A., & Seiki, M. (1999). Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. Journal of Biological Chemistry, 274, 34260–34266.PubMedCrossRef Itoh, Y., Kajita, M., Kinoh, H., Mori, H., Okada, A., & Seiki, M. (1999). Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. Journal of Biological Chemistry, 274, 34260–34266.PubMedCrossRef
30.
Zurück zum Zitat Kang, T., Yi, J., Guo, A., Wang, X., Overall, C. M., Jiang, W., et al. (2001). Subcellular distribution and cytokine- and chemokine-regulated secretion of leukolysin/MT6-MMP/MMP-25 in neutrophils. Journal of Biological Chemistry, 276, 21960–21968.PubMedCrossRef Kang, T., Yi, J., Guo, A., Wang, X., Overall, C. M., Jiang, W., et al. (2001). Subcellular distribution and cytokine- and chemokine-regulated secretion of leukolysin/MT6-MMP/MMP-25 in neutrophils. Journal of Biological Chemistry, 276, 21960–21968.PubMedCrossRef
31.
Zurück zum Zitat Kojima, S., Itoh, Y., Matsumoto, S., Masuho, Y., & Seiki, M. (2000). Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosyl-phosphatidyl inositol (GPI)-anchored MMP. FEBS Letters, 480, 142–146.PubMedCrossRef Kojima, S., Itoh, Y., Matsumoto, S., Masuho, Y., & Seiki, M. (2000). Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosyl-phosphatidyl inositol (GPI)-anchored MMP. FEBS Letters, 480, 142–146.PubMedCrossRef
32.
Zurück zum Zitat Sun, Q., Weber, C. R., Sohail, A., Bernardo, M. M., Toth, M., Zhao, H., et al. (2007). MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. Journal of Biological Chemistry, 282, 21998–22010.PubMedCrossRef Sun, Q., Weber, C. R., Sohail, A., Bernardo, M. M., Toth, M., Zhao, H., et al. (2007). MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. Journal of Biological Chemistry, 282, 21998–22010.PubMedCrossRef
33.
Zurück zum Zitat Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., et al. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO Journal, 20, 4782–4793.PubMedCrossRef Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., et al. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO Journal, 20, 4782–4793.PubMedCrossRef
34.
Zurück zum Zitat Lehti, K., Lohi, J., Juntunen, M. M., Pei, D., & Keski-Oja, J. (2002). Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. Journal of Biological Chemistry, 277, 8440–8448.PubMedCrossRef Lehti, K., Lohi, J., Juntunen, M. M., Pei, D., & Keski-Oja, J. (2002). Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. Journal of Biological Chemistry, 277, 8440–8448.PubMedCrossRef
35.
Zurück zum Zitat Galvez, B. G., Genis, L., Matias-Roman, S., Oblander, S. A., Tryggvason, K., Apte, S. S., & Arroyo, A. G. (2005). Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. Journal of Biological Chemistry, 280, 1292–1298.PubMedCrossRef Galvez, B. G., Genis, L., Matias-Roman, S., Oblander, S. A., Tryggvason, K., Apte, S. S., & Arroyo, A. G. (2005). Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. Journal of Biological Chemistry, 280, 1292–1298.PubMedCrossRef
36.
Zurück zum Zitat Rozanov, D. V., Deryugina, E. I., Ratnikov, B. I., Monosov, E. Z., Marchenko, G. N., & Quigley, J. P. (2001). Strongin AY: Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. Journal of Biological Chemistry, 276, 25705–25714.PubMedCrossRef Rozanov, D. V., Deryugina, E. I., Ratnikov, B. I., Monosov, E. Z., Marchenko, G. N., & Quigley, J. P. (2001). Strongin AY: Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. Journal of Biological Chemistry, 276, 25705–25714.PubMedCrossRef
37.
Zurück zum Zitat Paladino, S., Sarnataro, D., Pillich, R., Tivodar, S., Nitsch, L., & Zurzolo, C. (2004). Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. Journal of Cell Biology, 167, 699–709.PubMedCrossRef Paladino, S., Sarnataro, D., Pillich, R., Tivodar, S., Nitsch, L., & Zurzolo, C. (2004). Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. Journal of Cell Biology, 167, 699–709.PubMedCrossRef
38.
Zurück zum Zitat Paladino, S., Sarnataro, D., Tivodar, S., & Zurzolo, C. (2007). Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins. Traffic, 8, 251–258.PubMedCrossRef Paladino, S., Sarnataro, D., Tivodar, S., & Zurzolo, C. (2007). Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins. Traffic, 8, 251–258.PubMedCrossRef
39.
Zurück zum Zitat Sharom, F. J., & Lehto, M. T. (2002). Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochemistry and Cell Biology, 80, 535–549.PubMedCrossRef Sharom, F. J., & Lehto, M. T. (2002). Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochemistry and Cell Biology, 80, 535–549.PubMedCrossRef
40.
Zurück zum Zitat Eisenhaber, B., Bork, P., & Eisenhaber, F. (1998). Sequence properties of GPI-anchored proteins near the omega-site: Constraints for the polypeptide binding site of the putative transamidase. Protein Engineering, 11, 1155–1161.PubMedCrossRef Eisenhaber, B., Bork, P., & Eisenhaber, F. (1998). Sequence properties of GPI-anchored proteins near the omega-site: Constraints for the polypeptide binding site of the putative transamidase. Protein Engineering, 11, 1155–1161.PubMedCrossRef
41.
Zurück zum Zitat Eisenhaber, B., Bork, P., & Eisenhaber, F. (1999). Prediction of potential GPI-modification sites in proprotein sequences. Journal of Molecular Biology, 292, 741–758.PubMedCrossRef Eisenhaber, B., Bork, P., & Eisenhaber, F. (1999). Prediction of potential GPI-modification sites in proprotein sequences. Journal of Molecular Biology, 292, 741–758.PubMedCrossRef
42.
Zurück zum Zitat Eisenhaber, B., Bork, P., Yuan, Y., Loffler, G., & Eisenhaber, F. (2000). Automated annotation of GPI anchor sites: Case study C. elegans. Trends in Biochemical Sciences, 25, 340–341.PubMedCrossRef Eisenhaber, B., Bork, P., Yuan, Y., Loffler, G., & Eisenhaber, F. (2000). Automated annotation of GPI anchor sites: Case study C. elegans. Trends in Biochemical Sciences, 25, 340–341.PubMedCrossRef
43.
Zurück zum Zitat Ferguson, M. A., & Williams, A. F. (1988). Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annual Review of Biochemistry, 57, 285–320.PubMedCrossRef Ferguson, M. A., & Williams, A. F. (1988). Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annual Review of Biochemistry, 57, 285–320.PubMedCrossRef
44.
Zurück zum Zitat Chen, R., Walter, E. I., Parker, G., Lapurga, J. P., Millan, J. L., Ikehara, Y., et al. (1998). Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proceedings of the National Academy of Sciences of the United States of America, 95, 9512–9517.PubMedCrossRef Chen, R., Walter, E. I., Parker, G., Lapurga, J. P., Millan, J. L., Ikehara, Y., et al. (1998). Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proceedings of the National Academy of Sciences of the United States of America, 95, 9512–9517.PubMedCrossRef
45.
Zurück zum Zitat Maeda, Y., Tashima, Y., Houjou, T., Fujita, M., Yoko-o, T., Jigami, Y., et al. (2007). Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Molecular Biology of the Cell, 18, 1497–1506.PubMedCrossRef Maeda, Y., Tashima, Y., Houjou, T., Fujita, M., Yoko-o, T., Jigami, Y., et al. (2007). Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Molecular Biology of the Cell, 18, 1497–1506.PubMedCrossRef
46.
Zurück zum Zitat Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., & Luna, E. J. (2002). Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. Journal of Biological Chemistry, 277, 43399–43409.PubMedCrossRef Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., & Luna, E. J. (2002). Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. Journal of Biological Chemistry, 277, 43399–43409.PubMedCrossRef
47.
Zurück zum Zitat Stijlemans, B., Baral, T. N., Guilliams, M., Brys, L., Korf, J., Drennan, M., et al. (2007). A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. Journal of Immunology, 179, 4003–4014. Stijlemans, B., Baral, T. N., Guilliams, M., Brys, L., Korf, J., Drennan, M., et al. (2007). A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. Journal of Immunology, 179, 4003–4014.
48.
Zurück zum Zitat Rollason, R., Korolchuk, V., Hamilton, C., Schu, P., & Banting, G. (2007). Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. Journal of Cell Science, 120, 3850–3858.PubMedCrossRef Rollason, R., Korolchuk, V., Hamilton, C., Schu, P., & Banting, G. (2007). Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. Journal of Cell Science, 120, 3850–3858.PubMedCrossRef
49.
Zurück zum Zitat Paladino, S., Pocard, T., Catino, M. A., & Zurzolo, C. (2006). GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. Journal of Cell Biology, 172, 1023–1034.PubMedCrossRef Paladino, S., Pocard, T., Catino, M. A., & Zurzolo, C. (2006). GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. Journal of Cell Biology, 172, 1023–1034.PubMedCrossRef
50.
Zurück zum Zitat Butler, G. S., & Overall, C. M. (2007). Proteomic validation of protease drug targets: Pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry. Current Pharmaceutical Design, 13, 263–270.PubMedCrossRef Butler, G. S., & Overall, C. M. (2007). Proteomic validation of protease drug targets: Pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry. Current Pharmaceutical Design, 13, 263–270.PubMedCrossRef
51.
Zurück zum Zitat Kumari, S., & Mayor, S. (2008). ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biology, 10, 30–41.PubMedCrossRef Kumari, S., & Mayor, S. (2008). ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biology, 10, 30–41.PubMedCrossRef
52.
Zurück zum Zitat Jiang, A., Lehti, K., Wang, X., Weiss, S. J., Keski-Oja, J., & Pei, D. (2001). Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 98, 13693–13698.PubMedCrossRef Jiang, A., Lehti, K., Wang, X., Weiss, S. J., Keski-Oja, J., & Pei, D. (2001). Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 98, 13693–13698.PubMedCrossRef
53.
Zurück zum Zitat Baker, A. H., Edwards, D. R., & Murphy, G. (2002). Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. Journal of Cell Science, 115, 3719–3727.PubMedCrossRef Baker, A. H., Edwards, D. R., & Murphy, G. (2002). Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. Journal of Cell Science, 115, 3719–3727.PubMedCrossRef
54.
Zurück zum Zitat Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochimica et Biophysica Acta, 1477, 267–283.PubMed Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochimica et Biophysica Acta, 1477, 267–283.PubMed
55.
Zurück zum Zitat Chirco, R., Liu, X. W., Jung, K. K., & Kim, H. R. (2006). Novel functions of TIMPs in cell signaling. Cancer and Metastasis Reviews, 25, 99–113.PubMedCrossRef Chirco, R., Liu, X. W., Jung, K. K., & Kim, H. R. (2006). Novel functions of TIMPs in cell signaling. Cancer and Metastasis Reviews, 25, 99–113.PubMedCrossRef
56.
Zurück zum Zitat Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25, 241–266.PubMedCrossRef Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25, 241–266.PubMedCrossRef
57.
Zurück zum Zitat Lambert, E., Dasse, E., Haye, B., & Petitfrere, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49, 187–198.PubMedCrossRef Lambert, E., Dasse, E., Haye, B., & Petitfrere, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49, 187–198.PubMedCrossRef
58.
Zurück zum Zitat Lee, M. H., Rapti, M., Knauper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. Journal of Biological Chemistry, 279, 17562–17569.PubMedCrossRef Lee, M. H., Rapti, M., Knauper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. Journal of Biological Chemistry, 279, 17562–17569.PubMedCrossRef
59.
Zurück zum Zitat English, W. R., Puente, X. S., Freije, J. M., Knauper, V., Amour, A., Merryweather, A., et al. (2000). Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. Journal of Biological Chemistry, 275, 14046–14055.PubMedCrossRef English, W. R., Puente, X. S., Freije, J. M., Knauper, V., Amour, A., Merryweather, A., et al. (2000). Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. Journal of Biological Chemistry, 275, 14046–14055.PubMedCrossRef
60.
Zurück zum Zitat Kolkenbrock, H., Essers, L., Ulbrich, N., & Will, H. (1999). Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinase. Biological Chemistry, 380, 1103–1108.PubMedCrossRef Kolkenbrock, H., Essers, L., Ulbrich, N., & Will, H. (1999). Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinase. Biological Chemistry, 380, 1103–1108.PubMedCrossRef
61.
Zurück zum Zitat Wang, Y., Johnson, A. R., Ye, Q. Z., & Dyer, R. D. (1999). Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. Journal of Biological Chemistry, 274, 33043–33049.PubMedCrossRef Wang, Y., Johnson, A. R., Ye, Q. Z., & Dyer, R. D. (1999). Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. Journal of Biological Chemistry, 274, 33043–33049.PubMedCrossRef
62.
Zurück zum Zitat English, W. R., Velasco, G., Stracke, J. O., Knauper, V., & Murphy, G. (2001). Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25). FEBS Letters, 491, 137–142.PubMedCrossRef English, W. R., Velasco, G., Stracke, J. O., Knauper, V., & Murphy, G. (2001). Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25). FEBS Letters, 491, 137–142.PubMedCrossRef
63.
Zurück zum Zitat Matsuda, A., Itoh, Y., Koshikawa, N., Akizawa, T., Yana, I., & Seiki, M. (2003). Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. Journal of Biological Chemistry, 278, 36350–36357.PubMedCrossRef Matsuda, A., Itoh, Y., Koshikawa, N., Akizawa, T., Yana, I., & Seiki, M. (2003). Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. Journal of Biological Chemistry, 278, 36350–36357.PubMedCrossRef
64.
Zurück zum Zitat Shannan, B., Seifert, M., Leskov, K., Willis, J., Boothman, D., Tilgen, W., et al. (2006). Challenge and promise: Roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differentiation, 13, 12–19.CrossRef Shannan, B., Seifert, M., Leskov, K., Willis, J., Boothman, D., Tilgen, W., et al. (2006). Challenge and promise: Roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differentiation, 13, 12–19.CrossRef
65.
Zurück zum Zitat Rooney, I. A., Heuser, J. E., & Atkinson, J. P. (1996). GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. Journal of Clinical Investigation, 97, 1675–1686.PubMedCrossRef Rooney, I. A., Heuser, J. E., & Atkinson, J. P. (1996). GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. Journal of Clinical Investigation, 97, 1675–1686.PubMedCrossRef
66.
Zurück zum Zitat Robertson, C., Booth, S. A., Beniac, D. R., Coulthart, M. B., Booth, T. F., & McNicol, A. (2006). Cellular prion protein is released on exosomes from activated platelets. Blood, 107, 3907–3911.PubMedCrossRef Robertson, C., Booth, S. A., Beniac, D. R., Coulthart, M. B., Booth, T. F., & McNicol, A. (2006). Cellular prion protein is released on exosomes from activated platelets. Blood, 107, 3907–3911.PubMedCrossRef
67.
Zurück zum Zitat Suzuki, K., & Okumura, Y. (2000). GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry, 39, 9477–9485.PubMedCrossRef Suzuki, K., & Okumura, Y. (2000). GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry, 39, 9477–9485.PubMedCrossRef
68.
Zurück zum Zitat Chabottaux, V., Sounni, N. E., Pennington, C. J., English, W. R., van den Brule, F., Blacher, S., et al. (2006). Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Research, 66, 5165–5172.PubMedCrossRef Chabottaux, V., Sounni, N. E., Pennington, C. J., English, W. R., van den Brule, F., Blacher, S., et al. (2006). Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Research, 66, 5165–5172.PubMedCrossRef
69.
Zurück zum Zitat Lauc, G., & Heffer-Lauc, M. (2006). Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochimica et Biophysica Acta, 1760, 584–602.PubMed Lauc, G., & Heffer-Lauc, M. (2006). Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochimica et Biophysica Acta, 1760, 584–602.PubMed
70.
Zurück zum Zitat Nie, J., & Pei, D. (2004). Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 6. Experimental Cell Research, 296, 145–150.PubMedCrossRef Nie, J., & Pei, D. (2004). Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 6. Experimental Cell Research, 296, 145–150.PubMedCrossRef
71.
Zurück zum Zitat Nie, J., & Pei, D. (2003). Direct activation of pro-matrix metalloproteinase-2 by leukolysin/membrane-type 6 matrix metalloproteinase/matrix metalloproteinase 25 at the asn(109)-Tyr bond. Cancer Research, 63, 6758–6762.PubMed Nie, J., & Pei, D. (2003). Direct activation of pro-matrix metalloproteinase-2 by leukolysin/membrane-type 6 matrix metalloproteinase/matrix metalloproteinase 25 at the asn(109)-Tyr bond. Cancer Research, 63, 6758–6762.PubMed
72.
Zurück zum Zitat Hotary, K. B., Yana, I., Sabeh, F., Li, X. Y., Holmbeck, K., Birkedal-Hansen, H., et al. (2002). Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. Journal of Experimental Medicine, 195, 295–308.PubMedCrossRef Hotary, K. B., Yana, I., Sabeh, F., Li, X. Y., Holmbeck, K., Birkedal-Hansen, H., et al. (2002). Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. Journal of Experimental Medicine, 195, 295–308.PubMedCrossRef
73.
Zurück zum Zitat Grant, G. M., Giambernardi, T. A., Grant, A. M., & Klebe, R. J. (1999). Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells. Matrix Biology, 18, 145–148.PubMedCrossRef Grant, G. M., Giambernardi, T. A., Grant, A. M., & Klebe, R. J. (1999). Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells. Matrix Biology, 18, 145–148.PubMedCrossRef
74.
Zurück zum Zitat Rikimaru, A., Komori, K., Sakamoto, T., Ichise, H., Yoshida, N., Yana, I., et al. (2007). Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells, 12, 1091–1100.PubMedCrossRef Rikimaru, A., Komori, K., Sakamoto, T., Ichise, H., Yoshida, N., Yana, I., et al. (2007). Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells, 12, 1091–1100.PubMedCrossRef
75.
Zurück zum Zitat Rozanov, D. V., Hahn-Dantona, E., Strickland, D. K., & Strongin, A. Y. (2004). The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. Journal of Biological Chemistry, 279, 4260–4268.PubMedCrossRef Rozanov, D. V., Hahn-Dantona, E., Strickland, D. K., & Strongin, A. Y. (2004). The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. Journal of Biological Chemistry, 279, 4260–4268.PubMedCrossRef
76.
Zurück zum Zitat Andolfo, A., English, W. R., Resnati, M., Murphy, G., Blasi, F., & Sidenius, N. (2002). Metalloproteases cleave the urokinase-type plasminogen activator receptor in the D1-D2 linker region and expose epitopes not present in the intact soluble receptor. Thrombosis and Haemostasis, 88, 298–306.PubMed Andolfo, A., English, W. R., Resnati, M., Murphy, G., Blasi, F., & Sidenius, N. (2002). Metalloproteases cleave the urokinase-type plasminogen activator receptor in the D1-D2 linker region and expose epitopes not present in the intact soluble receptor. Thrombosis and Haemostasis, 88, 298–306.PubMed
77.
Zurück zum Zitat Dumic, J., Dabelic, S., & Flogel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta, 1760, 616–635.PubMed Dumic, J., Dabelic, S., & Flogel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta, 1760, 616–635.PubMed
78.
Zurück zum Zitat McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., et al. (2007). SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neuroscience Letters, 419, 172–177.PubMedCrossRef McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., et al. (2007). SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neuroscience Letters, 419, 172–177.PubMedCrossRef
79.
Zurück zum Zitat Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., et al. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.PubMedCrossRef Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., et al. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.PubMedCrossRef
80.
Zurück zum Zitat Toth, M., Osenkowski, P., Hesek, D., Brown, S., Meroueh, S., Sakr, W., et al. (2005). Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase. Biochemistry Journal, 387, 497–506.CrossRef Toth, M., Osenkowski, P., Hesek, D., Brown, S., Meroueh, S., Sakr, W., et al. (2005). Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase. Biochemistry Journal, 387, 497–506.CrossRef
81.
Zurück zum Zitat Nagase, H. (1997). Activation mechanisms of matrix metalloproteinases. Biological Chemistry, 378, 151–160.PubMed Nagase, H. (1997). Activation mechanisms of matrix metalloproteinases. Biological Chemistry, 378, 151–160.PubMed
82.
Zurück zum Zitat Giannelli, G., & Antonaci, S. (2002). Gelatinases and their inhibitors in tumor metastasis: From biological research to medical applications. Histology and Histopathology, 17, 339–345.PubMed Giannelli, G., & Antonaci, S. (2002). Gelatinases and their inhibitors in tumor metastasis: From biological research to medical applications. Histology and Histopathology, 17, 339–345.PubMed
83.
Zurück zum Zitat Bjorklund, M., & Koivunen, E. (2005). Gelatinase-mediated migration and invasion of cancer cells. Biochimica et Biophysica Acta, 1755, 37–69.PubMed Bjorklund, M., & Koivunen, E. (2005). Gelatinase-mediated migration and invasion of cancer cells. Biochimica et Biophysica Acta, 1755, 37–69.PubMed
84.
Zurück zum Zitat Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., & Weiss, S. J. (2003). Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell, 114, 33–45.PubMedCrossRef Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., & Weiss, S. J. (2003). Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell, 114, 33–45.PubMedCrossRef
85.
Zurück zum Zitat Stetler-Stevenson, W. G., & Yu, A. E. (2001). Proteases in invasion: Matrix metalloproteinases. Seminars in Cancer Biology, 11, 143–152.PubMedCrossRef Stetler-Stevenson, W. G., & Yu, A. E. (2001). Proteases in invasion: Matrix metalloproteinases. Seminars in Cancer Biology, 11, 143–152.PubMedCrossRef
86.
Zurück zum Zitat Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., et al. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biology, 9, 893–904.PubMedCrossRef Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., et al. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biology, 9, 893–904.PubMedCrossRef
87.
Zurück zum Zitat Hernandez-Barrantes, S., Bernardo, M., Toth, M., & Fridman, R. (2002). Regulation of membrane type-matrix metalloproteinases. Seminars in Cancer Biology, 12, 131–138.PubMedCrossRef Hernandez-Barrantes, S., Bernardo, M., Toth, M., & Fridman, R. (2002). Regulation of membrane type-matrix metalloproteinases. Seminars in Cancer Biology, 12, 131–138.PubMedCrossRef
88.
Zurück zum Zitat Zhao, H., Bernardo, M. M., Osenkowski, P., Sohail, A., Pei, D., Nagase, H., et al. (2004). Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. Journal of Biological Chemistry, 279, 8592–8601.PubMedCrossRef Zhao, H., Bernardo, M. M., Osenkowski, P., Sohail, A., Pei, D., Nagase, H., et al. (2004). Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. Journal of Biological Chemistry, 279, 8592–8601.PubMedCrossRef
89.
Zurück zum Zitat Morrison, C. J., Butler, G. S., Bigg, H. F., Roberts, C. R., Soloway, P. D., & Overall, C. M. (2001). Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. Journal of Biological Chemistry, 276, 47402–47410.PubMedCrossRef Morrison, C. J., Butler, G. S., Bigg, H. F., Roberts, C. R., Soloway, P. D., & Overall, C. M. (2001). Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. Journal of Biological Chemistry, 276, 47402–47410.PubMedCrossRef
90.
Zurück zum Zitat Will, H., Atkinson, S. J., Butler, G. S., Smith, B., & Murphy, G. (1996). The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. Journal of Biological Chemistry, 271, 17119–17123.PubMedCrossRef Will, H., Atkinson, S. J., Butler, G. S., Smith, B., & Murphy, G. (1996). The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. Journal of Biological Chemistry, 271, 17119–17123.PubMedCrossRef
91.
Zurück zum Zitat Miyamori, H., Takino, T., Kobayashi, Y., Tokai, H., Itoh, Y., Seiki, M., et al. (2001). Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. Journal of Biological Chemistry, 276, 28204–28211.PubMedCrossRef Miyamori, H., Takino, T., Kobayashi, Y., Tokai, H., Itoh, Y., Seiki, M., et al. (2001). Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. Journal of Biological Chemistry, 276, 28204–28211.PubMedCrossRef
92.
Zurück zum Zitat Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., et al. (1999). Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science, 284, 1664–1666.PubMedCrossRef Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., et al. (1999). Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science, 284, 1664–1666.PubMedCrossRef
93.
Zurück zum Zitat Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., & Sandy, J. D. (2004). ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. Journal of Biological Chemistry, 279, 10042–10051.PubMedCrossRef Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., & Sandy, J. D. (2004). ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. Journal of Biological Chemistry, 279, 10042–10051.PubMedCrossRef
94.
Zurück zum Zitat Patwari, P., Gao, G., Lee, J. H., Grodzinsky, A. J., & Sandy, J. D. (2005). Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage. Osteoarthritis Cartilage, 13, 269–277.PubMedCrossRef Patwari, P., Gao, G., Lee, J. H., Grodzinsky, A. J., & Sandy, J. D. (2005). Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage. Osteoarthritis Cartilage, 13, 269–277.PubMedCrossRef
95.
Zurück zum Zitat Gauthier, M. C., Racine, C., Ferland, C., Flamand, N., Chakir, J., & Tremblay, G. M. (2003). Expression of membrane type-4 matrix metalloproteinase (metalloproteinase-17) by human eosinophils. International Journal of Biochemistry and Cell Biology, 35, 1667–1673.PubMedCrossRef Gauthier, M. C., Racine, C., Ferland, C., Flamand, N., Chakir, J., & Tremblay, G. M. (2003). Expression of membrane type-4 matrix metalloproteinase (metalloproteinase-17) by human eosinophils. International Journal of Biochemistry and Cell Biology, 35, 1667–1673.PubMedCrossRef
96.
Zurück zum Zitat Szabova, L., Yamada, S. S., Birkedal-Hansen, H., & Holmbeck, K. (2005). Expression pattern of four membrane-type matrix metalloproteinases in the normal and diseased mouse mammary gland. Journal of Cellular Physiology, 205, 123–132.PubMedCrossRef Szabova, L., Yamada, S. S., Birkedal-Hansen, H., & Holmbeck, K. (2005). Expression pattern of four membrane-type matrix metalloproteinases in the normal and diseased mouse mammary gland. Journal of Cellular Physiology, 205, 123–132.PubMedCrossRef
97.
Zurück zum Zitat Nuttall, R. K., Pennington, C. J., Taplin, J., Wheal, A., Yong, V. W., Forsyth, P. A., et al. (2003). Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Molecular Cancer Research, 1, 333–345.PubMed Nuttall, R. K., Pennington, C. J., Taplin, J., Wheal, A., Yong, V. W., Forsyth, P. A., et al. (2003). Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Molecular Cancer Research, 1, 333–345.PubMed
98.
Zurück zum Zitat Wallard, M. J., Pennington, C. J., Veerakumarasivamm, A., Burtt, G., Mills, I. G., Warren, A., et al. (2006). Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma. British Journal of Cancer, 94, 569–577.PubMedCrossRef Wallard, M. J., Pennington, C. J., Veerakumarasivamm, A., Burtt, G., Mills, I. G., Warren, A., et al. (2006). Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma. British Journal of Cancer, 94, 569–577.PubMedCrossRef
99.
Zurück zum Zitat Riddick, A. C., Shukla, C. J., Pennington, C. J., Bass, R., Nuttall, R. K., Hogan, A., et al. (2005). Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British Journal of Cancer, 92, 2171–2180.PubMedCrossRef Riddick, A. C., Shukla, C. J., Pennington, C. J., Bass, R., Nuttall, R. K., Hogan, A., et al. (2005). Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British Journal of Cancer, 92, 2171–2180.PubMedCrossRef
100.
Zurück zum Zitat Noda, M., Oh, J., Takahashi, R., Kondo, S., Kitayama, H., & Takahashi, C. (2003). RECK: A novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer and Metastasis Reviews, 22, 167–175.PubMedCrossRef Noda, M., Oh, J., Takahashi, R., Kondo, S., Kitayama, H., & Takahashi, C. (2003). RECK: A novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer and Metastasis Reviews, 22, 167–175.PubMedCrossRef
101.
Zurück zum Zitat Tortorella, M. D., Arner, E. C., Hills, R., Easton, A., Korte-Sarfaty, J., Fok, K., et al. (2004). Alpha2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. Journal of Biological Chemistry, 279, 17554–17561.PubMedCrossRef Tortorella, M. D., Arner, E. C., Hills, R., Easton, A., Korte-Sarfaty, J., Fok, K., et al. (2004). Alpha2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. Journal of Biological Chemistry, 279, 17554–17561.PubMedCrossRef
102.
Zurück zum Zitat Plaisier, M., Kapiteijn, K., Koolwijk, P., Fijten, C., Hanemaaijer, R., Grimbergen, J. M., et al. (2004). Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: Role of MT3-MMP. Journal of Clinical Endocrinology and Metabolism, 89, 5828–5836.PubMedCrossRef Plaisier, M., Kapiteijn, K., Koolwijk, P., Fijten, C., Hanemaaijer, R., Grimbergen, J. M., et al. (2004). Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: Role of MT3-MMP. Journal of Clinical Endocrinology and Metabolism, 89, 5828–5836.PubMedCrossRef
Metadaten
Titel
MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer
verfasst von
Anjum Sohail
Qing Sun
Huiren Zhao
M. Margarida Bernardo
Jin-Ah Cho
Rafael Fridman
Publikationsdatum
01.06.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9129-8

Weitere Artikel der Ausgabe 2/2008

Cancer and Metastasis Reviews 2/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.