Skip to main content
Erschienen in: Diabetologia 12/2017

08.09.2017 | Article

Multipeptide-coupled nanoparticles induce tolerance in ‘humanised’ HLA-transgenic mice and inhibit diabetogenic CD8+ T cell responses in type 1 diabetes

verfasst von: Xinyu Xu, Lingling Bian, Min Shen, Xin Li, Jing Zhu, Shuang Chen, Lei Xiao, Qingqing Zhang, Heng Chen, Kuanfeng Xu, Tao Yang

Erschienen in: Diabetologia | Ausgabe 12/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Induction of antigen-specific immunological tolerance may provide an attractive immunotherapy in the NOD mouse model but the conditions that lead to the successful translation to human type 1 diabetes are limited. In this study, we covalently linked 500 nm carboxylated polystyrene beads (PSB) with a mixture of immunodominant HLA-A*02:01-restricted epitopes (peptides-PSB) that may have high clinical relevance in humans as they promote immune tolerance; we then investigated the effect of the nanoparticle–peptide complexes on T cell tolerance.

Methods

PSB-coupled mixtures of HLA-A*02:01-restricted epitopes were administered to HHD II mice via intravenous injection. The effects on delaying the course of the disease were verified in NOD.β2m null HHD mice. The diabetogenic HLA-A*02:01-restricted cytotoxic lymphocyte (CTL) responses to treatment with peptides-PSB were validated in individuals with type 1 diabetes.

Results

We showed that peptides-PSB could induce antigen-specific tolerance in HHD II mice. The protective immunological mechanisms were mediated through the function of CD4+CD25+ regulatory T cells, suppressive T cell activation and T cell anergy. Furthermore, the peptides-PSB induced an activation and accumulation of regulatory T cells and CD11c+ dendritic cells through a rapid production of CD169+ macrophage-derived C-C motif chemokine 22 (CCL22). Peptides-PSB also prevented diabetes in ‘humanised’ NOD.β2m null HHD mice and suppressed pathogenic CTL responses in people with type 1 diabetes.

Conclusions/interpretation

Our findings demonstrate for the first time the potential for using multipeptide-PSB complexes to induce T cell tolerance and halt the autoimmune process. These findings represent a promising platform for an antigen-specific tolerance strategy in type 1 diabetes and highlight a mechanism through which metallophilic macrophages mediate the early cell–cell interactions required for peptides-PSB-induced immune tolerance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60CrossRefPubMedPubMedCentral Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Carbone J, del Pozo N, Gallego A, Sarmiento E (2011) Immunological risk factors for infection after immunosuppressive and biologic therapies. Expert Rev Anti-Infect Ther 9:405–413CrossRefPubMed Carbone J, del Pozo N, Gallego A, Sarmiento E (2011) Immunological risk factors for infection after immunosuppressive and biologic therapies. Expert Rev Anti-Infect Ther 9:405–413CrossRefPubMed
3.
Zurück zum Zitat Riminton DS, Hartung HP, Reddel SW (2011) Managing the risks of immunosuppression. Curr Opin Neurol 24:217–223CrossRefPubMed Riminton DS, Hartung HP, Reddel SW (2011) Managing the risks of immunosuppression. Curr Opin Neurol 24:217–223CrossRefPubMed
5.
Zurück zum Zitat Orban T, Farkas K, Jalahej H et al (2010) Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun 34:408–415CrossRefPubMedPubMedCentral Orban T, Farkas K, Jalahej H et al (2010) Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun 34:408–415CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Daniel C, Weigmann B, Bronson R, von Boehmer H (2011) Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J Exp Med 208:1501–1510CrossRefPubMedPubMedCentral Daniel C, Weigmann B, Bronson R, von Boehmer H (2011) Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J Exp Med 208:1501–1510CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Han B, Serra P, Amrani A et al (2005) Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 11:645–652CrossRefPubMed Han B, Serra P, Amrani A et al (2005) Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 11:645–652CrossRefPubMed
8.
Zurück zum Zitat Wherrett DK, Bundy B, Becker DJ et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378:319–327CrossRefPubMedPubMedCentral Wherrett DK, Bundy B, Becker DJ et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378:319–327CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Bluestone JA, Bour-Jordan H (2012) Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 4:a007542CrossRefPubMedPubMedCentral Bluestone JA, Bour-Jordan H (2012) Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 4:a007542CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Prasad S, Xu D, Miller SD (2012) Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes. Rev Diabet Stud 9:319–327CrossRefPubMed Prasad S, Xu D, Miller SD (2012) Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes. Rev Diabet Stud 9:319–327CrossRefPubMed
11.
Zurück zum Zitat Miller SD, Turley DM, Podojil JR (2007) Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 7:665–677CrossRefPubMed Miller SD, Turley DM, Podojil JR (2007) Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 7:665–677CrossRefPubMed
12.
Zurück zum Zitat Smith CE, Miller SD (2006) Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivity. J Autoimmun 27:218–231CrossRefPubMedPubMedCentral Smith CE, Miller SD (2006) Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivity. J Autoimmun 27:218–231CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Niens M, Grier AE, Marron M, Kay TW, Greiner DL, Serreze DV (2011) Prevention of “humanized” diabetogenic CD8 T cell responses in HLA-transgenic NOD mice by a multipeptide coupled-cell approach. Diabetes 60:1229–1236CrossRefPubMedPubMedCentral Niens M, Grier AE, Marron M, Kay TW, Greiner DL, Serreze DV (2011) Prevention of “humanized” diabetogenic CD8 T cell responses in HLA-transgenic NOD mice by a multipeptide coupled-cell approach. Diabetes 60:1229–1236CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Smith CE, Eagar TN, Strominger JL, Miller SD (2005) Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 102:9595–9600CrossRefPubMedPubMedCentral Smith CE, Eagar TN, Strominger JL, Miller SD (2005) Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 102:9595–9600CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lutterotti A, Yousef S, Sputtek A et al (2013) Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med 5:188ra175CrossRef Lutterotti A, Yousef S, Sputtek A et al (2013) Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med 5:188ra175CrossRef
16.
Zurück zum Zitat Getts DR, Martin AJ, McCarthy DP et al (2012) Microparticles bearing encephalitogenic peptides induce T cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30:1217–1224CrossRefPubMedPubMedCentral Getts DR, Martin AJ, McCarthy DP et al (2012) Microparticles bearing encephalitogenic peptides induce T cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30:1217–1224CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Maldonado RA, LaMothe RA, Ferrari JD et al (2015) Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A 112:E156–E165CrossRefPubMed Maldonado RA, LaMothe RA, Ferrari JD et al (2015) Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A 112:E156–E165CrossRefPubMed
18.
Zurück zum Zitat Hlavaty KA, McCarthy DP, Saito E, Yap WT, Miller SD, Shea LD (2016) Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials 76:1–10CrossRefPubMed Hlavaty KA, McCarthy DP, Saito E, Yap WT, Miller SD, Shea LD (2016) Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials 76:1–10CrossRefPubMed
19.
Zurück zum Zitat Smarr CB, Yap WT, Neef TP et al (2016) Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc Natl Acad Sci U S A 113:5059–5064CrossRefPubMedPubMedCentral Smarr CB, Yap WT, Neef TP et al (2016) Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc Natl Acad Sci U S A 113:5059–5064CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Tyner K, Sadrieh N (2011) Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol Biol 697:17–31CrossRefPubMed Tyner K, Sadrieh N (2011) Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol Biol 697:17–31CrossRefPubMed
21.
Zurück zum Zitat ADA (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74 ADA (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74
22.
Zurück zum Zitat Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185:2043–2051CrossRefPubMedPubMedCentral Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185:2043–2051CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Takaki T, Marron MP, Mathews CE et al (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176:3257–3265CrossRefPubMed Takaki T, Marron MP, Mathews CE et al (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176:3257–3265CrossRefPubMed
24.
Zurück zum Zitat Penaranda C, Kuswanto W, Hofmann J et al (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 109:12668–12673CrossRefPubMedPubMedCentral Penaranda C, Kuswanto W, Hofmann J et al (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 109:12668–12673CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lasch S, Muller P, Bayer M et al (2015) Anti-CD3/anti-CXCL10 antibody combination therapy induces a persistent remission of type 1 diabetes in two mouse models. Diabetes 64:4198–4211CrossRefPubMed Lasch S, Muller P, Bayer M et al (2015) Anti-CD3/anti-CXCL10 antibody combination therapy induces a persistent remission of type 1 diabetes in two mouse models. Diabetes 64:4198–4211CrossRefPubMed
26.
Zurück zum Zitat Xu X, Gu Y, Bian L et al (2016) Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes. Vaccine 34:854–862CrossRefPubMed Xu X, Gu Y, Bian L et al (2016) Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes. Vaccine 34:854–862CrossRefPubMed
27.
Zurück zum Zitat McGaha TL, Karlsson MC (2016) Apoptotic cell responses in the splenic marginal zone: a paradigm for immunologic reactions to apoptotic antigens with implications for autoimmunity. Immunol Rev 269:26–43CrossRefPubMedPubMedCentral McGaha TL, Karlsson MC (2016) Apoptotic cell responses in the splenic marginal zone: a paradigm for immunologic reactions to apoptotic antigens with implications for autoimmunity. Immunol Rev 269:26–43CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D'Imperio Lima MR (2015) Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 6:480CrossRefPubMedPubMedCentral Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D'Imperio Lima MR (2015) Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 6:480CrossRefPubMedPubMedCentral
29.
30.
Zurück zum Zitat Yamashita U, Kuroda E (2002) Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev Immunol 22:105–114CrossRefPubMed Yamashita U, Kuroda E (2002) Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev Immunol 22:105–114CrossRefPubMed
31.
Zurück zum Zitat Gobert M, Treilleux I, Bendriss-Vermare N et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009CrossRefPubMed Gobert M, Treilleux I, Bendriss-Vermare N et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009CrossRefPubMed
32.
Zurück zum Zitat Ravishankar B, Shinde R, Liu H et al (2014) Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A 111:4215–4220CrossRefPubMedPubMedCentral Ravishankar B, Shinde R, Liu H et al (2014) Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A 111:4215–4220CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Chow Z, Mueller SN, Deane JA, Hickey MJ (2013) Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. J Immunol 191:3049–3056CrossRefPubMed Chow Z, Mueller SN, Deane JA, Hickey MJ (2013) Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. J Immunol 191:3049–3056CrossRefPubMed
34.
Zurück zum Zitat Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419CrossRefPubMed Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419CrossRefPubMed
37.
Zurück zum Zitat Judkowski V, Rodriguez E, Pinilla C et al (2004) Peptide specific amelioration of T cell mediated pathogenesis in murine type 1 diabetes. Clin Immunol 113:29–37CrossRefPubMed Judkowski V, Rodriguez E, Pinilla C et al (2004) Peptide specific amelioration of T cell mediated pathogenesis in murine type 1 diabetes. Clin Immunol 113:29–37CrossRefPubMed
38.
Zurück zum Zitat Lieberman SM, Evans AM, Han B et al (2003) Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci U S A 100:8384–8388CrossRefPubMedPubMedCentral Lieberman SM, Evans AM, Han B et al (2003) Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci U S A 100:8384–8388CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Metcalfe SM, Fahmy TM (2012) Targeted nanotherapy for induction of therapeutic immune responses. Trends Mol Med 18:72–80CrossRefPubMed Metcalfe SM, Fahmy TM (2012) Targeted nanotherapy for induction of therapeutic immune responses. Trends Mol Med 18:72–80CrossRefPubMed
41.
Zurück zum Zitat McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117:5403–5412CrossRefPubMed McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117:5403–5412CrossRefPubMed
42.
Zurück zum Zitat Iyoda T, Shimoyama S, Liu K et al (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195:1289–1302CrossRefPubMedPubMedCentral Iyoda T, Shimoyama S, Liu K et al (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195:1289–1302CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091–1097CrossRefPubMedPubMedCentral Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091–1097CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Godiska R, Chantry D, Raport CJ et al (1997) Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185:1595–1604CrossRefPubMedPubMedCentral Godiska R, Chantry D, Raport CJ et al (1997) Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185:1595–1604CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Pere H, Montier Y, Bayry J et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118:4853–4862CrossRefPubMed Pere H, Montier Y, Bayry J et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118:4853–4862CrossRefPubMed
46.
Zurück zum Zitat Poppensieker K, Otte DM, Schurmann B et al (2012) CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proc Natl Acad Sci U S A 109:3897–3902CrossRefPubMedPubMedCentral Poppensieker K, Otte DM, Schurmann B et al (2012) CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proc Natl Acad Sci U S A 109:3897–3902CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Evers BD, Engel DR, Bohner AM et al (2016) CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL-10-producing regulatory T cells. J Am Soc Nephrol 27:3368–3382CrossRefPubMedPubMedCentral Evers BD, Engel DR, Bohner AM et al (2016) CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL-10-producing regulatory T cells. J Am Soc Nephrol 27:3368–3382CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Oeser JK, Parekh VV, Wang Y et al (2011) Deletion of the G6pc2 gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein does not affect the progression or incidence of type 1 diabetes in NOD/ShiLtJ mice. Diabetes 60:2922–2927CrossRefPubMedPubMedCentral Oeser JK, Parekh VV, Wang Y et al (2011) Deletion of the G6pc2 gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein does not affect the progression or incidence of type 1 diabetes in NOD/ShiLtJ mice. Diabetes 60:2922–2927CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Krishnamurthy B, Dudek NL, McKenzie MD et al (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116:3258–3265CrossRefPubMedPubMedCentral Krishnamurthy B, Dudek NL, McKenzie MD et al (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116:3258–3265CrossRefPubMedPubMedCentral
Metadaten
Titel
Multipeptide-coupled nanoparticles induce tolerance in ‘humanised’ HLA-transgenic mice and inhibit diabetogenic CD8+ T cell responses in type 1 diabetes
verfasst von
Xinyu Xu
Lingling Bian
Min Shen
Xin Li
Jing Zhu
Shuang Chen
Lei Xiao
Qingqing Zhang
Heng Chen
Kuanfeng Xu
Tao Yang
Publikationsdatum
08.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 12/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4419-8

Weitere Artikel der Ausgabe 12/2017

Diabetologia 12/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.