Skip to main content
Erschienen in: Malaria Journal 1/2021

Open Access 01.12.2021 | Methodology

Multiplex PCR assay for the identification of eight Anopheles species belonging to the Hyrcanus, Barbirostris and Lindesayi groups

verfasst von: Woo Jun Bang, Heung Chul Kim, Jihun Ryu, Hyeon Seung Lee, So Youn Lee, Myung Soon Kim, Sung Tae Chong, Terry A. Klein, Kwang Shik Choi

Erschienen in: Malaria Journal | Ausgabe 1/2021

Abstract

Background

Genus Anopheles mosquitoes are the primary vectors of human malaria, which is a serious threat to public health worldwide. To reduce the spread of malaria and identify the malaria infection rates in mosquitoes, accurate species identification is needed. Malaria re-emerged in 1993 in the Republic of Korea (ROK), with numbers peaking in 2004 before decreasing to current levels. Eight Anopheles species (Anopheles sinensis, Anopheles pullus, Anopheles belenrae, Anopheles lesteri, Anopheles kleini, Anopheles sineroides, Anopheles koreicus, Anopheles lindesayi) are distributed throughout Korea. Members of the Anopheles Hyrcanus group currently cannot be identified morphologically. The other species of Anopheles can be identified morphologically, except when specimens are damaged in traps. The purpose of this study was to develop a rapid and accurate method for simultaneous molecular identification of the eight Anopheles species present in the ROK.

Methods

Anopheles spp. used in this study were collected near/in the demilitarized zone in ROK, where most malaria cases are reported. DNA from 165 of the Anopheles specimens was used to develop a multiplex PCR assay. The internal transcribed spacer 2 (ITS2) region of each species was sequenced and analysed for molecular identification.

Results

DNA from a total of 165 Anopheles specimens was identified to species using a multiplex diagnostic system. These included: 20 An. sinensis, 21 An. koreicus, 17 An. lindesayi, 25 An. kleini, 11 An. lesteri, 22 An. sineroides, 23 An. belenrae, and 26 An. pullus. Each species was clearly distinguished by electrophoresis as follows: 1,112 bp for An. sinensis; 925 bp for An. koreicus; 650 bp for An. lindesayi; 527 bp for An. kleini; 436 bp for An. lesteri; 315 bp for An. sineroides; 260 bp for An. belenrae; and, 157 bp for An. pullus.

Conclusion

A multiplex PCR assay was developed to identify Anopheles spp. distributed in ROK. This method can be used to accurately identify Anopheles species that are difficult to identify morphologically to determine species distributions and malaria infection rates.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Malaria has a major impact on global public health with more than 200 million people infected and about 4,00,000 deaths annually [1]. Most malaria is reported in Africa (93%), with the remainder reported in Southeast Asia, the Mediterranean, and South America (7%) [2]. Climate change and the expansion of cross-border trading may have contributed to recent increases in malaria risks worldwide [3, 4].
Members of the genus Anopheles are vectors of Plasmodium spp., the causative agent of malaria. Plasmodium spp. that are considered human pathogens include: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi, the latter previously considered a monkey malaria [5]. In the Republic of Korea (ROK), P. vivax, P. falciparum and P. malariae were eradicated in 1979 by the National Malaria Eradication Service (NMES) of the Korean Government [6], and the World Health Organization (WHO) declared the country malaria free [7]. However, malaria reappeared in 1993 near the demilitarized zone (DMZ) in northern Gyeonggi Province [8]. Except for imported malaria cases, only P. vivax is present in ROK and, following its peak of > 4000 cases in 2010, continues to be responsible for 300–500 cases annually [911].
In ROK there are eight Anopheles species (Anopheles sinensis, Anopheles lesteri, Anopheles pullus, Anopheles kleini, Anopheles sineroides, and Anopheles belenrae belonging to the Hyrcanus group; Anopheles koreicus belonging to the Barbirostris group; and, Anopheles lindesayi belonging to the Lindesayi group) [1215]. Recently, two species, An. lesteri and An. kleini, were proposed to be the primary vectors of malaria in ROK, while An. sinensis is considered a poor vector. Anopheles lesteri showed a large number of P. vivax sporozoites (up to 2105) in the salivary glands when compared to An. sinensis (0–14) in a single microscope field (750 × 560 μM). Also, An. kleini had higher oocyst rates of P. vivax (8.8%) in the midgut than An. sinensis (4.2%) [1518]. In another study, while An. kleini and An. sinensis demonstrated similar numbers of oocysts, An. kleini demonstrated + 1 (1–10 sporozoites) to + 4 (> 1000 sporozoites) salivary gland infections, while An. sinensis only had + 1 salivary glands [19]. Recent evidence indicates that An. pullus and An. belenrae are poor to moderate vectors of malaria in ROK (Ubalee, R., pers. comm.). While An. sineroides has been implicated as a malaria vector, its status is unknown. Although there are no records of malaria infections in An. koreicus, several members of the Barbirostris group are primary vectors of malaria in Southeast Asia [20, 21]. While An. lindesayi has not been found positive for malaria in ROK, it has been implicated as a vector of P. malariae in Southeast Asia [22]. Accurate identification of Anopheles species to determine their distribution and malaria infection rates in order to develop vector control measures is needed in ROK.
Accurate species identification and subsequent monitoring of Anopheles spp. is necessary to identify their geographic distributions, larval habitats and population dynamics to manage or conduct epidemiological investigations that identify the most likely sites where infections occurred. Although scales on wings (wing patterns) and spots on legs are used as the primary key characters for species identification, it is extremely difficult if the characters are lost during collections [12, 23]. In addition, An. sinensis, An. lesteri, An. kleini, An. belenrae, and An. pullus are morphologically very similar and species cannot be identified using current morphological characters [13, 2426]. Although a multiplex PCR assay to identify six species of the Hyrcanus group was developed [27], molecular diagnostics for all eight Anopheles species in ROK had not yet been developed. In this study, a new multiplex PCR assay was developed to identify all Anopheles species simultaneously that are present in ROK.

Methods

Sample collection

Eight species of Anopheles mosquitoes used in the study were collected at six sites in/near the DMZ where most malaria infections are contracted: 1) Neutral Nations Supervisory Commission (NNSC) camp adjacent to the Panmunjeom (37°57′17.19″N; 126°40′47.91″E); 2) Daeseongdong (village of approximately 200 residents inside the DMZ (37°56′28.31″N; 126°40′37.38″E)); 3) South Gate (South gate entrance to the DMZ) (37°56′03.53″N; 126°43′15.46″E)); 4) Camp Bonifas (US Army installation (37°55′55.25″N; 126°43′21.73″E)); 5) Warrior Base (US Army training sites approximately 3 km from the south gate of DMZ), (37°55′03.96″N; 126°44′29.74″E)); and, 6) Dagmar North training area (37°58′29.85″N; 126°50′40.88"E). Mosquitoes were collected using Mosquito Magnets® (Woodstream Corp., Lancaster, PA, USA) (Fig. 1). The distance between the two farthest collection points: (2: Daeseongdong and 6: Dagmar North training area) was about 15.2 km. Other points were approximately 3.9 km distant from 3: South gate. Collected mosquitoes were identified morphologically to Anopheles spp. [23, 28] and then stored at − 70 °C until used.

Identification and primer design

Genomic DNA used in this study was extracted using the Chelex protocol [29]. Identification of six species (An. sinensis, An. pullus, An. belenrae, An. lesteri, An. kleini, An. sineroides) was performed using a multiplex PCR assay diagnostic method [27]. The universal primers for the mitochondrial gene cytochrome c oxidase subunit 1 (COI) region (LCO1490: 5′-GGT CAA ATC ATA AAG ATA TTG G-3′/HCO2198: 5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′) were used as species identifiers for An. koreicus and An. lindesayi [30]. Each sample was sequenced by Macrogen (Macrogen Daejeon, Korea) and analysed using BLAST.
Two pairs of universal primers (An-ITS2-U1; forward primer: 5′-ATC GAT GAA GAC CGC AGC TA-3′/reverse primer: 5′-CAA CAC GAC TCC ATG GTA CG-3′; An-ITS2-U2; forward primer: 5′-AAC GGG AGA AGC TCA GCA C-3′/reverse primer: 5′-GAC TTC TTG GTC CGT GTT TCA-3′) were designed between the 5.8 S and 28 S regions of the ribosomal DNA (rDNA) to analyse the entire internal transcribed spacer 2 (ITS2) sequences for the eight Anopheles species.
PCR amplification of the whole ITS2 region was conducted as follows. Each individual reaction mixture (25 μl) included: 0.2 mM each dNTP, 0.4 μM each primer, 1X PCR buffer, 1.5 mM MgCl2, and 0.5 units Taq DNA polymerase (R001AM; TaKaRa, Shiga, Japan) with 1.0 μl genomic DNA extracted from an individual specimen. The PCR cycling conditions were as follows: denaturation at 94 °C for 5 min followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 40 s, and extension at 72 °C for 60 s; and final extension at 72 °C for 5 min. Each product was visualized on 1.5% (wt/vol) agarose gels stained with ethidium bromide (VWR Life Science, Radnor, PA, USA), and then sequenced in both directions by Macrogen. Sequence data were analysed using Bioedit v7.2.6.1 [31] and deposited in the National Center for Biotechnology Information (NCBI) under the following accession numbers:
An. sinensis—MW546412, MW546421; An. pullus—MW546424, MW546423; An. lesteri—MW546426; An. sineroides—MW546417, MW546414; An. kleini—MW546419, MW546415; An. belenrae—MW546422, MW546418; An. koreicus—MW546413, MW546416; An. lindesayi—MW546425, MW546420.

Multiplex PCR assay for eight Anopheles species

Universal forward and species-specific reverse primers were designed for the eight species of Anopheles present in ROK. Reverse primers for the three species (An. sinensis, An. koreicus, An. lindesayi) were designed using the 28 S rDNA region, while primers for the remaining species were designed using the ITS2 region (Table 1). The multiplex PCR assay was conducted in a 25-μl reaction mixture containing 0.4 μM each primer, 1X PCR buffer, 0.2 mM each dNTP, 0.5 units Taq Hotstart DNA polymerase (R007A, TaKaRa,), and 1.0 μl genomic DNA from an individual specimen. PCR amplification was performed under conditions of denaturation at 94 °C for 5 min; 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 2 min; and final extension at 72 °C for 5 min. The PCR products were visualized on ethidium-bromide–stained 2.0% (wt/vol) agarose gels (VWR Life Science). The whole aligned sequences showing positions for the universal primers and the specific reverse primers are described in Fig. 2.
Table 1
PCR primers for the eight Anopheles species
Species
Universal forward primer (5′→3′)
Reverse primer (5′→3′)
Product length (bp)
 
ATC GAT GAA GAC CGC AGC TA
  
Anopheles sinensis
 
TAG GGT CAA GGC ATA CAG AAG G
1112
Anopheles koreicus
 
TAT CGT GGC CCT CGA CAG
925
Anopheles lindesayi
 
ACC ATC TAC TGC CTG AAC GTG
650
Anopheles kleini
 
TTT GTT GAT AAC TTG TAT CGT CCA TC
527
Anopheles lesteri
 
CAG TCT CTT GCA GCC CAT TC
436
Anopheles sineroides
 
CGC GCA CGC TCA GAT ATT
315
Anopheles belenrae
 
TGT CCT AGG CGG TTA TCA ACA
260
Anopheles pullus
 
CGG CGT AGT TTA TTG TGT ATA ACA TC
157

Results

Molecular species diagnosis

A total of 165 DNA samples extracted from individual Anopheles species were used: An. sinensis (20), An. koreicus (21), An. lindesayi (17), An. kleini (25), An. lesteri (11), An. sineroides (22), An. belenrae (23), and An. pullus (26). A gel showing the products of multiplex PCR assay separated by agarose gel electrophoresis for the eight species is shown in Fig. 3 (1112 bp for An. sinensis; 925 bp for An. koreicus; 650 bp for An. lindesayi; 527 bp for An. kleini; 436 bp for An. lesteri,, 315 bp for An. sineroides; 260 bp for An. belenrae; 157 bp for An. pullus). This method allowed identification of all eight Anopheles spp., including An. koreicus and An. lindesayi, and is comparable to the current molecular diagnosis method applied to identify six Anopheles species belonging to members of the Anopheles Hyrcanus group present in ROK [27]. All samples used in this study were identified using the multiplex assay. The results of species identification for An. koreicus and An. lindesayi, which were not included in the previous method [27] using this molecular assay, were also consistent with morphological identification results.

Accurate species identification for the vector control

In Africa and Southeast Asia where malaria is widespread, multiplex PCR assays have been developed and used to identify species accurately and to investigate malaria vector distributions and infection rates [3240]. In addition, the ITS2-based multiplex PCR assay was used to detect two unknown species (after named as An. belenrae and An. kleini by Rueda [13]) in ROK [26]. Accurate species identification, using both morphological and molecular methods is important to confirm species identification and monitoring vector populations [41]. Several studies have described accurate species identification as a part of vector surveillance programmes. In India, Anopheles minimus, a primary malaria vector, was morphologically misidentified as Anopheles fluviatilis, while each species was identified correctly using PCR of the ITS2 regions [42]. In South Africa, Anopheles vaneedeni also was reported as a new malaria vector during a malaria surveillance programme using the ITS2 region for specific identification [43]. Molecular diagnostic methods have been used to monitor invasive species, e.g., Aedes albopictus and Aedes aegypti, to verify morphological identification of specimens, as well as screening for potential new invasive species in Europe [44]. These studies support the importance of accurate species identification for monitoring vector populations and distributions, as well as supporting pathogen surveillance programmes.

Application of new diagnostic method

The eight Anopheles species present in ROK included in three groups (Hyrcanus Barbirostris, Lindesayi) can be identified based on a new multiplex molecular-based method. Morphological identification of these species is challenging, particularly in cases when legs or wing scales used as the primary identification characters are missing or damaged during collections. The method described here enables simple and accurate identification requiring only PCR of individual specimens followed by electrophoresis. It would also be useful to acquire geographic, habitat and population distributions of An. koreicus and An. lindesayi that are less frequently collected than the other species. Since the re-emergence of vivax malaria in ROK in 1993, most malaria cases have been attributed to exposure near the DMZ. Although the reason for the concentrated outbreak of malaria in/near the DMZ is uncertain, one of the primary vectors, An. kleini, is more prevalent near the DMZ than south of Seoul [45]. Additionally, there are reports of higher numbers of malaria cases in the Democratic People’s Republic of Korea (DPRK, North Korea) that provide a source of malaria-infected blood meals for mosquitoes that subsequently migrate south across the DMZ [4649]. Identification of species distributions and malaria infection rates would assist in understanding the malaria distribution pattern in ROK, in addition to developing vector and malaria mitigation strategies. Recently, two species (An. lesteri and An. kleini) showed higher infection rates in artificial experiments than An. sinensis that was previously considered to be the primary vivax malaria vector in ROK [18, 19]. In China, An. sinensis and An. lesteri were considered the primary malaria vectors [50]. However, An. lesteri demonstrated more anthropophilic behaviour and 20 times higher sporozoite rates (0.58%) than An. sinensis (0.02%) [51, 52]. In addition, the annual distribution of P. vivax cases varies with environment factors that impact on mosquito population densities, which may be further impacted by climate change [53, 54]. Thus, continuous monitoring of malaria vectors is needed. The new multiplex ITS2-28S rDNA-based method eliminates the requirement for multiple PCR analyses and is useful for monitoring Anopheles spp. distributions and population densities in ROK.

Conclusion

In this study, a new molecular diagnostic method was developed for the identification of eight Anopheles spp. present in ROK. This multiplex PCR assay is a simple and accurate method to identify Anopheles spp. and can be used as a surveillance tool for monitoring malaria vector population distributions in ROK.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A2066186). Partial funding was provided by the Armed Forces Health Surveillance Division, Global Emerging Infections Surveillance (AFHSD-GEIS), Silver Spring, MD (ProMIS ID #P0131-20-ME-03). The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Army or Defense. This work was prepared as part of their official duties. Title 17, U.S.C., §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C., §101 defines a U.S. Government work as a work prepared by a military Service member or employee of the U.S. Government as part of that person’s official duties.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019. WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.
3.
Zurück zum Zitat Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA. 2014;111:3286–91.PubMedPubMedCentralCrossRef Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA. 2014;111:3286–91.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Caminade C, Mclnture KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann NY Acad Sci. 2019;1436:157–73.PubMedCrossRef Caminade C, Mclnture KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann NY Acad Sci. 2019;1436:157–73.PubMedCrossRef
6.
Zurück zum Zitat Im JH, Kim T-S, Chung M-H, Baek JH, Kwon HY, Lee J-S. Current status and a perspective of mosquito-borne diseases in the Republic of Korea. Vector-Borne Zoonotic Dis. 2020;21:69–77.PubMedCrossRef Im JH, Kim T-S, Chung M-H, Baek JH, Kwon HY, Lee J-S. Current status and a perspective of mosquito-borne diseases in the Republic of Korea. Vector-Borne Zoonotic Dis. 2020;21:69–77.PubMedCrossRef
7.
Zurück zum Zitat WHO. Synopsis of the world malaria situation, 1979. Weekly Epidemiological Record. 1981;56: 145–9. WHO. Synopsis of the world malaria situation, 1979. Weekly Epidemiological Record. 1981;56: 145–9.
8.
Zurück zum Zitat Chai IH, Lim GI, Yoon SN, Oh WI, Kim SJ, Chai JY. Occurrence of tertian malaria in a male patient who has never been abroad. Korean J Parasitol. 1994;32:195–200.PubMedCrossRef Chai IH, Lim GI, Yoon SN, Oh WI, Kim SJ, Chai JY. Occurrence of tertian malaria in a male patient who has never been abroad. Korean J Parasitol. 1994;32:195–200.PubMedCrossRef
9.
Zurück zum Zitat Park JW, Klein TA, Lee HC, Pacha LA, Ryu SH, Yeom JS, et al. Vivax malaria: a continuing health threat to the Republic of Korea. Am J Trop Med Hyg. 2003;69:159–67.PubMedCrossRef Park JW, Klein TA, Lee HC, Pacha LA, Ryu SH, Yeom JS, et al. Vivax malaria: a continuing health threat to the Republic of Korea. Am J Trop Med Hyg. 2003;69:159–67.PubMedCrossRef
10.
Zurück zum Zitat Kim HC, Pacha LA, Lee WJ, Lee JK, Gaydos JC, Sames WJ, et al. Malaria in the Republic of Korea, 1993–2007. Variables related to re-emergence and persistence of Plasmodium vivax among Korean populations and U.S. forces in Korea. Mil Med. 2009;174:762–9.PubMedCrossRef Kim HC, Pacha LA, Lee WJ, Lee JK, Gaydos JC, Sames WJ, et al. Malaria in the Republic of Korea, 1993–2007. Variables related to re-emergence and persistence of Plasmodium vivax among Korean populations and U.S. forces in Korea. Mil Med. 2009;174:762–9.PubMedCrossRef
12.
Zurück zum Zitat Tanaka K, Mizusawa K, Saugstad ES, et al. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst. 1979;16:43–85. Tanaka K, Mizusawa K, Saugstad ES, et al. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst. 1979;16:43–85.
13.
Zurück zum Zitat Rueda LM. Two new species of Anopheles (Anopheles) hyrcanus group (Diptera: Culicidae) from the Republic of South Korea. Zootaxa. 2005;26:1–26.CrossRef Rueda LM. Two new species of Anopheles (Anopheles) hyrcanus group (Diptera: Culicidae) from the Republic of South Korea. Zootaxa. 2005;26:1–26.CrossRef
14.
Zurück zum Zitat Foley DH, Klein TA, Chul KIMH, Sames WJ, Wilkerson RC, Rueda LM. Geographic distribution and ecology of potential malaria vectors in the Republic of Korea. J Med Entomol. 2009;46:680–92.PubMedCrossRef Foley DH, Klein TA, Chul KIMH, Sames WJ, Wilkerson RC, Rueda LM. Geographic distribution and ecology of potential malaria vectors in the Republic of Korea. J Med Entomol. 2009;46:680–92.PubMedCrossRef
15.
Zurück zum Zitat Il RH. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J Parasitol. 2005;43:75–92.CrossRef Il RH. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J Parasitol. 2005;43:75–92.CrossRef
16.
Zurück zum Zitat Lee WJ, Klein TA, Kim HC, Choi YM, Yoon SH, Chang KS, et al. Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the republic of Korea. J Med Entomol. 2007;44:1086–90.PubMed Lee WJ, Klein TA, Kim HC, Choi YM, Yoon SH, Chang KS, et al. Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the republic of Korea. J Med Entomol. 2007;44:1086–90.PubMed
17.
Zurück zum Zitat Joshi D, Choochote W, Park MH, Kim JY, Kim TS, Suwonkerd W, et al. The susceptibility of Anopheles lesteri to infection with Korean strain of Plasmodium vivax. Malar J. 2009;8:42.PubMedPubMedCentralCrossRef Joshi D, Choochote W, Park MH, Kim JY, Kim TS, Suwonkerd W, et al. The susceptibility of Anopheles lesteri to infection with Korean strain of Plasmodium vivax. Malar J. 2009;8:42.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Joshi D, Kim JY, Choochote W, Park MH, Min GS. Preliminary vivax malaria vector competence for three members of the Anopheles hyrcanus group in the Republic of Korea. J Am Mosq Control Assoc. 2011;27:312–4.PubMedCrossRef Joshi D, Kim JY, Choochote W, Park MH, Min GS. Preliminary vivax malaria vector competence for three members of the Anopheles hyrcanus group in the Republic of Korea. J Am Mosq Control Assoc. 2011;27:312–4.PubMedCrossRef
19.
Zurück zum Zitat Ubalee R, Kim HC, Schuster AL, McCardle PW, Phasomkusolsil S, Takhampunya R, Davidson SA, Lee WJ, Klein TA. Vector competence of Anopheles kleini and Anopheles sinensis (Diptera: Culicidae) from the Republic of Korea to vivax malaria-infected blood from patients from Thailand. J Med Entomol. 2016;53:1425–32.PubMedCrossRef Ubalee R, Kim HC, Schuster AL, McCardle PW, Phasomkusolsil S, Takhampunya R, Davidson SA, Lee WJ, Klein TA. Vector competence of Anopheles kleini and Anopheles sinensis (Diptera: Culicidae) from the Republic of Korea to vivax malaria-infected blood from patients from Thailand. J Med Entomol. 2016;53:1425–32.PubMedCrossRef
20.
Zurück zum Zitat Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.PubMedPubMedCentralCrossRef Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT, Wirtz RA. Malaria vectors in a traditional dry zone village in Sri Lanka. Am J Trop Med Hyg. 1999;60:421–9.PubMedCrossRef Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT, Wirtz RA. Malaria vectors in a traditional dry zone village in Sri Lanka. Am J Trop Med Hyg. 1999;60:421–9.PubMedCrossRef
23.
Zurück zum Zitat Ree HI. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Entomol Res. 2003;33:39–52.CrossRef Ree HI. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Entomol Res. 2003;33:39–52.CrossRef
24.
Zurück zum Zitat Kanda T, Oguma Y. Morphological variations of Anopheles sinensis Wiedemann, 1828 and A. lesteri Baisas and Hu, 1936 and frequency of clasper movements of the males of several Anopheles species during induced copulation. Jap J Sanit Zool. 1976;27:325–31.CrossRef Kanda T, Oguma Y. Morphological variations of Anopheles sinensis Wiedemann, 1828 and A. lesteri Baisas and Hu, 1936 and frequency of clasper movements of the males of several Anopheles species during induced copulation. Jap J Sanit Zool. 1976;27:325–31.CrossRef
25.
Zurück zum Zitat Ree HI, Yong TS, Hwang UW. Identification of four species of the Anopheles hyrcanus complex (Diptera: Culicidae) found in Korea using species–specific primers for polymerase chain reaction assay. Med Entomol Zool. 2005;56:201–5.CrossRef Ree HI, Yong TS, Hwang UW. Identification of four species of the Anopheles hyrcanus complex (Diptera: Culicidae) found in Korea using species–specific primers for polymerase chain reaction assay. Med Entomol Zool. 2005;56:201–5.CrossRef
26.
Zurück zum Zitat Li C, Lee JS, Groebner JL, Kim HC, Klein TA, O’guinn ML, et al. A newly recognized species in the Anopheles hyrcanus group and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa. 2005;939:1–8.CrossRef Li C, Lee JS, Groebner JL, Kim HC, Klein TA, O’guinn ML, et al. A newly recognized species in the Anopheles hyrcanus group and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa. 2005;939:1–8.CrossRef
27.
Zurück zum Zitat Joshi D, Park MH, Saeung A, Choochote W, Min GS. Multiplex assay to identify Korean vectors of malaria. Mol Ecol Resour. 2010;10:748–50.PubMedCrossRef Joshi D, Park MH, Saeung A, Choochote W, Min GS. Multiplex assay to identify Korean vectors of malaria. Mol Ecol Resour. 2010;10:748–50.PubMedCrossRef
28.
Zurück zum Zitat Lee KW. A revision of the illustrated taxonomic keys to genera and species of female mosquitoes of Korea (Diptera: Culicidae). Yongsan: U S Army. 2001; p. 40. Lee KW. A revision of the illustrated taxonomic keys to genera and species of female mosquitoes of Korea (Diptera: Culicidae). Yongsan: U S Army. 2001; p. 40.
29.
Zurück zum Zitat Musapa M, Kumwenda T, Mkulama M, Chishimba S, Norris DE, Thuma PE, et al. A simple Chelex protocol for DNA extraction from Anopheles spp. J Vis Exp. 2013;71:3281. Musapa M, Kumwenda T, Mkulama M, Chishimba S, Norris DE, Thuma PE, et al. A simple Chelex protocol for DNA extraction from Anopheles spp. J Vis Exp. 2013;71:3281.
30.
Zurück zum Zitat Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.PubMed Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.PubMed
31.
Zurück zum Zitat Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
32.
Zurück zum Zitat Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef
33.
Zurück zum Zitat Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.PubMedCrossRef Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. Am J Trop Med Hyg. 1995;53:478–81.PubMedCrossRef
34.
Zurück zum Zitat Fanello C, Santolamazza F, della Torre A. . Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.PubMedCrossRef Fanello C, Santolamazza F, della Torre A. . Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.PubMedCrossRef
35.
Zurück zum Zitat Mohanty A, Kar P, Mishra K, Singh DV, Mohapatra N, Kar SK, et al. Multiplex PCR assay for the detection of Anopheles fluviatilis species complex, human host preference, and Plasmodium falciparum sporozoite presence, using a unique mosquito processing method. Am J Trop Med Hyg. 2007;76:837–43.PubMedCrossRef Mohanty A, Kar P, Mishra K, Singh DV, Mohapatra N, Kar SK, et al. Multiplex PCR assay for the detection of Anopheles fluviatilis species complex, human host preference, and Plasmodium falciparum sporozoite presence, using a unique mosquito processing method. Am J Trop Med Hyg. 2007;76:837–43.PubMedCrossRef
36.
Zurück zum Zitat Brosseau L, Udom C, Sukkanon C, Chareonviriyaphap T, Bangs MJ, Saeung A, et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit Vectors. 2019;12:223.PubMedPubMedCentralCrossRef Brosseau L, Udom C, Sukkanon C, Chareonviriyaphap T, Bangs MJ, Saeung A, et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit Vectors. 2019;12:223.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;6:804–11.CrossRef Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;6:804–11.CrossRef
38.
Zurück zum Zitat Phuc HK, Ball AJ, Son L, Hanh NV, Tu ND, Lien NG, et al. Multiplex PCR assay for malaria vector Anopheles minimus and four related species in the Myzomyia series from Southeast Asia. Med Vet Entomol. 2003;17:423–8.PubMedCrossRef Phuc HK, Ball AJ, Son L, Hanh NV, Tu ND, Lien NG, et al. Multiplex PCR assay for malaria vector Anopheles minimus and four related species in the Myzomyia series from Southeast Asia. Med Vet Entomol. 2003;17:423–8.PubMedCrossRef
39.
Zurück zum Zitat Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol. 1999;13:24–32.PubMedCrossRef Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol. 1999;13:24–32.PubMedCrossRef
40.
Zurück zum Zitat Garros C, Koekemoer LL, Coetzee M, Coosemans M, Manguin S. A single multiplex assay to identify major malaria vectors within the african Anopheles funestus and the oriental An. minimus groups. Am J Trop Med Hyg. 2004;70:583–90.PubMedCrossRef Garros C, Koekemoer LL, Coetzee M, Coosemans M, Manguin S. A single multiplex assay to identify major malaria vectors within the african Anopheles funestus and the oriental An. minimus groups. Am J Trop Med Hyg. 2004;70:583–90.PubMedCrossRef
41.
Zurück zum Zitat Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J. 2018;17:43.PubMedPubMedCentralCrossRef Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J. 2018;17:43.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Singh OP, Nanda N, Dev V, Bali P, Sohail M, Mehrunnisa A, et al. Molecular evidence of misidentification of Anopheles minimus as Anopheles fluviatilis in Assam (India). Acta Trop. 2010;113:241–4.PubMedCrossRef Singh OP, Nanda N, Dev V, Bali P, Sohail M, Mehrunnisa A, et al. Molecular evidence of misidentification of Anopheles minimus as Anopheles fluviatilis in Assam (India). Acta Trop. 2010;113:241–4.PubMedCrossRef
43.
Zurück zum Zitat Burke A, Dandalo L, Munhenga G, Dahan-Moss Y, Mbokazi F, Ngxongo S, et al. A new malaria vector mosquito in South Africa. Sci Rep. 2017;7:1–5.CrossRef Burke A, Dandalo L, Munhenga G, Dahan-Moss Y, Mbokazi F, Ngxongo S, et al. A new malaria vector mosquito in South Africa. Sci Rep. 2017;7:1–5.CrossRef
44.
Zurück zum Zitat Ibáñez-Justicia A, Smitz N, Den Hartog W, van de Vossenberg B, De Wolf K, Deblauwe I, et al. Detection of exotic mosquito species (Diptera: Culicidae) at international airports in Europe. Int J Environ Res Public Health. 2020;17:3450.PubMedCentralCrossRef Ibáñez-Justicia A, Smitz N, Den Hartog W, van de Vossenberg B, De Wolf K, Deblauwe I, et al. Detection of exotic mosquito species (Diptera: Culicidae) at international airports in Europe. Int J Environ Res Public Health. 2020;17:3450.PubMedCentralCrossRef
45.
Zurück zum Zitat Kim HC, Klein TA, Lee WJ, Collier BW, Chong ST, Sames WJ, et al. Mosquito species distribution and larval breeding habitats with taxonomic identification of Anopheline mosquitoes in Korea. Entomol Res. 2007;37:29–35.CrossRef Kim HC, Klein TA, Lee WJ, Collier BW, Chong ST, Sames WJ, et al. Mosquito species distribution and larval breeding habitats with taxonomic identification of Anopheline mosquitoes in Korea. Entomol Res. 2007;37:29–35.CrossRef
47.
Zurück zum Zitat Yoo DH, Shin EH, Park MY, Kim HC, Lee DK, Lee HH, et al. Short Report: Mosquito species composition and Plasmodium vivax infection rates for Korean army bases near the demilitarized zone in the Republic of Korea, 2011. Am J Trop Med Hyg. 2013;88:24–8.PubMedPubMedCentralCrossRef Yoo DH, Shin EH, Park MY, Kim HC, Lee DK, Lee HH, et al. Short Report: Mosquito species composition and Plasmodium vivax infection rates for Korean army bases near the demilitarized zone in the Republic of Korea, 2011. Am J Trop Med Hyg. 2013;88:24–8.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Chang KS, Yoo DH, Ju YR, Lee WG, Roh JY, Kim HC, et al. Distribution of malaria vectors and incidence of vivax malaria at Korean army installations near the demilitarized zone. Republic of Korea Malar J. 2016;15:259.PubMedCrossRef Chang KS, Yoo DH, Ju YR, Lee WG, Roh JY, Kim HC, et al. Distribution of malaria vectors and incidence of vivax malaria at Korean army installations near the demilitarized zone. Republic of Korea Malar J. 2016;15:259.PubMedCrossRef
50.
Zurück zum Zitat Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, et al. Anopheles vectors in mainland China while approaching malaria elimination. Trends Parasitol. 2017;33:889–900.PubMedCrossRef Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, et al. Anopheles vectors in mainland China while approaching malaria elimination. Trends Parasitol. 2017;33:889–900.PubMedCrossRef
51.
Zurück zum Zitat Zhu G, Xia H, Zhou H, Li J, Lu F, Liu Y, et al. Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China. Parasit Vectors. 2013;6:176.PubMedPubMedCentralCrossRef Zhu G, Xia H, Zhou H, Li J, Lu F, Liu Y, et al. Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China. Parasit Vectors. 2013;6:176.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Liu C. [Comparative studies on the role of Anopheles anthropophagus and Anopheles sinensis in malaria transmission in China](in Chinese). Zhoughua Liu Xing Bing Xue Za Zhi. 1990;11:360–3. Liu C. [Comparative studies on the role of Anopheles anthropophagus and Anopheles sinensis in malaria transmission in China](in Chinese). Zhoughua Liu Xing Bing Xue Za Zhi. 1990;11:360–3.
53.
Zurück zum Zitat Park JW. Changing transmission pattern of Plasmodium vivax malaria in the Republic of Korea: relationship with climate change. Environ Health Toxicol. 2011;26:e2011001.PubMedPubMedCentralCrossRef Park JW. Changing transmission pattern of Plasmodium vivax malaria in the Republic of Korea: relationship with climate change. Environ Health Toxicol. 2011;26:e2011001.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Mihailović DT, Petrić D, Petrović T, Hrnjaković-Cvjetković I, Djurdjevic V, Nikolić-Đorić E, et al. Assessment of climate change impact on the malaria vector Anopheles hyrcanus, West Nile disease, and incidence of melanoma in the Vojvodina Province (Serbia) using data from a regional climate model. PLoS ONE. 2020;15:e0227679.PubMedPubMedCentralCrossRef Mihailović DT, Petrić D, Petrović T, Hrnjaković-Cvjetković I, Djurdjevic V, Nikolić-Đorić E, et al. Assessment of climate change impact on the malaria vector Anopheles hyrcanus, West Nile disease, and incidence of melanoma in the Vojvodina Province (Serbia) using data from a regional climate model. PLoS ONE. 2020;15:e0227679.PubMedPubMedCentralCrossRef
Metadaten
Titel
Multiplex PCR assay for the identification of eight Anopheles species belonging to the Hyrcanus, Barbirostris and Lindesayi groups
verfasst von
Woo Jun Bang
Heung Chul Kim
Jihun Ryu
Hyeon Seung Lee
So Youn Lee
Myung Soon Kim
Sung Tae Chong
Terry A. Klein
Kwang Shik Choi
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2021
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03808-w

Weitere Artikel der Ausgabe 1/2021

Malaria Journal 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.