Skip to main content
Erschienen in: Angiogenesis 3/2014

01.07.2014 | Original Paper

Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model

verfasst von: Jana Cebulla, Eugene Kim, Kevin Rhie, Jiangyang Zhang, Arvind P. Pathak

Erschienen in: Angiogenesis | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications.
Literatur
6.
Zurück zum Zitat Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868. doi:10.1038/89997 PubMedCrossRef Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868. doi:10.​1038/​89997 PubMedCrossRef
8.
Zurück zum Zitat Hak S, Reitan NK, Haraldseth O, de Lange Davies C (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13(2):113–130. doi:10.1007/s10456-010-9176-y PubMedCrossRef Hak S, Reitan NK, Haraldseth O, de Lange Davies C (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13(2):113–130. doi:10.​1007/​s10456-010-9176-y PubMedCrossRef
9.
Zurück zum Zitat Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8(4):1008–1013PubMed Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8(4):1008–1013PubMed
10.
Zurück zum Zitat Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H, Semmler W (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10(10):1133–1138. doi:10.1038/nm1101 PubMedCrossRef Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H, Semmler W (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10(10):1133–1138. doi:10.​1038/​nm1101 PubMedCrossRef
11.
Zurück zum Zitat Furman-Haran E, Margalit R, Grobgeld D, Degani H (1996) Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proc Natl Acad Sci USA 93(13):6247–6251PubMedCentralPubMedCrossRef Furman-Haran E, Margalit R, Grobgeld D, Degani H (1996) Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proc Natl Acad Sci USA 93(13):6247–6251PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Ng CS, Waterton JC, Kundra V, Brammer D, Ravoori M, Han L, Wei W, Klumpp S, Johnson VE, Jackson EF (2012) Reproducibility and comparison of DCE-MRI and DCE-CT perfusion parameters in a rat tumor model. Technol Cancer Res Treat 11(3):279–288. doi:10.7785/tcrt.2012.500296 PubMedCrossRef Ng CS, Waterton JC, Kundra V, Brammer D, Ravoori M, Han L, Wei W, Klumpp S, Johnson VE, Jackson EF (2012) Reproducibility and comparison of DCE-MRI and DCE-CT perfusion parameters in a rat tumor model. Technol Cancer Res Treat 11(3):279–288. doi:10.​7785/​tcrt.​2012.​500296 PubMedCrossRef
15.
Zurück zum Zitat Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Heriche JK (2010) Visualization of image data from cells to organisms. Nat Methods 7(3 Suppl):S26–S41. doi:10.1038/nmeth.1431 PubMedCentralPubMedCrossRef Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Heriche JK (2010) Visualization of image data from cells to organisms. Nat Methods 7(3 Suppl):S26–S41. doi:10.​1038/​nmeth.​1431 PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168. doi:10.1016/S1361-8415(98)80009-1 PubMedCrossRef Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168. doi:10.​1016/​S1361-8415(98)80009-1 PubMedCrossRef
19.
Zurück zum Zitat Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34(4):555–566PubMedCrossRef Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34(4):555–566PubMedCrossRef
21.
Zurück zum Zitat Kim E, Cebulla J, Ward BD, Rhie K, Zhang J, Pathak AP (2012) Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant? Magn Reson Med. doi:10.1002/mrm.24530 Kim E, Cebulla J, Ward BD, Rhie K, Zhang J, Pathak AP (2012) Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant? Magn Reson Med. doi:10.​1002/​mrm.​24530
23.
24.
Zurück zum Zitat Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, Rau WS, Seeger W, Grimminger F, Banat GA (2009) Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 11(1):48–56. doi:10.1593/neo.81036 PubMedCentralPubMed Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, Rau WS, Seeger W, Grimminger F, Banat GA (2009) Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 11(1):48–56. doi:10.​1593/​neo.​81036 PubMedCentralPubMed
25.
Zurück zum Zitat Sampath D, Oeh J, Wyatt SK, Cao TC, Koeppen H, Eastham-Anderson J, Robillard L, Ho CC, Ross J, Zhuang G, Reslan HB, Vitorino P, Barck KH, Ungersma SE, Vernes JM, Caunt M, Van Bruggen N, Ye W, Vijapurkar U, Meng YJ, Ferrara N, Friedman LS, Carano RA (2013) Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response. Neoplasia 15(7):694–711PubMedCentralPubMed Sampath D, Oeh J, Wyatt SK, Cao TC, Koeppen H, Eastham-Anderson J, Robillard L, Ho CC, Ross J, Zhuang G, Reslan HB, Vitorino P, Barck KH, Ungersma SE, Vernes JM, Caunt M, Van Bruggen N, Ye W, Vijapurkar U, Meng YJ, Ferrara N, Friedman LS, Carano RA (2013) Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response. Neoplasia 15(7):694–711PubMedCentralPubMed
26.
Zurück zum Zitat Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:10.1038/nature06348 PubMedCrossRef Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:10.​1038/​nature06348 PubMedCrossRef
27.
Zurück zum Zitat Ungersma SE, Pacheco G, Ho C, Yee SF, Ross J, van Bruggen N, Peale FV Jr, Ross S, Carano RA (2010) Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis. Magn Reson Med 63(6):1637–1647. doi:10.1002/mrm.22442 PubMedCrossRef Ungersma SE, Pacheco G, Ho C, Yee SF, Ross J, van Bruggen N, Peale FV Jr, Ross S, Carano RA (2010) Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis. Magn Reson Med 63(6):1637–1647. doi:10.​1002/​mrm.​22442 PubMedCrossRef
28.
Zurück zum Zitat Vaupel P, Mayer A, Briest S, Hockel M (2005) Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion. Adv Exp Med Biol 566:333–342. doi:10.1007/0-387-26206-7_44 PubMedCrossRef Vaupel P, Mayer A, Briest S, Hockel M (2005) Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion. Adv Exp Med Biol 566:333–342. doi:10.​1007/​0-387-26206-7_​44 PubMedCrossRef
29.
Zurück zum Zitat Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. JMRI 10(3):223–232PubMedCrossRef Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. JMRI 10(3):223–232PubMedCrossRef
30.
32.
Zurück zum Zitat Kim E, Ward BD, Pathak AP (2013) Simulations show tumor vascular morphology affects the accuracy of steady-state susceptibility contrast MRI biomarkers of angiogenesis. In: Proceedings of the 21st annual meeting of ISMRM, Salt Lake City, USA Kim E, Ward BD, Pathak AP (2013) Simulations show tumor vascular morphology affects the accuracy of steady-state susceptibility contrast MRI biomarkers of angiogenesis. In: Proceedings of the 21st annual meeting of ISMRM, Salt Lake City, USA
33.
Zurück zum Zitat Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJ, Wen PY, Ivy P, Batchelor TT, Rosen BR, Jain RK, Sorensen AG (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19(9):1178–1183 Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJ, Wen PY, Ivy P, Batchelor TT, Rosen BR, Jain RK, Sorensen AG (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19(9):1178–1183
35.
Zurück zum Zitat Christen T, Zaharchuk G, Pannetier N, Serduc R, Joudiou N, Vial JC, Remy C, Barbier EL (2012) Quantitative MR estimates of blood oxygenation based on T2*: a numerical study of the impact of model assumptions. Magn Reson Med 67(5):1458–1468. doi:10.1002/mrm.23094 PubMedCrossRef Christen T, Zaharchuk G, Pannetier N, Serduc R, Joudiou N, Vial JC, Remy C, Barbier EL (2012) Quantitative MR estimates of blood oxygenation based on T2*: a numerical study of the impact of model assumptions. Magn Reson Med 67(5):1458–1468. doi:10.​1002/​mrm.​23094 PubMedCrossRef
36.
Zurück zum Zitat Bonekamp D, Kim E, Ward BD, Zhang J, Pathak AP (2010) Microscopic Susceptibility Variation and Transverse Relaxation for the De Facto Brain Tumor Microvasculature. In: Proceedings of the 18th annual meeeting of ISMRM, Stockholm, Sweden Bonekamp D, Kim E, Ward BD, Zhang J, Pathak AP (2010) Microscopic Susceptibility Variation and Transverse Relaxation for the De Facto Brain Tumor Microvasculature. In: Proceedings of the 18th annual meeeting of ISMRM, Stockholm, Sweden
Metadaten
Titel
Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model
verfasst von
Jana Cebulla
Eugene Kim
Kevin Rhie
Jiangyang Zhang
Arvind P. Pathak
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 3/2014
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-014-9429-2

Weitere Artikel der Ausgabe 3/2014

Angiogenesis 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.