Skip to main content
Erschienen in: Angiogenesis 2/2010

01.06.2010 | Original Paper

Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles

verfasst von: Sjoerd Hak, Nina K. Reitan, Olav Haraldseth, Catharina de Lange Davies

Erschienen in: Angiogenesis | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Solid tumor growth is heavily dependant on angiogenesis. Tumor angiogenesis is the result of a complex interplay between tumor cells, endothelial cells, and other stromal cells. It has been found to be under strict control of a plethora of molecular factors that function as angiogenic up- and down-regulators; nevertheless, the identification of molecular and cellular players and their roles in angiogenesis is still ongoing. The microvasculature resulting from tumor angiogenesis lacks hierarchy and has a high permeability for macromolecules and nanoparticles, which offers significant potential for nanoparticulate tumor imaging and drug delivery platforms. However, improvements in the delivery to poorly vascularized regions and the distribution throughout the tumor interstitium are critical for nanoparticles to become more effective in the battle against cancer. A tool that has proven extremely valuable in both unraveling angiogenic pathways and characterizing in vivo nanoparticle behavior in solid tumors is intravital microscopy of tumors grown in window chamber preparations. In this review this technique is explained, several exciting examples illustrating its value in elucidating tumor angiogenesis are presented and the study of nanoparticle behavior in solid tumors using this approach is described. We conclude with a discussion of the potential value of intravital microscopy in window chambers in multimodality studies of tumor pathophysiology and nanoparticle dynamics.
Literatur
1.
Zurück zum Zitat Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMed Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMed
2.
Zurück zum Zitat Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416PubMedCrossRef Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416PubMedCrossRef
3.
Zurück zum Zitat Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed
4.
Zurück zum Zitat Weinberg RA (2007) The biology of Cancer. Garland Science, Taylor & Francis Group, LLC, London, UK Weinberg RA (2007) The biology of Cancer. Garland Science, Taylor & Francis Group, LLC, London, UK
5.
Zurück zum Zitat Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84PubMedCrossRef Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84PubMedCrossRef
6.
Zurück zum Zitat Gaur P, Bose D et al (2009) Targeting tumor angiogenesis. Semin Oncol 36(2 Suppl 1):S12–S19 Gaur P, Bose D et al (2009) Targeting tumor angiogenesis. Semin Oncol 36(2 Suppl 1):S12–S19
7.
Zurück zum Zitat Jain RK, Duda DG et al (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40PubMedCrossRef Jain RK, Duda DG et al (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40PubMedCrossRef
8.
Zurück zum Zitat Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591PubMedCrossRef Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591PubMedCrossRef
9.
Zurück zum Zitat Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502PubMedCrossRef Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502PubMedCrossRef
10.
Zurück zum Zitat Less JR, Skalak TC et al (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51(1):265–273PubMed Less JR, Skalak TC et al (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51(1):265–273PubMed
11.
Zurück zum Zitat Gillies RJ, Schornack PA et al (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1(3):197–207PubMedCrossRef Gillies RJ, Schornack PA et al (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1(3):197–207PubMedCrossRef
12.
Zurück zum Zitat Boucher Y, Baxter LT et al (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50(15):4478–4484PubMed Boucher Y, Baxter LT et al (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50(15):4478–4484PubMed
13.
Zurück zum Zitat Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116(7–8):695–715PubMedCrossRef Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116(7–8):695–715PubMedCrossRef
14.
Zurück zum Zitat Tozer GM, Lewis S et al (1990) The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. Br J Cancer 61(2):250–257PubMed Tozer GM, Lewis S et al (1990) The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. Br J Cancer 61(2):250–257PubMed
15.
Zurück zum Zitat Chaplin DJ, Olive PL et al (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47(2):597–601PubMed Chaplin DJ, Olive PL et al (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47(2):597–601PubMed
16.
Zurück zum Zitat Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6(4):559–593PubMedCrossRef Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6(4):559–593PubMedCrossRef
17.
Zurück zum Zitat Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37(1):77–104PubMedCrossRef Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37(1):77–104PubMedCrossRef
18.
Zurück zum Zitat Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392 Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392
19.
Zurück zum Zitat Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187PubMed Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187PubMed
20.
Zurück zum Zitat Vakoc BJ, Lanning RM et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223PubMedCrossRef Vakoc BJ, Lanning RM et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223PubMedCrossRef
21.
Zurück zum Zitat Yun S, Tearney G et al (2003) High-speed optical frequency-domain imaging. Opt Express 11(22):2953–2963PubMedCrossRef Yun S, Tearney G et al (2003) High-speed optical frequency-domain imaging. Opt Express 11(22):2953–2963PubMedCrossRef
22.
Zurück zum Zitat Brown E, McKee T et al (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9(6):796–800PubMedCrossRef Brown E, McKee T et al (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9(6):796–800PubMedCrossRef
23.
Zurück zum Zitat Erikson A, Andersen HN et al (2008) Physical and chemical modifications of collagen gels: impact on diffusion. Biopolymers 89(2):135–143PubMedCrossRef Erikson A, Andersen HN et al (2008) Physical and chemical modifications of collagen gels: impact on diffusion. Biopolymers 89(2):135–143PubMedCrossRef
24.
Zurück zum Zitat Erikson A, Tufto I et al (2008) The impact of enzymatic degradation on the uptake of differently sized therapeutic molecules. Anticancer Res 28(6A):3557–3366 Erikson A, Tufto I et al (2008) The impact of enzymatic degradation on the uptake of differently sized therapeutic molecules. Anticancer Res 28(6A):3557–3366
25.
Zurück zum Zitat Tufto I, Hansen R et al (2007) The effect of collagenase and hyaluronidase on transient perfusion in human osteosarcoma xenografts grown orthotopically and in dorsal skinfold chambers. Anticancer Res 27(3B):1475–1481 Tufto I, Hansen R et al (2007) The effect of collagenase and hyaluronidase on transient perfusion in human osteosarcoma xenografts grown orthotopically and in dorsal skinfold chambers. Anticancer Res 27(3B):1475–1481
26.
Zurück zum Zitat Alexandrakis G, Brown EB et al (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10(2):203–207PubMedCrossRef Alexandrakis G, Brown EB et al (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10(2):203–207PubMedCrossRef
27.
Zurück zum Zitat Pluen A, Boucher Y et al (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 98(8):4628–4633PubMedCrossRef Pluen A, Boucher Y et al (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 98(8):4628–4633PubMedCrossRef
28.
Zurück zum Zitat Schnell EA, Eikenes L et al (2008) Diffusion measured by fluorescence recovery after photobleaching based on multiphoton excitation laser scanning microscopy. J Biomed Opt 13(6):064037 Schnell EA, Eikenes L et al (2008) Diffusion measured by fluorescence recovery after photobleaching based on multiphoton excitation laser scanning microscopy. J Biomed Opt 13(6):064037
29.
Zurück zum Zitat Provenzano PP, Eliceiri KW et al (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370PubMedCrossRef Provenzano PP, Eliceiri KW et al (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370PubMedCrossRef
30.
Zurück zum Zitat Eggeling C, Ringemann C et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162PubMedCrossRef Eggeling C, Ringemann C et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162PubMedCrossRef
32.
Zurück zum Zitat Jain RK, Munn LL et al (2002) Transparent window models and optical microscopy. In: Teicher BA (ed) Tumor models in cancer research. Humana Press, New Jersey Jain RK, Munn LL et al (2002) Transparent window models and optical microscopy. In: Teicher BA (ed) Tumor models in cancer research. Humana Press, New Jersey
33.
Zurück zum Zitat Jain RK, Munn LL et al (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276PubMedCrossRef Jain RK, Munn LL et al (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276PubMedCrossRef
34.
Zurück zum Zitat Koehl GE, Gaumann A et al (2009) Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 26(4):329–344PubMedCrossRef Koehl GE, Gaumann A et al (2009) Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 26(4):329–344PubMedCrossRef
35.
Zurück zum Zitat Sandison JC (1924) A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Amt Rec 28:281 Sandison JC (1924) A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Amt Rec 28:281
36.
Zurück zum Zitat Sandison JD (1928) The transparent chamber of the rabbit’s ear giving a complete description of improved techniques of construction and introduction and general account of growth and behavior of living cells and tissues seen with the microscope. Am J Anat 41:447–472 Sandison JD (1928) The transparent chamber of the rabbit’s ear giving a complete description of improved techniques of construction and introduction and general account of growth and behavior of living cells and tissues seen with the microscope. Am J Anat 41:447–472
37.
Zurück zum Zitat Goodall CM, Sanders AG et al (1965) Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J Nat Cancer Inst 35(3):497–521 Goodall CM, Sanders AG et al (1965) Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J Nat Cancer Inst 35(3):497–521
38.
Zurück zum Zitat Arfors KE, Jonsson JA et al (1970) A titanium rabbit ear chamber: assembly, insertion and results. Microvasc Res 2(4):516–518PubMedCrossRef Arfors KE, Jonsson JA et al (1970) A titanium rabbit ear chamber: assembly, insertion and results. Microvasc Res 2(4):516–518PubMedCrossRef
39.
Zurück zum Zitat Gaustad JV, Brurberg KG et al (2008) Tumor vascularity assessed by magnetic resonance imaging and intravital microscopy imaging. Neoplasia 10(4):354–362PubMed Gaustad JV, Brurberg KG et al (2008) Tumor vascularity assessed by magnetic resonance imaging and intravital microscopy imaging. Neoplasia 10(4):354–362PubMed
40.
Zurück zum Zitat Gmitro FA, Lin Y et al (2009) A system for multi-modality optical and MR imaging of implanted window chambers. Optical Society of America Gmitro FA, Lin Y et al (2009) A system for multi-modality optical and MR imaging of implanted window chambers. Optical Society of America
41.
Zurück zum Zitat Lin Y, Salek MFS et al (2008) Optical imaging system for window chambers in MRI system. Proc SPIE 6849:684907 Lin Y, Salek MFS et al (2008) Optical imaging system for window chambers in MRI system. Proc SPIE 6849:684907
42.
Zurück zum Zitat Nims JC, Irwin JW (1973) Chamber techniques to study the microvasculature. Microvasc Res 5(1):105–118PubMedCrossRef Nims JC, Irwin JW (1973) Chamber techniques to study the microvasculature. Microvasc Res 5(1):105–118PubMedCrossRef
43.
Zurück zum Zitat Papenfuss HD, Gross JF et al (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18(3):311–318PubMedCrossRef Papenfuss HD, Gross JF et al (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18(3):311–318PubMedCrossRef
44.
Zurück zum Zitat Kedrin D, Gligorijevic B et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5(12):1019–1021PubMedCrossRef Kedrin D, Gligorijevic B et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5(12):1019–1021PubMedCrossRef
45.
Zurück zum Zitat Dedeugd C, Wankhede M et al (2009) Multimodal optical imaging of microvessel network convective oxygen transport dynamics. Appl Opt 48(10):D187–D197PubMedCrossRef Dedeugd C, Wankhede M et al (2009) Multimodal optical imaging of microvessel network convective oxygen transport dynamics. Appl Opt 48(10):D187–D197PubMedCrossRef
46.
Zurück zum Zitat Gazit Y, Berk DA et al (1995) Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett 75(12):2428–2431PubMedCrossRef Gazit Y, Berk DA et al (1995) Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett 75(12):2428–2431PubMedCrossRef
47.
Zurück zum Zitat Lehr HA, Leunig M et al (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143(4):1055–1062PubMed Lehr HA, Leunig M et al (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143(4):1055–1062PubMed
48.
Zurück zum Zitat Leunig M, Yuan F et al (1992) Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 52(23):6553–6560PubMed Leunig M, Yuan F et al (1992) Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 52(23):6553–6560PubMed
49.
Zurück zum Zitat Izumi Y, Xu L et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416(6878):279–280PubMedCrossRef Izumi Y, Xu L et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416(6878):279–280PubMedCrossRef
50.
Zurück zum Zitat Li CY, Shan S et al (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92(2):143–147PubMedCrossRef Li CY, Shan S et al (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92(2):143–147PubMedCrossRef
51.
Zurück zum Zitat Tong RT, Boucher Y et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736PubMedCrossRef Tong RT, Boucher Y et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736PubMedCrossRef
52.
Zurück zum Zitat Winkler F, Kozin SV et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed Winkler F, Kozin SV et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed
53.
Zurück zum Zitat Helmlinger G, Yuan F et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182PubMedCrossRef Helmlinger G, Yuan F et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182PubMedCrossRef
54.
Zurück zum Zitat Torres Filho IP, Leunig M et al (1994) Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA 91(6):2081–2085PubMedCrossRef Torres Filho IP, Leunig M et al (1994) Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA 91(6):2081–2085PubMedCrossRef
55.
Zurück zum Zitat Martin GR, Jain RK (1993) Fluorescence ratio imaging measurement of pH gradients: calibration and application in normal and tumor tissues. Microvasc Res 46(2):216–230PubMedCrossRef Martin GR, Jain RK (1993) Fluorescence ratio imaging measurement of pH gradients: calibration and application in normal and tumor tissues. Microvasc Res 46(2):216–230PubMedCrossRef
56.
Zurück zum Zitat Fukumura D, Xavier R et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725PubMedCrossRef Fukumura D, Xavier R et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725PubMedCrossRef
57.
Zurück zum Zitat Fukumura D, Xu L et al (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61(16):6020–6024PubMed Fukumura D, Xu L et al (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61(16):6020–6024PubMed
58.
Zurück zum Zitat Tsuzuki Y, Fukumura D et al (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha– > hypoxia response element– > VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60(22):6248–6252PubMed Tsuzuki Y, Fukumura D et al (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha– > hypoxia response element– > VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60(22):6248–6252PubMed
59.
Zurück zum Zitat Brown EB, Campbell RB et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868PubMedCrossRef Brown EB, Campbell RB et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868PubMedCrossRef
60.
Zurück zum Zitat Jain RK, Safabakhsh N et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95(18):10820–10825PubMedCrossRef Jain RK, Safabakhsh N et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95(18):10820–10825PubMedCrossRef
61.
Zurück zum Zitat Reitan NK, Thuen M et al (2010) Characterization of tumor microvascular structure and permeability: comparison between MRI and intravital confocal imaging. JBO (accepted) Reitan NK, Thuen M et al (2010) Characterization of tumor microvascular structure and permeability: comparison between MRI and intravital confocal imaging. JBO (accepted)
62.
Zurück zum Zitat Tozer GM, Ameer-Beg SM et al (2005) Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev 57(1):135–152PubMedCrossRef Tozer GM, Ameer-Beg SM et al (2005) Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev 57(1):135–152PubMedCrossRef
63.
Zurück zum Zitat Yuan F, Chen Y et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93(25):14765–14770PubMedCrossRef Yuan F, Chen Y et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93(25):14765–14770PubMedCrossRef
64.
Zurück zum Zitat Dewhirst MW, Shan S et al (2002) Intravital fluorescence facilitates measurement of multiple physiologic functions and gene expression in tumors of live animals. Dis Markers 18(5–6):293–311PubMed Dewhirst MW, Shan S et al (2002) Intravital fluorescence facilitates measurement of multiple physiologic functions and gene expression in tumors of live animals. Dis Markers 18(5–6):293–311PubMed
65.
Zurück zum Zitat Mulder WJ, Strijkers GJ et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164PubMedCrossRef Mulder WJ, Strijkers GJ et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164PubMedCrossRef
66.
Zurück zum Zitat Laurent S, Boutry S et al (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16(35):4712–4727PubMedCrossRef Laurent S, Boutry S et al (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16(35):4712–4727PubMedCrossRef
67.
Zurück zum Zitat West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292 West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292
68.
Zurück zum Zitat Pridgen EM, Langer R et al (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond) 2(5):669–680 Pridgen EM, Langer R et al (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond) 2(5):669–680
69.
Zurück zum Zitat Levy-Nissenbaum E, Radovic-Moreno AF (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26(8):442–449PubMedCrossRef Levy-Nissenbaum E, Radovic-Moreno AF (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26(8):442–449PubMedCrossRef
70.
Zurück zum Zitat Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10PubMedCrossRef Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10PubMedCrossRef
71.
Zurück zum Zitat Koning GA, Krijger GC (2007) Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery. Anticancer Agents Med Chem 7(4):425–440PubMedCrossRef Koning GA, Krijger GC (2007) Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery. Anticancer Agents Med Chem 7(4):425–440PubMedCrossRef
72.
Zurück zum Zitat Weber WA, Czernin J et al (2008) Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 5(1):44–54PubMedCrossRef Weber WA, Czernin J et al (2008) Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 5(1):44–54PubMedCrossRef
73.
Zurück zum Zitat Lanza GM, Trousil RL et al (1998) In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 104(6):3665–3672PubMedCrossRef Lanza GM, Trousil RL et al (1998) In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 104(6):3665–3672PubMedCrossRef
74.
Zurück zum Zitat Marcato PD, Duran N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8(5):2216–2229PubMedCrossRef Marcato PD, Duran N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8(5):2216–2229PubMedCrossRef
75.
Zurück zum Zitat Wagner V, Dullaart A et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217PubMedCrossRef Wagner V, Dullaart A et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217PubMedCrossRef
76.
Zurück zum Zitat Klibanov AL, Maruyama K et al (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237PubMedCrossRef Klibanov AL, Maruyama K et al (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237PubMedCrossRef
77.
Zurück zum Zitat Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068(2):133–141PubMedCrossRef Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068(2):133–141PubMedCrossRef
78.
Zurück zum Zitat Torchilin VP (1994) Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods 4(3):244–258PubMedCrossRef Torchilin VP (1994) Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods 4(3):244–258PubMedCrossRef
79.
Zurück zum Zitat Morawski AM, Lanza GA et al (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16(1):89–92PubMedCrossRef Morawski AM, Lanza GA et al (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16(1):89–92PubMedCrossRef
80.
Zurück zum Zitat Erdogan S (2009) Liposomal nanocarriers for tumor imaging. J Biomed Nanotechnol 5(2):141–150PubMedCrossRef Erdogan S (2009) Liposomal nanocarriers for tumor imaging. J Biomed Nanotechnol 5(2):141–150PubMedCrossRef
81.
Zurück zum Zitat Wu NZ, Da D et al (1993) Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res 53(16):3765–3770PubMed Wu NZ, Da D et al (1993) Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res 53(16):3765–3770PubMed
82.
Zurück zum Zitat Yuan F, Leunig M et al (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356PubMed Yuan F, Leunig M et al (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356PubMed
83.
Zurück zum Zitat Seynhaeve AL, Hoving S et al (2007) Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 67(19):9455–9462PubMedCrossRef Seynhaeve AL, Hoving S et al (2007) Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 67(19):9455–9462PubMedCrossRef
84.
Zurück zum Zitat Larson DR, Zipfel WR et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436PubMedCrossRef Larson DR, Zipfel WR et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436PubMedCrossRef
85.
Zurück zum Zitat Medintz IL, Uyeda HT et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMedCrossRef Medintz IL, Uyeda HT et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMedCrossRef
86.
Zurück zum Zitat Michalet X, Pinaud FF et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544PubMedCrossRef Michalet X, Pinaud FF et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544PubMedCrossRef
87.
Zurück zum Zitat Stroh M, Zimmer JP et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11(6):678–682PubMedCrossRef Stroh M, Zimmer JP et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11(6):678–682PubMedCrossRef
88.
Zurück zum Zitat Tada H, Higuchi H et al (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144PubMedCrossRef Tada H, Higuchi H et al (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144PubMedCrossRef
89.
Zurück zum Zitat Yuan F, Salehi HA et al (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54(17):4564–4568PubMed Yuan F, Salehi HA et al (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54(17):4564–4568PubMed
90.
Zurück zum Zitat Yuan F, Dellian M et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756PubMed Yuan F, Dellian M et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756PubMed
91.
Zurück zum Zitat Less JR, Posner MC et al (1997) Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4(1):25–33PubMedCrossRef Less JR, Posner MC et al (1997) Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4(1):25–33PubMedCrossRef
92.
Zurück zum Zitat Bjornaes I, Rofstad EK (2001) Microvascular permeability to macromolecules in human melanoma xenografts assessed by contrast-enhanced MRI–intertumor and intratumor heterogeneity. Magn Reson Imaging 19(5):723–730PubMedCrossRef Bjornaes I, Rofstad EK (2001) Microvascular permeability to macromolecules in human melanoma xenografts assessed by contrast-enhanced MRI–intertumor and intratumor heterogeneity. Magn Reson Imaging 19(5):723–730PubMedCrossRef
93.
Zurück zum Zitat Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46(1–3):149–168PubMedCrossRef Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46(1–3):149–168PubMedCrossRef
94.
Zurück zum Zitat Eikenes L, Bruland OS et al (2004) Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res 64(14):4768–4773PubMedCrossRef Eikenes L, Bruland OS et al (2004) Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res 64(14):4768–4773PubMedCrossRef
95.
Zurück zum Zitat Eikenes L, Tari M et al (2005) Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Br J Cancer 93(1):81–88PubMedCrossRef Eikenes L, Tari M et al (2005) Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Br J Cancer 93(1):81–88PubMedCrossRef
96.
Zurück zum Zitat Netti PA, Berk DA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503PubMed Netti PA, Berk DA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503PubMed
97.
Zurück zum Zitat Eikenes L, Tufto I et al (2010) Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res 30 Eikenes L, Tufto I et al (2010) Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res 30
98.
Zurück zum Zitat McKee TD, Grandi P et al (2006) Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 66(5):2509–2513PubMedCrossRef McKee TD, Grandi P et al (2006) Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 66(5):2509–2513PubMedCrossRef
99.
Zurück zum Zitat Schiffelers RM, Koning GA et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91(1–2):115–122PubMedCrossRef Schiffelers RM, Koning GA et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91(1–2):115–122PubMedCrossRef
100.
Zurück zum Zitat Hobbs SK, Monsky WL et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612PubMedCrossRef Hobbs SK, Monsky WL et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612PubMedCrossRef
101.
Zurück zum Zitat Dreher MR, Liu W et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344PubMedCrossRef Dreher MR, Liu W et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344PubMedCrossRef
102.
Zurück zum Zitat Dellian M, Yuan F et al (2000) Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer 82(9):1513–1518PubMedCrossRef Dellian M, Yuan F et al (2000) Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer 82(9):1513–1518PubMedCrossRef
103.
Zurück zum Zitat Thurston G, McLean JW et al (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101(7):1401–1413PubMedCrossRef Thurston G, McLean JW et al (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101(7):1401–1413PubMedCrossRef
104.
Zurück zum Zitat Hortobagyi GN, Ueno NT et al (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 19(14):3422–3433PubMed Hortobagyi GN, Ueno NT et al (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 19(14):3422–3433PubMed
105.
Zurück zum Zitat Krasnici S, Werner A et al (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105(4):561–567PubMedCrossRef Krasnici S, Werner A et al (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105(4):561–567PubMedCrossRef
106.
Zurück zum Zitat Eichhorn ME, Strieth S et al (2004) Protamine enhances uptake of cationic liposomes in angiogenic microvessels. Angiogenesis 7(2):133–141PubMedCrossRef Eichhorn ME, Strieth S et al (2004) Protamine enhances uptake of cationic liposomes in angiogenic microvessels. Angiogenesis 7(2):133–141PubMedCrossRef
107.
Zurück zum Zitat Campbell RB, Fukumura D et al (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62(23):6831–6836PubMed Campbell RB, Fukumura D et al (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62(23):6831–6836PubMed
108.
Zurück zum Zitat Schmitt-Sody M, Strieth S et al (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9(6):2335–2341PubMed Schmitt-Sody M, Strieth S et al (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9(6):2335–2341PubMed
109.
Zurück zum Zitat Strieth S, Eichhorn ME et al (2004) Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 110(1):117–124PubMedCrossRef Strieth S, Eichhorn ME et al (2004) Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 110(1):117–124PubMedCrossRef
110.
Zurück zum Zitat Strieth S, Eichhorn ME et al (2008) Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with Cisplatin. Clin Cancer Res 14(14):4603–4611PubMedCrossRef Strieth S, Eichhorn ME et al (2008) Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with Cisplatin. Clin Cancer Res 14(14):4603–4611PubMedCrossRef
111.
Zurück zum Zitat Ho EA, Ramsay E et al (2010) Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties. J Pharm Sci 99(6):2839–2853PubMed Ho EA, Ramsay E et al (2010) Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties. J Pharm Sci 99(6):2839–2853PubMed
112.
Zurück zum Zitat Weinstein JN, Magin RL et al (1980) Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res 40(5):1388–1395PubMed Weinstein JN, Magin RL et al (1980) Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res 40(5):1388–1395PubMed
113.
Zurück zum Zitat Yatvin MB, Muhlensiepen H et al (1981) Selective delivery of liposome-associated cis-dichlorodiammineplatinum(II) by heat and its influence on tumor drug uptake and growth. Cancer Res 41(5):1602–1607PubMed Yatvin MB, Muhlensiepen H et al (1981) Selective delivery of liposome-associated cis-dichlorodiammineplatinum(II) by heat and its influence on tumor drug uptake and growth. Cancer Res 41(5):1602–1607PubMed
114.
Zurück zum Zitat Hauck ML, LaRue SM et al (2006) Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 12(13):4004–4010PubMedCrossRef Hauck ML, LaRue SM et al (2006) Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 12(13):4004–4010PubMedCrossRef
115.
Zurück zum Zitat Ponce AM, Vujaskovic Z et al (2006) Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia 22(3):205–213PubMedCrossRef Ponce AM, Vujaskovic Z et al (2006) Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia 22(3):205–213PubMedCrossRef
116.
Zurück zum Zitat Wu NZ, Braun RD et al (1997) Simultaneous measurement of liposome extravasation and content release in tumors. Microcirculation 4(1):83–101PubMedCrossRef Wu NZ, Braun RD et al (1997) Simultaneous measurement of liposome extravasation and content release in tumors. Microcirculation 4(1):83–101PubMedCrossRef
117.
Zurück zum Zitat Kong G, Braun RD et al (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445PubMed Kong G, Braun RD et al (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445PubMed
118.
Zurück zum Zitat Kong G, Braun RD et al (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61(7):3027–3032PubMed Kong G, Braun RD et al (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61(7):3027–3032PubMed
119.
Zurück zum Zitat Gaber MH, Wu NZ et al (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36(5):1177–1187PubMed Gaber MH, Wu NZ et al (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36(5):1177–1187PubMed
120.
Zurück zum Zitat Lindner LH, Eichhorn ME et al (2004) Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 10(6):2168–2178PubMedCrossRef Lindner LH, Eichhorn ME et al (2004) Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 10(6):2168–2178PubMedCrossRef
121.
Zurück zum Zitat Liu P, Zhang A et al (2004) Real time 3D detection of nanoparticle liposomes extravasation using laser confocal microscopy. Conf Proc IEEE Eng Med Biol Soc 4:2662–2665 Liu P, Zhang A et al (2004) Real time 3D detection of nanoparticle liposomes extravasation using laser confocal microscopy. Conf Proc IEEE Eng Med Biol Soc 4:2662–2665
122.
Zurück zum Zitat Shen Y, Liu P et al (2005) Tumor microvasculature response to alternated cold and heat treatment. Conf Proc IEEE Eng Med Biol Soc 7:6797–6800 Shen Y, Liu P et al (2005) Tumor microvasculature response to alternated cold and heat treatment. Conf Proc IEEE Eng Med Biol Soc 7:6797–6800
123.
Zurück zum Zitat Chen Q, Krol A et al (2008) Tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome. Int J Hyperthermia 24(6):475–482PubMedCrossRef Chen Q, Krol A et al (2008) Tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome. Int J Hyperthermia 24(6):475–482PubMedCrossRef
124.
Zurück zum Zitat Chen Q, Tong S et al (2004) Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther 3(10):1311–1317PubMed Chen Q, Tong S et al (2004) Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther 3(10):1311–1317PubMed
125.
Zurück zum Zitat Li L, Ten Hagen TL et al Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release Li L, Ten Hagen TL et al Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release
126.
Zurück zum Zitat Dreher MR, Liu W et al (2007) Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 67(9):4418–4424PubMedCrossRef Dreher MR, Liu W et al (2007) Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 67(9):4418–4424PubMedCrossRef
127.
Zurück zum Zitat Meyer DE, Kong GA et al (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61(4):1548–1554PubMed Meyer DE, Kong GA et al (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61(4):1548–1554PubMed
128.
Zurück zum Zitat Meyer DE, Shin BC et al (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74(1–3):213–224PubMedCrossRef Meyer DE, Shin BC et al (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74(1–3):213–224PubMedCrossRef
129.
Zurück zum Zitat Yang M, Baranov E et al (2001) Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98(5):2616–2621PubMedCrossRef Yang M, Baranov E et al (2001) Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98(5):2616–2621PubMedCrossRef
130.
Zurück zum Zitat Eichhorn ME, Strieth S et al (2008) Contrast enhanced MRI and intravital fluorescence microscopy indicate improved tumor microcirculation in highly vascularized melanomas upon short-term anti-VEGFR treatment. Cancer Biol Ther 7(7):1006–1013PubMed Eichhorn ME, Strieth S et al (2008) Contrast enhanced MRI and intravital fluorescence microscopy indicate improved tumor microcirculation in highly vascularized melanomas upon short-term anti-VEGFR treatment. Cancer Biol Ther 7(7):1006–1013PubMed
131.
Zurück zum Zitat Seshadri M, Spernyak JA et al (2007) Visualizing the acute effects of vascular-targeted therapy in vivo using intravital microscopy and magnetic resonance imaging: correlation with endothelial apoptosis, cytokine induction, and treatment outcome. Neoplasia 9(2):128–135PubMedCrossRef Seshadri M, Spernyak JA et al (2007) Visualizing the acute effects of vascular-targeted therapy in vivo using intravital microscopy and magnetic resonance imaging: correlation with endothelial apoptosis, cytokine induction, and treatment outcome. Neoplasia 9(2):128–135PubMedCrossRef
132.
Zurück zum Zitat Moon M, Cornfeld D et al (2009) Dynamic contrast-enhanced breast MR imagi. Magn Reson Imaging Clin N Am 17(2):351–362PubMedCrossRef Moon M, Cornfeld D et al (2009) Dynamic contrast-enhanced breast MR imagi. Magn Reson Imaging Clin N Am 17(2):351–362PubMedCrossRef
133.
Zurück zum Zitat Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56(8):607–620PubMedCrossRef Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56(8):607–620PubMedCrossRef
134.
Zurück zum Zitat Gmitro AF, Moore S et al (2006) In vivo MRI and intravital optical microscopy of window chambers in mice. Proc Int Soc Mag Reson Med 14 Gmitro AF, Moore S et al (2006) In vivo MRI and intravital optical microscopy of window chambers in mice. Proc Int Soc Mag Reson Med 14
135.
Zurück zum Zitat van Vliet M, van Dijke CF et al (2005) MR angiography of tumor-related vasculature: from the clinic to the micro-environment. Radiographics, 25(Suppl 1):S85–S97 (discussion S97-8) van Vliet M, van Dijke CF et al (2005) MR angiography of tumor-related vasculature: from the clinic to the micro-environment. Radiographics, 25(Suppl 1):S85–S97 (discussion S97-8)
136.
Zurück zum Zitat Mulder WJM, Castermans K et al (2009) Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24 Mulder WJM, Castermans K et al (2009) Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24
137.
Zurück zum Zitat Nahrendorf M, Sosnovik DE et al (2008) MR-optical imaging of cardiovascular molecular targets. Basic Res Cardiol 103(2):87–94PubMedCrossRef Nahrendorf M, Sosnovik DE et al (2008) MR-optical imaging of cardiovascular molecular targets. Basic Res Cardiol 103(2):87–94PubMedCrossRef
138.
Zurück zum Zitat Mulder WJ, Strijkers GJ et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19(14):2008–2010PubMed Mulder WJ, Strijkers GJ et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19(14):2008–2010PubMed
139.
Zurück zum Zitat Fretz MM, Koning GA et al (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665(1–2):48–56PubMed Fretz MM, Koning GA et al (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665(1–2):48–56PubMed
140.
Zurück zum Zitat Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291(2):367–371PubMedCrossRef Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291(2):367–371PubMedCrossRef
141.
Zurück zum Zitat Kelly KA, Bardeesy N et al (2008) Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med 5(4):e85 Kelly KA, Bardeesy N et al (2008) Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med 5(4):e85
142.
Zurück zum Zitat Tsourkas A, Shinde-Patil VR et al (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16(3):576–581PubMedCrossRef Tsourkas A, Shinde-Patil VR et al (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16(3):576–581PubMedCrossRef
143.
Zurück zum Zitat Wyss C, Schaefer SC et al (2009) Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 19(10):2487–2494PubMedCrossRef Wyss C, Schaefer SC et al (2009) Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 19(10):2487–2494PubMedCrossRef
144.
Zurück zum Zitat Gaustad JV, Simonsen TG et al (2009) Blood supply in melanoma xenografts is governed by the morphology of the supplying arteries. Neoplasia 11(3):277–285PubMed Gaustad JV, Simonsen TG et al (2009) Blood supply in melanoma xenografts is governed by the morphology of the supplying arteries. Neoplasia 11(3):277–285PubMed
145.
Zurück zum Zitat Hardee ME, Cao Y et al (2007) Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS One 2(6):e549 Hardee ME, Cao Y et al (2007) Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS One 2(6):e549
146.
Zurück zum Zitat Alexander S, Koehl GE et al (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130(6):1147–1154PubMedCrossRef Alexander S, Koehl GE et al (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130(6):1147–1154PubMedCrossRef
147.
Zurück zum Zitat Davies Cde L, Berk DA et al (2002) Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br J Cancer 86(10):1639–1644PubMedCrossRef Davies Cde L, Berk DA et al (2002) Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br J Cancer 86(10):1639–1644PubMedCrossRef
148.
Zurück zum Zitat Shan S, Flowers C et al (2006) Preferential extravasation and accumulation of liposomal vincristine in tumor comparing to normal tissue enhances antitumor activity. Cancer Chemother Pharmacol 58(2):245–255PubMedCrossRef Shan S, Flowers C et al (2006) Preferential extravasation and accumulation of liposomal vincristine in tumor comparing to normal tissue enhances antitumor activity. Cancer Chemother Pharmacol 58(2):245–255PubMedCrossRef
Metadaten
Titel
Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles
verfasst von
Sjoerd Hak
Nina K. Reitan
Olav Haraldseth
Catharina de Lange Davies
Publikationsdatum
01.06.2010
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2010
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-010-9176-y

Weitere Artikel der Ausgabe 2/2010

Angiogenesis 2/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.