Skip to main content
Erschienen in: Annals of Hematology 7/2012

Open Access 01.07.2012 | Original Article

N-acetylcysteine reduces oxidative stress in sickle cell patients

verfasst von: Erfan Nur, Dees P. Brandjes, Tom Teerlink, Hans-Martin Otten, Ronald P. J. Oude Elferink, Frits Muskiet, Ludo M. Evers, Hugo ten Cate, Bart J. Biemond, Ashley J. Duits, John-John B. Schnog, on behalf of the CURAMA study group

Erschienen in: Annals of Hematology | Ausgabe 7/2012

Abstract

Oxidative stress is of importance in the pathophysiology of sickle cell disease (SCD). In this open label randomized pilot study the effects of oral N-acetylcysteine (NAC) on phosphatidylserine (PS) expression as marker of cellular oxidative damage (primary end point), and markers of hemolysis, coagulation and endothelial activation and NAC tolerability (secondary end points) were studied. Eleven consecutive patients (ten homozygous [HbSS] sickle cell patients, one HbSβ0-thalassemia patient) were randomly assigned to treatment with either 1,200 or 2,400 mg NAC daily during 6 weeks. The data indicate an increment in whole blood glutathione levels and a decrease in erythrocyte outer membrane phosphatidylserine exposure, plasma levels of advanced glycation end-products (AGEs) and cell-free hemoglobin after 6 weeks of NAC treatment in both dose groups. One patient did not tolerate the 2,400 mg dose and continued with the 1,200 mg dose. During the study period, none of the patients experienced painful crises or other significant SCD or NAC related complications. These data indicate that N-acetylcysteine treatment of sickle cell patients may reduce SCD related oxidative stress.
Hinweise
The CURAMA study group is a collaborative effort studying sickle cell disease in the Netherlands Antilles and the Netherlands. Participating centers: The Red Cross Blood Bank Foundation, Curaçao, Netherlands Antilles; The Antillean Institute for Health Research, Curaçao, Netherlands Antilles, The Department of Internal Medicine, Slotervaart Hospital, Amsterdam, the Netherlands; the Department of Vascular Medicine and the Department of Hematology, Academic Medical Center, Amsterdam, the Netherlands; the Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands; Pathology and Laboratory Medicine, University Medical Center Groningen the Netherlands; the Department of Internal Medicine, the Laboratory of Clinical Thrombosis and Hemostasis, and the Cardiovascular Research Institute, Academic Hospital Maastricht, the Netherlands.

Introduction

Oxidative stress plays a role of major importance in the development of organ damage in sickle cell disease (SCD) [14]. Oxidative stress in SCD results from factors such as the unstable auto-oxidative sickle hemoglobin (HbS) [5, 6], chronic intravascular hemolysis [79], recurrent ischemia reperfusion injury [4], and low grade inflammation [10]. Increased levels of reactive oxygen species (ROS) lead to further acceleration of hemolysis [8], hypercoagulability [11, 12], decreased nitric oxide (NO) bio-availability [13], and endothelial damage [14].
Given the fact that oxidative stress is a likely major contributing factor in the development of both acute and chronic complications in SCD, the potential of anti-oxidants as therapeutics for SCD should be explored. A major intracellular anti-oxidant is the reduced form of the amino-thiol glutathione (GSH) [15, 16]. Due to increased consumption by excessive levels of ROS, sickle cell patients have decreased levels of plasma and erythrocyte total glutathione and the ratio of GSH to its oxidized form glutathione disulfide (GSSG) is reduced [17, 18]. N-acetylcysteine (NAC), the rate limiting substrate for GSH generation, is an important antioxidant with pleiotropic effects on inflammation and vasomotor function [19]. NAC readily enters cells and within the cytoplasm it is converted to l-cysteine, which is a precursor to GSH [20]. Treatment of sickle cell patients with NAC has been demonstrated to have an inhibitory effect on the formation of dense red cells [21]. Augmenting the antioxidant capacity in sickle red blood cells by NAC may reduce oxidative red cell membrane damage and reduce its many down-stream pathophysiological effects, such as hemolysis, endothelial damage, and activation, activation of the coagulation cascade, and the decrease of NO bio-availability [13, 22, 23]. In this randomized open label pilot study, the effects of oral NAC treatment on markers of oxidative stress and hemolysis in sickle cell patients were investigated.

Patients and methods

Study population

Consecutive adult (age ≥18 years) homozygous sickle cell anemia (HBSS) or HbSβ0-thalassemia outpatients (high performance liquid chromatography (HPLC) confirmed), at the Academic Medical Center (AMC), Amsterdam, The Netherlands, were eligible for the study. Exclusion criteria were painful crisis and blood transfusion in the preceding 4 weeks and 4 months respectively, pregnancy, or the desire to get pregnant in the following 3 months, calculated glomerular filtration rate of <90 ml/min (Cockcroft and Gault formula), known gastric/duodenal ulcers, active infections, auto-immune inflammatory diseases and use of hydroxyurea, vitamin K antagonists or other oral anticoagulants and contraindications for NAC use. Ten race and age-matched healthy volunteers were included as controls for base-line values. All participants received verbal and written explanation of the objectives and procedure of the study and subsequently provided written informed consent. The study was approved by the AMC Medical Ethical Commission and experiments were performed in accordance with the Declaration of Helsinki. The study was registered in the Dutch Trial Registry (www.​trialregister.​nl; trial ID number NTR1013).

End point

The primary end point of the study was reduction of erythrocyte phosphatidylserine (PS) expression as a direct indicator of erythrocyte membrane (oxidative) damage. Changes in markers of hemolysis (hemoglobin, reticulocytes, lactate dehydrogenase (LDH), and bilirubin) hypercoagulability, endothelial activation, and inflammation, and tolerability of oral NAC were secondary end points.

Study protocol

After baseline measurements and randomization to either 1,200 or 2,400 mg of NAC per day, patients started taking NAC (acetylcysteine 600 mg tablets dissolved in water; Pharmachemie B.V. Haarlem, The Netherlands) orally twice daily during 6 weeks followed by another 6 weeks of follow-up after NAC cessation. Both during NAC treatment (visits 0–3) and in the post-treatment period (visits 4–6) patients were seen two-weekly for follow-up visits during which questionnaires pertaining to side effects were completed, weight, blood pressure, and pulse were measured and a blood sample was drawn via venipuncture. Patients kept a daily pain score diary (visual analogue scale pain score). Patient compliance was monitored by history taking and pill counts. If possible, NAC treatment would not be discontinued in case of an (hospital admission due to) acute vaso-occlusive pain crisis or other clinical event.

Blood samples

Standard blood counts were performed in EDTA anti-coagulated blood (Cell-Dyn 4000; Abbott, Illinois, USA). LDH and total and direct bilirubin levels were measured in heparinized plasma with spectrophotometry (P800 Modular; Roche, Basel, Switzerland). Citrate, serum, and EDTA samples were centrifuged immediately for 15 min at 3,000 rpm (4°C). Aliquots were stored at −80°C until further analysis. l-arginine (immediate precursor of NO), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) levels were measured in EDTA plasma using reversed-phase HPLC as described elsewhere [24, 25]. NT-proBNP levels were measured in EDTA plasma with electrochemiluminescence immunoassay (Roche Diagnostics). Ultra-sensitive C-reactive protein (US-CRP) was measured with ELISA according to the manufacturer's instructions (Biokit, Barcelona, Spain). Prothrombin fragment 1 + 2 (F1 + 2) and thrombin–antithrombin (TAT) complexes were determined using sandwich enzyme-linked immunosorbent assay (ELISA; Enzygnost, Dade Behring Marburg GmbH, Germany). Plasma levels of von Willebrand Factor antigen (vWF-ag) were determined in citrate plasma with in an in-house ELISA. Soluble vascular adhesion molecule-1 (sVCAM-1) levels were determined in serum (R&D Systems; Minneapolis, MN, USA).

Glutathione levels

Concentrations of GSH and GSSG were determined according to Tietze et al. and Sacchetta et al., respectively [26, 27]. After measurement in EDTA full blood, the glutathione values were adjusted for erythrocyte numbers and mean corpuscular volume (MCV). GSH is the difference between total glutathione and GSSG concentrations.

Phosphatidylserine exposure

For measurement of PS expression, first 5 μl blood (EDTA) was washed in a HEPES buffer (10 mM HEPES, 150 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 2.1 mM MgCl2, pH 7.4), centrifuged at 3,650 rpm for 90 s and after adding 5 μl annexin V antibodies (Annexin V-FITC; IQP-120F, IQ products) incubated for 10–15 min at 4°C in the dark. After the incubation period, the erythrocytes were washed, resuspended in 500 μl HEPES buffer, and erythrocyte PS expression was measured by flow cytometry using FACSCalibur (BD Biosciences, CA, USA). Assuming that especially mature old sickle erythrocytes have higher levels of external PS expression leading to their removal, we also analyzed the percentage of sickle erythrocytes having external PS expression more than one log greater than the PS negative erythrocytes.

Cell-free hemoglobin

Plasma levels of cell-free hemoglobin were determined in citrate plasma with a spectrophotometer (Shimadzu UV-2401 PC) according to the methods of Kahn et al. [28] which adjusts for hyperbilirubinemia and lipemia.

Advanced glycation end products

Two different advanced glycation end products (AGEs) were measured (i.e., pentosidine and N ε-(carboxy-methyl)lysine (CML)) at baseline and after the 6 weeks of NAC treatment. Pentosidine and CML were measured in EDTA plasma using single-column HPLC with fluorescence detection and ultra performance liquid chromatography-tandem mass spectrometry respectively, as previously described [29, 30].

Statistical analysis

Friedman test for repeated measures of non-parametric data was used for comparisons between different time points within a treatment groups. The Wilcoxon signed rank test was used for comparisons between two related samples within a treatment group. The Mann–Whitney U test was used for comparisons between two groups. Continuous data are presented as medians with corresponding inter quartile ranges (IQR), unless stated otherwise. P < 0.05 was considered statistically significant (SPSS 16.0, Chicago, IL, USA).

Results

Eleven patients (10 HbSS and 1 HbS-β0-thalassemia; median age 23 years (range 20–47), 6 male, 5 female) who met eligibility criteria, were included in the study. One patient (P4) discontinued using NAC after 3 weeks and withdrew from the study. Two patients who used <80% of prescribed dosing are shown in gray in the figures. One patient on the 2,400 mg NAC dose had gastro-intestinal complaints that disappeared after switching to 1,200 mg on the second day of treatment which she continued using (P6). No other patient reported adverse events. Levels of hemoglobin, LDH, and bilirubin and reticulocyte and leukocyte counts did not change significantly (Fig. 1). Sickle cell patients had significantly lower whole blood total glutathione and GSH levels as compared to healthy controls (Fig. 2a). Total glutathione levels increased during treatment period in patients of both 1,200 mg (from 136 (100–198) to 169 (121–221) μmol/l) and 2,400 mg (from 150 (136–165) to 163 (142–178) μmol/l) dose groups (Fig. 3, panels a and b), with the differences being statistically significant when analyzing the two dose groups combined (from 150 (113–168) to 167 (142–179) μmol/l, P < 0.05).
Red blood cell PS expression was significantly higher in sickle cell patients as compared to healthy controls (Fig. 2b) and decreased after 6 weeks of NAC treatment in patients of both 1,200 mg (from 1.64 (1.35–2.89)% to 1.46 (0.76–2.60)%) and 2,400 mg (from 2.44 (1.12–3.53)% to 1.42 (1.00–2.97)%) NAC groups (Fig. 3, panels c and d) reaching statistical significance when analyzing both dose groups together (from 1.64 (1.32–3.37)% to 1.43 (1.00–2.6)%), P = 0.036). Also, the percentage of sickle erythrocytes with very high external PS expression (more than one log greater than the PS negative erythrocytes) decreased during the treatment and returned towards baseline values after cessation of NAC treatment (Fig. 3, panels e and f). The decrease was statistically significant in the 2,400 mg group (P = 0.039) and when analyzing both dose groups together (P = 0.030).
Plasma levels of cell-free hemoglobin decreased after NAC treatment and returned towards baseline levels after cessation of the treatment in patients of both 1,200 (from 5.0 (1.4–16.7) to 2.7 (2.1–8.5) μmol/l) and 2,400 mg (from 6.5 (4.5–10.4) μmol/l to 6.5 (3.4–7.8) μmol/l) groups, though the differences were not statistically significant (Fig. 3, panels g and h). Both pentosidine and CML were significantly higher in sickle cell patients at baseline as compared to healthy controls, and CML decreased significantly after 6 weeks of treatment when analyzing the two dose groups together (Fig. 4). None of the other measured parameters changed during the treatment period (Table 1).
Table 1
Markers of endothelial and coagulation activation and NO bioavailability before and after NAC treatment
 
1,200 mg (n = 6)
2,400 mg (n = 4)
Baseline
6 weeks
Baseline
6 weeks
sVCAM-1 (ng/mL)
1,151 (880–1,638)
1,110 (859–1,841)
788 (638–1,578)
905 (778–1,516)
vWF:Ag (%)
181 (152–377)
208 (145–374)
162 (129–217)
162 (130–234)
TAT (μg/L)
8.2 (4.4–14.1)
5.9 (5.4–12.6)
10.2 (7.8–10.7)
8.4 (6.3–11.2)
F1 + 2 (pmol/L)
268 (201–341)
269 (174–329)
302 (179–366)
254 (170–360)
Thrombin generation
 Lag time (min)
2.0 (1.8–2.3)
2.0 (1.8–2.0)
1.0 (1.0–1.8)
1.0 (1.0–1.8)
 Peak value (nM)
310 (233–375)
343 (282–363)
343 (271–367)
311 (161–358)
 ETP (nM*min)
1,136 (844–1,507)
1,225 (1,009–1,315)
1,156 (913–1,287)
1,102 (520–1,313)
Arginine (μmol/L)
52.6 (45.0–67.9)
57.5 (46.7–73.3)
61.2 (57.6–71.4)
63.5 (60.6–78.0)
ADMA (μmol/L)
0.62 (0.52–0.70)
0.67 (0.49–0.73)
0.57 (0.51–0.64)
0.61 (0.55–0.64)
NT-proBNP
63.0 (25.5–125)
51.8 (33.9–84.7)
28.3 (24.3–46.9)
33.5 (13.3–64.1)
Numbers are medians with inter quartile ranges. sVCAM-1 soluble vascular cellular adhesion molecule-1; vWF-Ag von Willebrand factor antigen; TAT thrombin antithrombin complex; F1 + 2 prothrombin fragments 1 + 2; ADMA asymmetric dimethylarginine; NT-proBNP N-terminal pro-Brain Natriuretic Peptide. Changes not significant
During the treatment period, none of the study patients was admitted with SCD related complications. The daily pain score did not change during treatment (data not shown).

Discussion

In this pilot study, 6 weeks of NAC treatment seemed to reduce oxidative stress in SCD, as reflected by reduced red cell membrane PS expression. Also, plasma levels of AGEs and cell-free hemoglobin seemed to decrease during NAC treatment. None of the other primary end points changed during the treatment period.
Through enzymatic reactions PS is normally restricted to the inner monolayer of the cell membrane [31]. Increased intracellular generation of ROS leads to (per-)oxidative damage to the erythrocyte inner membrane and proteins responsible for maintaining normal PS asymmetry, resulting in abnormal PS externalization [32]. NAC treatment seemed to result in a decrease of surface membrane PS expression with both 1,200 and 2,400 mg dose groups. With a reduction in red cell membrane damage, hemolysis would be expected to be reduced. While the standard markers of hemolysis did not change, there was a decrease in plasma levels of cell-free hemoglobin, though the differences were not statistically significant [28]. Downstream events of pathophysiological PS exposure such as thrombin generation and increased expression of sVCAM-1 did not change [33, 34]. Given large variability of such parameters, we cannot rule out that a potential ameliorating effect of NAC supplementation on endothelial and coagulation activation has been missed due to the small number of included patients.
Increased production and tissue accumulation of AGEs due to oxidative stress are associated with disease severity and organ complications in diabetes and inflammatory diseases [3537]. AGE interaction with intra- and extracellular tissue structures leads to distortion of normal tissue architecture [23], resulting in (micro-)vasculature basement membrane thickening with reduced vascular wall elasticity, reduced filtration rate across the vessel lumen and diminished arteriolar vasodilatory response all contributing to tissue ischemia [37, 38]. Furthermore, the interaction of AGEs with their receptor (RAGE) enhances the production of pro-inflammatory cytokines, adhesion molecules, and more oxidants, inducing a pro-inflammatory response and further increasing oxidative stress [35]. Steady state plasma AGEs are increased in both children and adults with SCD, and we have recently demonstrated AGEs to be significantly associated with both the degree of hemolysis and the presence of hemolysis-related organ complications in adult sickle cell patients [18]. Somjee et al. [18] reported a strong inverse correlation between plasma AGEs and GSH levels in sickle erythrocytes. Decreased levels of GSH may play an important role in the increased formation of AGEs since GSH is an essential cofactor for glyoxalase 1, the enzyme that detoxifies the major AGE precursor methylglyoxal to S-d-lactoyl-glutathione [39]. The decrease in AGE levels during NAC treatment could suggest that production and tissue accumulation of AGEs and thus oxidative tissue damage can be reduced by enhancing GSH production with NAC treatment.
In contrast to the study by Pace et al. [21] in which glutathione increments were only observed in patients treated with 2,400 mg NAC during 6 weeks, increases in glutathione levels in this study were comparable in both 1,200 and 2,400 mg dose groups. A possible explanation for this discrepancy could be of methodological nature. The comparable glutathione increments with concurrent reductions in erythrocyte PS expression and plasma AGEs in both dose groups may suggest that higher dose than 1,200 mg NAC per day may not be needed. This is an important finding as gastro-intestinal side effects may be dose-limiting (as observed in one patient in the current study).
The obvious limitation of our study is the small number of patients in a pilot study lacking a control (placebo) group as well as the short duration of treatment. Nonetheless, the presented data seem to indicate gradual decrease in red cell surface PS expression, plasma levels of AGEs and cell-free hemoglobin with subsequent increments after NAC cessation. Obviously, these findings need confirmation in larger randomized placebo-controlled clinical trials. One of the 11 patients had HbS-β0-thalassemia. The excess of alpha-globin might influence the degree of oxidative stress in this patient. However, both sickle cell and beta-thalassaemia erythrocytes are associated with oxidative stress [40, 41]. Furthermore, disease severity in patients with HbS-β0-thalassemia is comparable with those in HbSS [4244]. N-acetylcysteine amide, an amide form of N-acetylcysteine has been shown to reduce oxidative stress in beta thalassemia red blood cells [45]. Exclusion of this patient does not alter the results (data not shown).
In conclusion, N-acetylcysteine treatment of sickle cell patients seems to reduce erythrocyte PS expression, plasma AGEs, and cell-free hemoglobin levels. Given the wide availability, safety and low cost of NAC and the findings in this pilot study, we are of the opinion that potential of NAC as a “supportive care therapeutic” in SCD deserves further study.

Acknowledgements

None.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Nur E, Brandjes DP, Schnog JJ et al (2010) Plasma levels of advanced glycation end products are associated with haemolysis-related organ complications in sickle cell patients. Br J Haematol 151:62–69PubMedCrossRef Nur E, Brandjes DP, Schnog JJ et al (2010) Plasma levels of advanced glycation end products are associated with haemolysis-related organ complications in sickle cell patients. Br J Haematol 151:62–69PubMedCrossRef
2.
3.
Zurück zum Zitat Morris CR, Suh JH, Hagar W et al (2008) Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111:402–410PubMedPubMedCentralCrossRef Morris CR, Suh JH, Hagar W et al (2008) Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 111:402–410PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Nath KA, Grande JP, Croatt AJ et al (2005) Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol 166:963–972PubMedPubMedCentralCrossRef Nath KA, Grande JP, Croatt AJ et al (2005) Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol 166:963–972PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Sheng K, Shariff M, Hebbel RP (1998) Comparative oxidation of hemoglobins A and S. Blood 91:3467–3470PubMedCrossRef Sheng K, Shariff M, Hebbel RP (1998) Comparative oxidation of hemoglobins A and S. Blood 91:3467–3470PubMedCrossRef
6.
Zurück zum Zitat Hebbel RP, Eaton JW, Balasingam M et al (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Investig 70:1253–1259PubMedCrossRef Hebbel RP, Eaton JW, Balasingam M et al (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Investig 70:1253–1259PubMedCrossRef
7.
Zurück zum Zitat Nagababu E, Fabry ME, Nagel RL et al (2008) Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis 41:61–66CrossRef Nagababu E, Fabry ME, Nagel RL et al (2008) Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis 41:61–66CrossRef
8.
Zurück zum Zitat Fibach E, Rachmilewitz E (2008) The role of oxidative stress in hemolytic anemia. Curr Mol Med 8:609–619PubMedCrossRef Fibach E, Rachmilewitz E (2008) The role of oxidative stress in hemolytic anemia. Curr Mol Med 8:609–619PubMedCrossRef
9.
Zurück zum Zitat Jeney V, Balla J, Yachie A et al (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100:879–887PubMedCrossRef Jeney V, Balla J, Yachie A et al (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100:879–887PubMedCrossRef
10.
Zurück zum Zitat Akohoue SA, Shankar S, Milne GL et al (2007) Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr Res 61:233–238PubMedCrossRef Akohoue SA, Shankar S, Milne GL et al (2007) Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr Res 61:233–238PubMedCrossRef
11.
Zurück zum Zitat Ataga KI, Orringer EP (2003) Hypercoagulability in sickle cell disease: a curious paradox. Am J Med 115:721–728PubMedCrossRef Ataga KI, Orringer EP (2003) Hypercoagulability in sickle cell disease: a curious paradox. Am J Med 115:721–728PubMedCrossRef
12.
Zurück zum Zitat Helley D, Eldor A, Girot R et al (1996) Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia. Thromb Haemost 76:322–327PubMedCrossRef Helley D, Eldor A, Girot R et al (1996) Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia. Thromb Haemost 76:322–327PubMedCrossRef
13.
Zurück zum Zitat Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437PubMedCrossRef Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437PubMedCrossRef
14.
Zurück zum Zitat Landburg PP, Teerlink T, Muskiet FA et al (2008) Plasma concentrations of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell patients but do not increase further during painful crisis. Am J Hematol 83:577–579PubMedCrossRef Landburg PP, Teerlink T, Muskiet FA et al (2008) Plasma concentrations of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell patients but do not increase further during painful crisis. Am J Hematol 83:577–579PubMedCrossRef
15.
Zurück zum Zitat Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112PubMedCrossRef Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112PubMedCrossRef
16.
17.
18.
Zurück zum Zitat Somjee SS, Warrier RP, Thomson JL et al (2005) Advanced glycation end-products in sickle cell anaemia. Br J Haematol 128:112–118PubMedCrossRef Somjee SS, Warrier RP, Thomson JL et al (2005) Advanced glycation end-products in sickle cell anaemia. Br J Haematol 128:112–118PubMedCrossRef
19.
Zurück zum Zitat Zafarullah M, Li WQ, Sylvester J et al (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20PubMedCrossRef Zafarullah M, Li WQ, Sylvester J et al (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20PubMedCrossRef
20.
Zurück zum Zitat Faintuch J, Aguilar PB, Nadalin W (1999) Relevance of N-acetylcysteine in clinical practice: fact, myth or consequence? Nutrition 15:177–179PubMedCrossRef Faintuch J, Aguilar PB, Nadalin W (1999) Relevance of N-acetylcysteine in clinical practice: fact, myth or consequence? Nutrition 15:177–179PubMedCrossRef
21.
Zurück zum Zitat Pace BS, Shartava A, Pack-Mabien A et al (2003) Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol 73:26–32PubMedCrossRef Pace BS, Shartava A, Pack-Mabien A et al (2003) Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol 73:26–32PubMedCrossRef
22.
Zurück zum Zitat Frenette PS (2002) Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol 9:101–106PubMedCrossRef Frenette PS (2002) Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol 9:101–106PubMedCrossRef
23.
Zurück zum Zitat Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRef Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRef
24.
Zurück zum Zitat Teerlink T, Nijveldt RJ, de Jong S et al (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303:131–137PubMedCrossRef Teerlink T, Nijveldt RJ, de Jong S et al (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303:131–137PubMedCrossRef
25.
Zurück zum Zitat de Jong S, Teerlink T (2006) Analysis of asymmetric dimethylarginine in plasma by HPLC using a monolithic column. Anal Biochem 353:287–289PubMedCrossRef de Jong S, Teerlink T (2006) Analysis of asymmetric dimethylarginine in plasma by HPLC using a monolithic column. Anal Biochem 353:287–289PubMedCrossRef
26.
Zurück zum Zitat Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522.PubMedCrossRef Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522.PubMedCrossRef
27.
Zurück zum Zitat Sacchetta P, Di CD, Federici G (1986) Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulfide in biological samples. Anal Biochem 154:205–208.PubMedCrossRef Sacchetta P, Di CD, Federici G (1986) Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulfide in biological samples. Anal Biochem 154:205–208.PubMedCrossRef
28.
Zurück zum Zitat Kahn SE, Watkins BF, Bermes EW Jr (1981) An evaluation of a spectrophotometric scanning technique for measurement of plasma hemoglobin. Ann Clin Lab Sci 11:126–131PubMed Kahn SE, Watkins BF, Bermes EW Jr (1981) An evaluation of a spectrophotometric scanning technique for measurement of plasma hemoglobin. Ann Clin Lab Sci 11:126–131PubMed
29.
Zurück zum Zitat Scheijen JL, van de Waarenburg MP, Stehouwer CD et al (2009) Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 877:610–614CrossRef Scheijen JL, van de Waarenburg MP, Stehouwer CD et al (2009) Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 877:610–614CrossRef
30.
Zurück zum Zitat Teerlink T, Barto R, Ten Brink HJ et al (2004) Measurement of nepsilon-(carboxymethyl)lysine and nepsilon-(carboxyethyl)lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem 50:1222–1228PubMedCrossRef Teerlink T, Barto R, Ten Brink HJ et al (2004) Measurement of nepsilon-(carboxymethyl)lysine and nepsilon-(carboxyethyl)lysine in human plasma protein by stable-isotope-dilution tandem mass spectrometry. Clin Chem 50:1222–1228PubMedCrossRef
31.
Zurück zum Zitat Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132PubMedCrossRef Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132PubMedCrossRef
32.
Zurück zum Zitat Banerjee T, Kuypers FA (2004) Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells. Br J Haematol 124:391–402PubMedCrossRef Banerjee T, Kuypers FA (2004) Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells. Br J Haematol 124:391–402PubMedCrossRef
33.
Zurück zum Zitat Manodori AB, Barabino GA, Lubin BH et al (2000) Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood 95:1293–1300PubMedCrossRef Manodori AB, Barabino GA, Lubin BH et al (2000) Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood 95:1293–1300PubMedCrossRef
34.
Zurück zum Zitat Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99:1564–1571PubMedCrossRef Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99:1564–1571PubMedCrossRef
35.
Zurück zum Zitat Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21PubMedCrossRef Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21PubMedCrossRef
36.
Zurück zum Zitat Miyata T, Ishiguro N, Yasuda Y et al (1998) Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochem Biophys Res Commun 244:45–49PubMedCrossRef Miyata T, Ishiguro N, Yasuda Y et al (1998) Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochem Biophys Res Commun 244:45–49PubMedCrossRef
38.
Zurück zum Zitat Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12PubMedCrossRef Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12PubMedCrossRef
39.
Zurück zum Zitat Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000PubMedPubMedCentralCrossRef Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989–1000PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Amer J, Ghoti H, Rachmilewitz E et al (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132:108–113PubMedCrossRef Amer J, Ghoti H, Rachmilewitz E et al (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132:108–113PubMedCrossRef
41.
Zurück zum Zitat Amer J, Goldfarb A, Fibach E (2004) Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytom A 60:73–80CrossRef Amer J, Goldfarb A, Fibach E (2004) Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytom A 60:73–80CrossRef
42.
Zurück zum Zitat Morris CR (2008) Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematol Am Soc Hematol Educ Prog 177–185CrossRef Morris CR (2008) Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematol Am Soc Hematol Educ Prog 177–185CrossRef
43.
Zurück zum Zitat van den Tweel XW, van der Lee JH, Heijboer H et al (2010) Development and validation of a pediatric severity index for sickle cell patients. Am J Hematol 85:746–751PubMedCrossRef van den Tweel XW, van der Lee JH, Heijboer H et al (2010) Development and validation of a pediatric severity index for sickle cell patients. Am J Hematol 85:746–751PubMedCrossRef
44.
Zurück zum Zitat Powars DR, Hiti A, Ramicone E et al (2002) Outcome in hemoglobin SC disease: a four-decade observational study of clinical, hematologic, and genetic factors. Am J Hematol 70:206–215PubMedCrossRef Powars DR, Hiti A, Ramicone E et al (2002) Outcome in hemoglobin SC disease: a four-decade observational study of clinical, hematologic, and genetic factors. Am J Hematol 70:206–215PubMedCrossRef
45.
Zurück zum Zitat Amer J, Atlas D, Fibach E (2007) N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells. Biochim Biophys Acta 1780:249–255PubMedCrossRef Amer J, Atlas D, Fibach E (2007) N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells. Biochim Biophys Acta 1780:249–255PubMedCrossRef
Metadaten
Titel
N-acetylcysteine reduces oxidative stress in sickle cell patients
verfasst von
Erfan Nur
Dees P. Brandjes
Tom Teerlink
Hans-Martin Otten
Ronald P. J. Oude Elferink
Frits Muskiet
Ludo M. Evers
Hugo ten Cate
Bart J. Biemond
Ashley J. Duits
John-John B. Schnog
on behalf of the CURAMA study group
Publikationsdatum
01.07.2012
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Hematology / Ausgabe 7/2012
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-011-1404-z

Weitere Artikel der Ausgabe 7/2012

Annals of Hematology 7/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.