Skip to main content
Erschienen in: Langenbeck's Archives of Surgery 7/2020

Open Access 10.08.2020 | Review Article

Neoadjuvant therapy in pancreatic cancer: what is the true oncological benefit?

verfasst von: Lei Ren, Carmen Mota Reyes, Helmut Friess, Ihsan Ekin Demir

Erschienen in: Langenbeck's Archives of Surgery | Ausgabe 7/2020

Abstract

Background

Neoadjuvant therapies (neoTx) have revolutionized the treatment of borderline resectable (BR) and locally advanced (LA) pancreatic cancer (PCa) by significantly increasing the rate of R0 resections, which remains the only curative strategy for these patients. However, there is still room for improvement of neoTx in PCa.

Purpose

Here, we aimed to critically analyze the benefits of neoTx in LA and BR PCa and its potential use on patients with resectable PCa. We also explored the feasibility of arterial resection (AR) to increase surgical radicality and the incorporation of immunotherapy to optimize neoadjuvant approaches in PCa.

Conclusion

For early stage, i.e., resectable, PCa, there is not enough scientific evidence for routinely recommending neoTx. For LA and BR PCa, optimization of neoadjuvant therapy necessitates more sophisticated complex surgical resections, machine learning and radiomic approaches, integration of immunotherapy due to the high antigen load, standardized histopathological assessment, and improved multidisciplinary communication.
Hinweise
Lei Ren and Carmen Mota Reyes contributed equally to this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The introduction of neoTx has led to a remarkable increase in the rate of surgical resections in PCa patients with LA or BR tumors, which were initially deemed inoperable at the time of diagnosis. However, two-thirds of these patients will develop local recurrences shortly after the operation [1]. In order to avoid disease relapse, surgeons have struggle to find ways to maximize R0 resections that still remain the only curative alternative for long-term survival in PCa. Although the first attempts of arterial resections (AR) in advanced tumors did not show the expected success, improved perioperative management and the integration of neoTx into multimodal therapy approaches have resulted in significantly reduced perioperative mortality and have proven the safety and feasibility of these radical approaches. Although neoTx is the standard of care for BR and LA tumors, its application on upfront resectable patients in order to downstage tumors and to increase surgical radicality is still subject of investigation. Furthermore, the introduction of immunotherapy to reactivate the pancreatic tumor microenvironment (TME) specially in neadjuvant settings constitutes a promising strategy for future multimodality PCa treatments (Fig. 1) [2, 3].

NeoTx in borderline resectable and locally advanced PCa

Upfront surgery in BR and LA tumors has not elicited the expected survival benefit and is associated with high morbidity, low R0 resection rat, and high early-systemic recurrences [4]. The introduction of neoadjuvant approaches enabling the tumor downstaging has led to successful surgical resection in up to 60% of these patients [5]. However, neoTx not only decreases tumor size and facilitates surgical resection but also enables the selection of patients with a favorable tumor biology, who will benefit from radical resections [6]. A multicenter phase III randomized controlled trial (RCT) validated the use of neoTx in BR PCa patients. The initial analysis showed that neoTx resulted in increased R0 resection rates and prolonged disease-free survival (DFS) [7]. However, the final results showed that the neoTx protocol (preoperative gemcitabine-based chemotherapy combined with 15× 2.4 Gy radiotherapy) did not improve the overall survival [7]. After neoTx, PCa patients with LA tumors demonstrate favorable histopathological features with higher R0 resection rates and decreased frequency of lymph node metastasis and perineural and lymphatic vessel invasion [8]. These encouraging results have led to an increasing number of neoadjuvantly treated patients; however, not all of these patients ultimately undergo surgical exploration. Mellon et al. reported that 46 of 110 patients with BR PCa became unresectable due to local/distant progression or due to poor performance status that precluded resection after neoTx [9]. Importantly, therapeutic response to neoTx is not reliably reflected by the current imaging techniques. This highlights the need for multidisciplinary communications between surgeons and oncologists to ensure an unbiased selection of patients for surgical exploration and an optimized patient management in PCa.
Conventional computed tomography (CT), the most commonly used imaging modality for the initial determination of tumor stage and resectability of PCa, has striking limitations in the evaluation of vessel involvement after neoTx [10]. The recent introduction of whole-tumor radiomic analysis has opened a range of possibilities to assess therapy response and resectability in PCa in a quantitative and non-invasive manner. A supervised machine learning algorithm from diffusion-weighted magnetic resonance imaging allowed overall survival (OS) prediction with a high diagnostic accuracy as well as histopathological sub-stratification of PCa patients [11]. Recent reports also pointed out that the combination of radiomic features such as reduced tumor stiffness in endosonographic elastography or reduced intensity on PET-CT is able to assess therapy response in PCa after neoTx [12]. While still in need of validation studies, the large-scale implementation of such tools has the potential to revolutionize image interterpretation and individualized patient care [11].

NeoTx in resectable PCa: illusion versus reality

Although upfront surgery followed by adjuvant chemotherapy is still the recommendation for resectable PCa, this treatment fails to discriminate patients with undetected metastatic dissemination or aggressive tumor biology that may not benefit from surgical resection [13]. Furthermore, due to the high postoperative morbidity associated with pancreatic resections, up to 30% fail to receive or complete adjuvant chemotherapy [14]. The success of neoTx in BR/LA tumors has raised the question whether neoTx can improve prognosis in resectable patients, and clinical trials addressing to this matter are increasingly emerging.
The potential risk for patients with resectable PCa to develop local or distant tumor progression during neoTx, which might not have occurred in the setting of upfront resection, has been a recurrent argument against the use of neoTx in resectable tumors. The therapeutic paradigm of PCa is constantly evolving, and the focus has now turned toward the ability of the surgeon to remove the tumor radically. In this regard, neoTx may reduce surgical complexity by reducing the tumor bulk, the proportion of viable tumor cells, and the involvement of nearby vascular structures, resulting in an increased R0 resection rate [15].
Two early studies comparing the efficacy of gemcitabine-based neoTx with upfront surgery for resectable PCa determined its safety and feasibility but were terminated early due to slow recruitment and did not achieve statistically significant results [6, 16, 17]. Accordingly, two RCTs reported recently that neoTx is safe and effective without increased risk of surgical complications and was associated with favorable R0 resection rates in patients with resectable PCa [18]. In a large retrospective study, Mockdad et al. described prolonged survival in neoadjuvant-treated patients with early-stage PCa compared with upfront resected patients and thus provided further support for the use of neoTx as a patient selection tool in the management of resectable PCa [14]. Moreover, grade 3/4 toxicity in resectable PCa patients treated with neoTx was lower than in patients with BR/LA disease [19, 20]. In contrast, the recently published PREOPANC trial failed to any benefit in overall survival of patients with borderline or upfront resectable PCa (16.0 months with preoperative chemoradiotherapy versus 14.3 months with upfront surgery P = .096). Therefore, for early-stage, i.e., resectable, PCa, there is not enough scientific evidence for routinely recommending neoTx [7]. NeoTx in resectable PCa remains area of controversy and awaits the results of ongoing RCTs [21].

Radical resection in PCa: “the holy grail”

Curative R0 resection remains the only chance for long-term survival in PCa [22, 23]; however, approximately half of the resections are microscopically incomplete and two-thirds of initially R0-diagnosed patients will develop local recurrence [24]. Despite the prognostic relevance of the pathological resection rate, a standard definition for R0 resection is still lacking, which leads to high variability on R0 resection rates that range between 15% and 92% [1, 2426]. After the introduction of a standardized pathology protocol consisting of axial slicing technique, multicolor margin staining and extended sampling, and a circumferential resection margin (CRM) > 1 mm, the R1 rate significantly increased from 14 to 76% in a retrospective study carried out by Esposito et al. [27, 28]. These observations indicate that resection margin involvement is a common finding in PCa which is often underestimated due to the lack of a standardized pathological examination of all relevant margins [28] and insinuated the need to increase surgical radicality in other to obtain wider resection margins and higher R0 rates. In line with these results, a retrospective study with 360 patients revealed similar local recurrence rates of R0- and R1-staged PCa patients suggesting the widespread presence of undiagnosed microscopic residual disease. Further intercontinental discrepancy is reported on the definition of R0 status, which is 0-mm tumor distance from resection margin in the USA and > 1 mm in Europe and Australia [1, 24, 27, 29, 30]. In our recent meta-analysis assessing the importance of the resection status in PCa, we demonstrated that even with standardized pathology protocols, resection margin’s prognostic validity may be primarily confined to pancreatic head tumors [24].
Pancreatic surgeons are continuously developing new strategies to increase surgical radicality and improve R0 resection rates [4]. The feasibility of portomesenteric venous resection has been widely demonstrated. In contrast, extended arterial involvement remains a controversial issue in the management of PCa. Although tumor encasement of the superior mesenteric artery, common hepatic artery, or celiac artery defines local irresectability according to current guidelines, advances in the field of pancreatic surgery have turned the focus on redefining strategies that allow more radical approaches involving the resection and reconstruction of major peripancreatic arteries, to achieve R0 resection in patients without distant metastasis [4, 31].
In the first meta-analysis evaluating AR in patients undergoing pancreatectomy for PCa, AR was discouraged as standard of care and was associated with remarkably higher perioperative morbidity (OR = 2.17) and mortality (OR = 5.04) and poor survival (OR = 0.50) [4]. Conversely, in a recent study, Del Chiaro et al. demonstrated the feasibility and safety of AR in pancreatectomy, which was accompanied by increased survival compared with palliative procedures and showed no difference in postoperative mortality and morbidity, even though it was associated with longer operation time and higher blood loss [31, 32]. Consistent with these results, Sonohara et al. demonstrated that PCa patients with AR had marginally higher recurrence-free survival and longer overall survival without a significant increase in the incidence of severe postoperative complications [33]. Current studies evaluating celiac artery resection also showed that these procedures can be performed safely and with an encouraging median survival [32, 34]. Further analyses suggested the improvement to be a consequence of newly developed and more effective chemotherapeutical regimens used in neoadjuvant settings. The increasing use of neoTx has notably increased the rate of R0 resections in patients with initially suspected arterial infiltration [35] and has led to significantly higher survival rates (78.8%) compared with patients who underwent upfront surgery (26.7%) [36]. In line with these results, Bachellier et al. reported remarkably prolonged survival in neoadjuvantly treated patients (23 months) compared with upfront resected PCa patients (13.7 months) after extended pancreatectomies involving AR [37]. Therefore, neoTx appears to provide an additional benefit to AR in patients with BR and LA PCa undergoing extended pancreatectomy by decreasing tumor burden and arterial invasion [33, 38]. In the case of adequate therapeutic response and good performance status, resectability should be re-assesed via surgical exploration, as cross-sectional images often fail to identify the extent of the remaining viable tumor. Combining AR with pancreatectomy in these cases increases the feasibility of R0 resection, which is still the only option to achieve long-term survival [39]. Here, neoTx should be performed rather than upfront surgery. Clinical trials analyzing the superiority of combined chemotherapeutical regimes and radical surgical resections are still needed and ongoing [4, 4042].

Immunotherapy as a novel neoadjuvant approach in PCa

Cancer immunotherapy has demonstrated remarkable therapeutic efficacy in many solid malignancies [43]. Due to low tumor mutational burden and the presence of a highly immunosuppressive TME, immunotherapies have consistently failed to elicit the expected outcomes in PCa [44]. This limitation may be circumvented by the application of immunotherapy in a neoadjuvant setting, with the primary tumor serving as an antigen source for in situ T cell priming that may unleash a more potent antitumoral immune response compared with adjuvant approaches [45]. Current neoTx in PCa mostly relies on classical chemotherapy regimens such as FOLFIRINOX and does not make use of immune-based and molecular-targeted therapies. Surprisingly, we observed an immunological shift toward more cytotoxic inflammation in the TME of PCa after conventional neoTx. This was mainly due to the depletion of immunosuppressive cells like regulatory T cells (Treg cells) [46] and myeloid-derived suppressor cells (MDSCs) [45, 47]. These results suggested that neoTx is able to prime the TME and potentiate the effect of immunotherapy by boosting the local antitumor immune response in PCa.
Ongoing trials on PCa are now focusing on combinatorial approaches exploiting the ability of cancer vaccines to promote T cell recruitment followed by the subsequent activation of cytotoxic cells by checkpoint inhibitors (ICIs) or immunomodulatory agents [48]. The inhibition of T cell checkpoints such as T lymphocyte protein 4 (CTLA4) and programmed cell death protein 1 (PD-1) has shown enormous promise in a number of cancer types [49, 50] by unleashing tumor-specific cytotoxic T cells that already reside in TME before treatment [51]. So far, none of these antagonists has proven effective in PCa [48]. However, the combination of a CD40 agonist with nab-paclitaxel plus gemcitabine resulted in partial response in 4 of 21 patients with PCa, and a clinical trial for its use as a neoadjuvant is underway (NCT02588443). Adoptive immunotherapy involves the injection of tumor reactive immune cells into patients and has increasingly gained attention over the past years. Although the first clinical trials with chimeric antigen receptor (CAR) T cells or tumor-pulsed dendritic cells in advanced PCa have shown promise [48], adoptive approaches have yet not been tested in neoadjuvant settings in PCa. The number of clinical trials evaluating the use of neoadjuvant immunotherapy is limited compared with its use within palliative approaches (Table 1).
Table 1
Ongoing clinical trials evaluating the effect of immunotherapy in PCa
NCT identifier
Phase
Allo-cation
Arms
Target accrual
Primary endpoint
Recruitment status
Projected completion date
Disease status
neoTx
NCT03114631
III
Non-R
DCs pulsed with tumor lysate; DCs pulsed with MUC-1/WT-1 peptides; no intervention
30
PR or CR at 1 year
Completed
May 19
LA/M
no
NCT03989310
III
N/A
Manganese chloride; nab-paclitaxel, gemcitabine; anti-PD-1 antibody
20
AEs and DCR
Recruiting
Mar 21
LA/M
no
NCT03323944
I
Non-R
huCART-meso cells
18
AEs
Recruiting
Sep 21
NR/M
no
NCT03008304
III
R
High-activity NK; no intervention
20
RECIST
Completed
Dec 19
M
no
NCT03165591
III
N/A
V3-P
30
Tumor burden, CA19.9
Recruiting
Dec 20
NR/M
no
NCT03180437
III
R
IRE surgery; IRE plus γδ T cells
60
PFS, OS
Completed
43,617
LA
no
NCT03329248
III
N/A
ALT-803; ETBX-011; GI-4000; naNK; avelumab; bevacizumab; capecitabine, cyclophosphamide; fluorouracil; leucovorin, nab-paclitaxel; iovaza, oxaliplatin, SBRT
80
RECIST, AEs
Completed
Dec 19
Progress after SoC
no
NCT02718859
III
R
NK cells; IRE
60
PFS, OS
Completed
Mar 19
NR/M
no
NCT03193190
III
R
Nab-paclitaxel, gemcitabine, atezolizumab, selicrelumab, AB928, tiragolumab, cobimetib, PEGPH20, BL8040, RO6874281
260
RECIST, AEs
Recruiting
Nov 21
NR/M, progess after SoC
no
NCT02261714
III
N/A
TG01
32
DTH responses and proliferative T cell responses
Completed
May 19
ATx
no
NCT03941457
I/II
N/A
BiCAR-NK cells (ROBO1 CAR-NK cells)
9
CTCAE
Active, not recruiting
May 20
M
no
NCT03168139
I/II
N/A
Olapteselpegol + pembrolizumab + combination therapy
20
AEs, ECG, vital signs
Completed
Mar 20
M
no
NCT03153410
I
N/A
Cyclophosphamide, GVAX, pembrolizumab, IMC-CS4
12
OS, DFS, ORR, RECIST, resectability, pRR, PFS
Active, not recruiting
Sep 20
BR
yes
NCT03816358
I/II
Non-R
Anetumab ravtansine, gemcitabine, ipilimumab, nivolumab
64
MTD
Recruiting
Apr 21
NR/M
no
NCT04050085
I
N/A
Nivolumab, radiation Tx, TLR9 agonist SD-101
6
AE, clinical laboratory
Recruiting
Aug 20
M, Progress after SoC
no
NCT03373188
I
R
Anti-SEMA4D monoclonal antibody, VX15/2503, ipilimumab, nivolumab
32
T cell infiltration
Recruiting
Dec 22
Re
yes
NCT03970252
I/II
N/A
Fluorouracil, irinotecan, leucovorin, nivolumab, oxaliplatin
36
Pancreatic fistula, pCR
Recruiting
Apr 22
BR
yes
NCT03252808
I
R
TBI-1401 (HF10), gemcitabine, nab-paclitaxel, TS-1
36
AEs, ORR, RECIST, PFS
Active, not recruiting
Mar 35
NR/M
no
NCT03269526
I/II
N/A
EGFR BATs
22
AEs, OS
Recruiting
Mar 23
NR/M
no
NCT03767582
I/II
R
SBRT
30
CTCAE, immune response
Recruiting
Mar 22
NR
no
NCT03745326
I/II
Non-R
Cyclophosphamide, fludarabine, aldesleukin, anti-KRAS G12D mTCR PBL
70
AEs, response rate
Recruiting
Dec 28
NR/M
no
NCT03953235
I/II
Non-R
GRT-C903, GRT-R904, nivolumab, ipilimumab
144
AEs, SAEs, DLT, ORR, RECIST, RP2D
Recruiting
Dec 23
NR/M
no
NCT01351103
I
Non-R
LGK974, PDR001
184
MTD, RDE
Recruiting
Mar 22
NR/M, progress after SoC
no
NCT03058289
I/II
Non-R
INT230-6, anti-PD-1 antibody, anti-CTLA-4 antibody
110
CTCAE
Recruiting
Oct 22
Progress after SoC
no
NCT03611556
I/II
R
Oleclumab, durvalumab, gemcitabine, nab-paclitaxel, oxaliplatin, leucovorin, 5-FU
339
AEs, ORR, RECIST, ECG, clinical laboratory
Active, not recruiting
Dec 21
M
no
NCT03336216
II
R
Cabiralizumab, nab-paclitaxel, onivyde, nivolumab, fluoruracil, gemcitabine, oxaliplatin, leucovorin, irinotecan
179
PFS, RECIST
Active, not recruiting
Dec 20
NR/M, progress after SoC
no
NCT02907099
II
N/A
CXCR4 antagonist BL-8040, pembrolizumab
23
ORR, RECIST
Active, not recruiting
Dec 22
Progress after SoC
no
NCT03161379
II
N/A
Clyclophosphamide, nivolumab, GVAX, SBRT
50
pCR
Recruiting
Jan 23
BR
yes
NCT03723915
II
N/A
Pembrolizumab, wild-type reovirus
30
ORR, RECIST
Active, not recruiting
Jun 21
NR/M, progress after SoC
no
NCT02305186
I/II
R
Pembrolizumab, NeoCRTx
56
Number of TILs, DLT
Active, not recruiting
Dec 22
Re/BR
yes
NCT03563248
II
R
FOLFIRINOX, losartan, nivolumab, SBRT
160
R0-resection rate
Recruiting
Dec 25
BR/LA
yes
NCT01088789
II
R
PANC 10.05 pcDNA-1/GM-Neo and PANC 6.03 pcDNA-1 neo vaccine.
72
DFS, CTCAE
Recruiting
Apr 23
Re/BR
yes
NCT03190265
II
R
Cyclophosphamide, nivolumab, ipilimumab, GVAX pancreas vaccine, CRS-207
63
ORR, RECIST
Recruiting
Oct 23
M
no
NCT03006302
II
R
Epacadostat, pembrolizumab, CRS-207, CY, GVAX
70
Recommended dose, 6-months survival
Recruiting
Jun 23
NR/M, progress after SoC
no
NCT01896869
II
R
Ipilimumab, vaccine, FOLFIRINOX
83
OS
Completed
May 19
M
no
NCT03250273
II
Non-R
Entinostat, nivolumab
54
ORR, RECIST
Recruiting
Nov 20
NR/M
no
NCT03717298
II
N/A
Ocoxin-Viusid®
30
EORTC QLQ-C30,
Recruiting
Dec 20
NR/M
no
NCT03767582
I/II
R
SBRT, nivolumab, CCR2/CCR5 dual antagonist, GVAX
30
CTCAE, immune response
Recruiting
Mar 22
LA
yes
NCT02446093
II
R
GMCI, CTx, radiation, surgery
38
Resection rate, CTC
Recruiting
Dec 22
BR/LA
yes
NCT03727880
II
R
Pembrolizumab, defactinib
36
pCR
Recruiting
May 23
Re
yes
NCT03806309
II
R
FOLFIRI, OSE2102, nivolumab
156
OS
Recruiting
Dec 23
LA/M
no
NCT03977272
III
R
Combination drug, CTx
110
OS
Recruiting
Mar 22
M
no
NCT03983057
III
R
Anti-PD-1 monoclinal antibody
830
PFS
Recruiting
Apr 22
BR/LA
yes
R randomized, Non-R non randomized, LA locally advanced, NR not resectable, M metastatic, Re resectable, PR partial response, CR complete response, pCR pathological complete response, pRR pathological response rate, DCR disease control rate, AE adverse events, CAR T cells chimeric antigen receptor modified T cells, IRE irreversible electroporation, PFS progression-free survival, OS overall survival, RECIST response evaluation criteria in solid tumors, SoC standard of care, CTx chemotherapy, ATx adjuvant therapy, DHT delayed hypersensibility, CTCAE common terminology criteria for adverse events, ECG electrocardiogram, PFS progression-free survival, MTD maximum tolerated dose, STBR stereotactic body radiation, ORR objective response rate, RP2D recommended phase 2 dose, RDE recommended dose for expansion, DCR disease control rate, TIL tumor-infiltrating lymphocytes, DLT dose-limiting toxicity
In low mutational tumors such as PCa, neoTx may be particularly beneficial to potentiate the antitumor immune response compared with adjuvant approaches, as the tumor epithelium itself remains an essential source for the release of tumor antigens and cross-priming of tumor-directed T cell responses. This important reservoir for induction of tumor-directed immune responses is no longer available after tumor resection [52]. Liu et al. administrated various combination immunotherapies in either neoadjuvant or adjuvant setting and discovered that regardless of the type of immunotherapy used, neoadjuvant approaches were superior to adjuvant treatments in primary breast tumors [53]. In line with these observations, Brooks et al. demonstrated that only the combination of neoadjuvantly applied gemcitabine and a PD-1 inhibitor, but not adjuvant treatment, effectively suppressed local tumor recurrence and improved survival in a transgenic mouse model of PCa [52].

Conclusion

NeoTx leads to an immunologic shift toward a more effective antitumor immune response in the pancreatic TME, which recently provided impetus for studying the possibility of combining neoTx with immunotherapy in patients with PCa. Furthermore, neoTx leads to increased R0 resection rates and reduces the complexity of pancreatic surgical resections in LA/BR PCa patients. After neoTx, the postoperative morbidity associated with AR in pancreatectomy was similar to less radical approaches, leading the way to more sophisticated and radical surgical strategies in PCa. However, for resectable PCa, the overall survival benefit through neoTx does not exist in a convincing extent. Optimal drug regimens, timing of surgery with regard to therapy, and the role of additional immunotherapy still need to be defined. Balancing the optimal therapy for PCa will be complex and will require correct patient stratification, the use of combination strategies, and improved interdisciplinary cooperation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. The article does not contain any animal experiments.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
2.
Zurück zum Zitat Tempero MA, Malafa MP, Chiorean EG, Czito B, Scaife C, Narang AK, Fountzilas C, Wolpin BM, Al-Hawary M, Asbun H, Behrman SW, Benson AB, Binder E, Cardin DB, Cha C, Chung V, Dillhoff M, Dotan E, Ferrone CR, Fisher G, Hardacre J, Hawkins WG, Ko AH, LoConte N, Lowy AM, Moravek C, Nakakura EK, O’Reilly EM, Obando J, Reddy S, Thayer S, Wolff RA, Burns JL, Zuccarino-Catania G (2019) Pancreatic adenocarcinoma, Version 1.2019. J Natl Compr Cancer Netw 17(3):202–210. https://doi.org/10.6004/jnccn.2019.0014CrossRef Tempero MA, Malafa MP, Chiorean EG, Czito B, Scaife C, Narang AK, Fountzilas C, Wolpin BM, Al-Hawary M, Asbun H, Behrman SW, Benson AB, Binder E, Cardin DB, Cha C, Chung V, Dillhoff M, Dotan E, Ferrone CR, Fisher G, Hardacre J, Hawkins WG, Ko AH, LoConte N, Lowy AM, Moravek C, Nakakura EK, O’Reilly EM, Obando J, Reddy S, Thayer S, Wolff RA, Burns JL, Zuccarino-Catania G (2019) Pancreatic adenocarcinoma, Version 1.2019. J Natl Compr Cancer Netw 17(3):202–210. https://​doi.​org/​10.​6004/​jnccn.​2019.​0014CrossRef
7.
Zurück zum Zitat Versteijne E, Suker M, Groothuis K, Akkermans-Vogelaar JM, Besselink MG, Bonsing BA, Buijsen J, Busch OR, Creemers GM, van Dam RM, Eskens F, Festen S, de Groot JWB, Groot Koerkamp B, de Hingh IH, Homs MYV, van Hooft JE, Kerver ED, Luelmo SAC, Neelis KJ, Nuyttens J, Paardekooper G, Patijn GA, van der Sangen MJC, de Vos-Geelen J, Wilmink JW, Zwinderman AH, Punt CJ, van Eijck CH, van Tienhoven G, Dutch Pancreatic Cancer G (2020) Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the Dutch randomized phase III PREOPANC trial. J Clin Oncol 38:JCO1902274–JCO1901773. https://doi.org/10.1200/JCO.19.02274CrossRef Versteijne E, Suker M, Groothuis K, Akkermans-Vogelaar JM, Besselink MG, Bonsing BA, Buijsen J, Busch OR, Creemers GM, van Dam RM, Eskens F, Festen S, de Groot JWB, Groot Koerkamp B, de Hingh IH, Homs MYV, van Hooft JE, Kerver ED, Luelmo SAC, Neelis KJ, Nuyttens J, Paardekooper G, Patijn GA, van der Sangen MJC, de Vos-Geelen J, Wilmink JW, Zwinderman AH, Punt CJ, van Eijck CH, van Tienhoven G, Dutch Pancreatic Cancer G (2020) Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the Dutch randomized phase III PREOPANC trial. J Clin Oncol 38:JCO1902274–JCO1901773. https://​doi.​org/​10.​1200/​JCO.​19.​02274CrossRef
16.
Zurück zum Zitat Golcher H, Brunner TB, Witzigmann H, Marti L, Bechstein WO, Bruns C, Jungnickel H, Schreiber S, Grabenbauer GG, Meyer T, Merkel S, Fietkau R, Hohenberger W (2015) Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther Onkol 191(1):7–16CrossRefPubMed Golcher H, Brunner TB, Witzigmann H, Marti L, Bechstein WO, Bruns C, Jungnickel H, Schreiber S, Grabenbauer GG, Meyer T, Merkel S, Fietkau R, Hohenberger W (2015) Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther Onkol 191(1):7–16CrossRefPubMed
17.
Zurück zum Zitat Casadei R, Di Marco M, Ricci C, Santini D, Serra C, Calculli L, D’Ambra M, Guido A, Morselli-Labate AM, Minni F (2015) Neoadjuvant chemoradiotherapy and surgery versus surgery alone in resectable pancreatic cancer: a single-center prospective, randomized, controlled trial which failed to achieve accrual targets. J Gastrointest Surg 19(10):1802–1812. https://doi.org/10.1007/s11605-015-2890-4CrossRefPubMed Casadei R, Di Marco M, Ricci C, Santini D, Serra C, Calculli L, D’Ambra M, Guido A, Morselli-Labate AM, Minni F (2015) Neoadjuvant chemoradiotherapy and surgery versus surgery alone in resectable pancreatic cancer: a single-center prospective, randomized, controlled trial which failed to achieve accrual targets. J Gastrointest Surg 19(10):1802–1812. https://​doi.​org/​10.​1007/​s11605-015-2890-4CrossRefPubMed
18.
Zurück zum Zitat Reni M, Balzano G, Zanon S, Zerbi A, Rimassa L, Castoldi R, Pinelli D, Mosconi S, Doglioni C, Chiaravalli M, Pircher C, Arcidiacono PG, Torri V, Maggiora P, Ceraulo D, Falconi M, Gianni L (2018) Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): a randomised, open-label, phase 2-3 trial. Lancet Gastroenterol Hepatol 3(6):413–423. https://doi.org/10.1016/S2468-1253(18)30081-5CrossRefPubMed Reni M, Balzano G, Zanon S, Zerbi A, Rimassa L, Castoldi R, Pinelli D, Mosconi S, Doglioni C, Chiaravalli M, Pircher C, Arcidiacono PG, Torri V, Maggiora P, Ceraulo D, Falconi M, Gianni L (2018) Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): a randomised, open-label, phase 2-3 trial. Lancet Gastroenterol Hepatol 3(6):413–423. https://​doi.​org/​10.​1016/​S2468-1253(18)30081-5CrossRefPubMed
20.
Zurück zum Zitat Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7(4):e1000267CrossRefPubMedPubMedCentral Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7(4):e1000267CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Demir IE, Jager C, Schlitter AM, Konukiewitz B, Stecher L, Schorn S, Tieftrunk E, Scheufele F, Calavrezos L, Schirren R, Esposito I, Weichert W, Friess H, Ceyhan GO (2018) R0 versus R1 resection matters after pancreaticoduodenectomy, and less after distal or total pancreatectomy for pancreatic cancer. Ann Surg 268(6):1058–1068. https://doi.org/10.1097/SLA.0000000000002345CrossRefPubMed Demir IE, Jager C, Schlitter AM, Konukiewitz B, Stecher L, Schorn S, Tieftrunk E, Scheufele F, Calavrezos L, Schirren R, Esposito I, Weichert W, Friess H, Ceyhan GO (2018) R0 versus R1 resection matters after pancreaticoduodenectomy, and less after distal or total pancreatectomy for pancreatic cancer. Ann Surg 268(6):1058–1068. https://​doi.​org/​10.​1097/​SLA.​0000000000002345​CrossRefPubMed
26.
Zurück zum Zitat Chatelain D, Flejou JF (2002) Pancreatectomy for adenocarcinoma: prognostic factors, recommendations for pathological reports. Ann Pathol 22(5):422–431PubMed Chatelain D, Flejou JF (2002) Pancreatectomy for adenocarcinoma: prognostic factors, recommendations for pathological reports. Ann Pathol 22(5):422–431PubMed
31.
34.
Zurück zum Zitat Klompmaker S, Peters NA, van Hilst J, Bassi C, Boggi U, Busch OR, Niesen W, Van Gulik TM, Javed AA, Kleeff J, Kawai M, Lesurtel M, Lombardo C, Moser AJ, Okada KI, Popescu I, Prasad R, Salvia R, Sauvanet A, Sturesson C, Weiss MJ, Zeh HJ, Zureikat AH, Yamaue H, Wolfgang CL, Hogg ME, Besselink MG, group EAD-Cs (2019) Outcomes and risk score for distal pancreatectomy with celiac axis resection (DP-CAR): an international multicenter analysis. Ann Surg Oncol 26(3):772–781. https://doi.org/10.1245/s10434-018-07101-0CrossRefPubMedPubMedCentral Klompmaker S, Peters NA, van Hilst J, Bassi C, Boggi U, Busch OR, Niesen W, Van Gulik TM, Javed AA, Kleeff J, Kawai M, Lesurtel M, Lombardo C, Moser AJ, Okada KI, Popescu I, Prasad R, Salvia R, Sauvanet A, Sturesson C, Weiss MJ, Zeh HJ, Zureikat AH, Yamaue H, Wolfgang CL, Hogg ME, Besselink MG, group EAD-Cs (2019) Outcomes and risk score for distal pancreatectomy with celiac axis resection (DP-CAR): an international multicenter analysis. Ann Surg Oncol 26(3):772–781. https://​doi.​org/​10.​1245/​s10434-018-07101-0CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Nakamura T, Hirano S, Noji T, Asano T, Okamura K, Tsuchikawa T, Murakami S, Kurashima Y, Ebihara Y, Nakanishi Y, Tanaka K, Shichinohe T (2016) Distal pancreatectomy with en bloc celiac axis resection (modified appleby procedure) for locally advanced pancreatic body cancer: a single-center review of 80 consecutive patients. Ann Surg Oncol 23(Suppl 5):969–975. https://doi.org/10.1245/s10434-016-5493-8CrossRefPubMed Nakamura T, Hirano S, Noji T, Asano T, Okamura K, Tsuchikawa T, Murakami S, Kurashima Y, Ebihara Y, Nakanishi Y, Tanaka K, Shichinohe T (2016) Distal pancreatectomy with en bloc celiac axis resection (modified appleby procedure) for locally advanced pancreatic body cancer: a single-center review of 80 consecutive patients. Ann Surg Oncol 23(Suppl 5):969–975. https://​doi.​org/​10.​1245/​s10434-016-5493-8CrossRefPubMed
38.
Zurück zum Zitat Yoshiya S, Fukuzawa K, Inokuchi S, Kosai-Fujimoto Y, Sanefuji K, Iwaki K, Motohiro A, Itoh S, Harada N, Ikegami T, Yoshizumi T, Mori M (2020) Efficacy of neoadjuvant chemotherapy in distal pancreatectomy with en bloc celiac axis resection (DP-CAR) for locally advanced pancreatic cancer. J Gastrointest Surg 24(7):1605–1611. https://doi.org/10.1007/s11605-019-04324-8CrossRefPubMed Yoshiya S, Fukuzawa K, Inokuchi S, Kosai-Fujimoto Y, Sanefuji K, Iwaki K, Motohiro A, Itoh S, Harada N, Ikegami T, Yoshizumi T, Mori M (2020) Efficacy of neoadjuvant chemotherapy in distal pancreatectomy with en bloc celiac axis resection (DP-CAR) for locally advanced pancreatic cancer. J Gastrointest Surg 24(7):1605–1611. https://​doi.​org/​10.​1007/​s11605-019-04324-8CrossRefPubMed
40.
Zurück zum Zitat Kato H, Usui M, Isaji S, Nagakawa T, Wada K, Unno M, Nakao A, Miyakawa S, Ohta T (2013) Clinical features and treatment outcome of borderline resectable pancreatic head/body cancer: a multi-institutional survey by the Japanese Society of Pancreatic Surgery. J Hepatobiliary Pancreat Sci 20(6):601–610. https://doi.org/10.1007/s00534-013-0595-1CrossRefPubMed Kato H, Usui M, Isaji S, Nagakawa T, Wada K, Unno M, Nakao A, Miyakawa S, Ohta T (2013) Clinical features and treatment outcome of borderline resectable pancreatic head/body cancer: a multi-institutional survey by the Japanese Society of Pancreatic Surgery. J Hepatobiliary Pancreat Sci 20(6):601–610. https://​doi.​org/​10.​1007/​s00534-013-0595-1CrossRefPubMed
42.
47.
Zurück zum Zitat Limagne E, Euvrard R, Thibaudin M, Rebe C, Derangere V, Chevriaux A, Boidot R, Vegran F, Bonnefoy N, Vincent J, Bengrine-Lefevre L, Ladoire S, Delmas D, Apetoh L, Ghiringhelli F (2016) Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res 76(18):5241–5252. https://doi.org/10.1158/0008-5472.CAN-15-3164CrossRefPubMed Limagne E, Euvrard R, Thibaudin M, Rebe C, Derangere V, Chevriaux A, Boidot R, Vegran F, Bonnefoy N, Vincent J, Bengrine-Lefevre L, Ladoire S, Delmas D, Apetoh L, Ghiringhelli F (2016) Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res 76(18):5241–5252. https://​doi.​org/​10.​1158/​0008-5472.​CAN-15-3164CrossRefPubMed
51.
Zurück zum Zitat Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra137. https://doi.org/10.1126/scitranslmed.3003689CrossRef Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra137. https://​doi.​org/​10.​1126/​scitranslmed.​3003689CrossRef
52.
Zurück zum Zitat Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters K, Demir IE, Armbrecht N, Ceyhan GO, Manns MP, Wirth TC, Kubicka S, Bernhardt G, Smyth MJ, Calvisi DF, Gürlevik E, Kühnel F (2018) Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 78(2):475–488. https://doi.org/10.1158/0008-5472.can-17-2415CrossRefPubMed Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters K, Demir IE, Armbrecht N, Ceyhan GO, Manns MP, Wirth TC, Kubicka S, Bernhardt G, Smyth MJ, Calvisi DF, Gürlevik E, Kühnel F (2018) Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 78(2):475–488. https://​doi.​org/​10.​1158/​0008-5472.​can-17-2415CrossRefPubMed
Metadaten
Titel
Neoadjuvant therapy in pancreatic cancer: what is the true oncological benefit?
verfasst von
Lei Ren
Carmen Mota Reyes
Helmut Friess
Ihsan Ekin Demir
Publikationsdatum
10.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Langenbeck's Archives of Surgery / Ausgabe 7/2020
Print ISSN: 1435-2443
Elektronische ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-020-01946-4

Weitere Artikel der Ausgabe 7/2020

Langenbeck's Archives of Surgery 7/2020 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.