Skip to main content
Erschienen in: Brain Structure and Function 3/2016

10.01.2015 | Original Article

Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue

verfasst von: Szilvia Kecskes, Clara Matesz, Botond Gaál, András Birinyi

Erschienen in: Brain Structure and Function | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal–vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior.
Literatur
Zurück zum Zitat Anderson CW (2001) Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens. Exp Brain Res 140:12–19CrossRefPubMed Anderson CW (2001) Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens. Exp Brain Res 140:12–19CrossRefPubMed
Zurück zum Zitat Anderson CW, Nishikawa KC (1993) A prey-type dependent hypoglossal feedback system in the frog Rana pipiens. Brain Behav Evol 42:189–196CrossRefPubMed Anderson CW, Nishikawa KC (1993) A prey-type dependent hypoglossal feedback system in the frog Rana pipiens. Brain Behav Evol 42:189–196CrossRefPubMed
Zurück zum Zitat Anderson CW, Nishikawa KC (1996) The roles of visual and proprioceptive information during motor program choice in frogs. J Comp Physiol A 179:753–762CrossRefPubMed Anderson CW, Nishikawa KC (1996) The roles of visual and proprioceptive information during motor program choice in frogs. J Comp Physiol A 179:753–762CrossRefPubMed
Zurück zum Zitat Anderson CW, Nishikawa KC (1997) The functional anatomy and evolution of hypoglossal afferents in the leopard frog, Rana pipiens. Brain Res 771:285–291 (pii: S0006-8993(97)00803-2)CrossRefPubMed Anderson CW, Nishikawa KC (1997) The functional anatomy and evolution of hypoglossal afferents in the leopard frog, Rana pipiens. Brain Res 771:285–291 (pii: S0006-8993(97)00803-2)CrossRefPubMed
Zurück zum Zitat Anderson CW, Nishikawa KC, Keifer J (1998) Distribution of hypoglossal motor neurons innervating the prehensile tongue of the African pig-nosed frog, Hemisus marmoratum. Neurosci Lett 244:5–8 (pii: S0304-3940(98)00111-6)CrossRefPubMed Anderson CW, Nishikawa KC, Keifer J (1998) Distribution of hypoglossal motor neurons innervating the prehensile tongue of the African pig-nosed frog, Hemisus marmoratum. Neurosci Lett 244:5–8 (pii: S0304-3940(98)00111-6)CrossRefPubMed
Zurück zum Zitat Antal M, Tornai I, Szekely G (1980) Longitudinal extent of dorsal root fibres in the spinal cord and brain stem of the frog. Neuroscience 5:1311–1322 (pii: 0306-4522(80)90203-1)CrossRefPubMed Antal M, Tornai I, Szekely G (1980) Longitudinal extent of dorsal root fibres in the spinal cord and brain stem of the frog. Neuroscience 5:1311–1322 (pii: 0306-4522(80)90203-1)CrossRefPubMed
Zurück zum Zitat Bailey EF, Jones CL, Reeder JC, Fuller DD, Fregosi RF (2001) Effect of pulmonary stretch receptor feedback and CO(2) on upper airway and respiratory pump muscle activity in the rat. J Physiol 532(Pt 2):525–534 (pii: PHY_11560)CrossRefPubMedPubMedCentral Bailey EF, Jones CL, Reeder JC, Fuller DD, Fregosi RF (2001) Effect of pulmonary stretch receptor feedback and CO(2) on upper airway and respiratory pump muscle activity in the rat. J Physiol 532(Pt 2):525–534 (pii: PHY_11560)CrossRefPubMedPubMedCentral
Zurück zum Zitat Birinyi A, Szekely G, Csapo K, Matesz C (2004) Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog Rana esculenta. J Comp Neurol 470:409–421. doi:10.1002/cne.20006 CrossRefPubMed Birinyi A, Szekely G, Csapo K, Matesz C (2004) Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog Rana esculenta. J Comp Neurol 470:409–421. doi:10.​1002/​cne.​20006 CrossRefPubMed
Zurück zum Zitat Dean J (1980) Effect of thermal and chemical-components of bombardier beetle chemical defense—glossopharyngeal response in 2 species of toads (Bufo-Americanus, Bufo-Marinus). J Comp Physiol 135:51–59CrossRef Dean J (1980) Effect of thermal and chemical-components of bombardier beetle chemical defense—glossopharyngeal response in 2 species of toads (Bufo-Americanus, Bufo-Marinus). J Comp Physiol 135:51–59CrossRef
Zurück zum Zitat Dicke U, Roth G, Matsushima T (1998) Neural substrate for motor control of feeding in amphibians. Acta Anat (Basel) 163:127–143 (pii: 46492)CrossRef Dicke U, Roth G, Matsushima T (1998) Neural substrate for motor control of feeding in amphibians. Acta Anat (Basel) 163:127–143 (pii: 46492)CrossRef
Zurück zum Zitat Elmund J, Bowman JP, Morgan RJ (1983) Vestibular influence on tongue activity. Exp Neurol 81:126–140 (pii: 0014-4886(83)90162-0)CrossRefPubMed Elmund J, Bowman JP, Morgan RJ (1983) Vestibular influence on tongue activity. Exp Neurol 81:126–140 (pii: 0014-4886(83)90162-0)CrossRefPubMed
Zurück zum Zitat Ewert JP (1984) Tectal mechanism that underlies prey-catching and avoidance behavior in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416CrossRef Ewert JP (1984) Tectal mechanism that underlies prey-catching and avoidance behavior in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416CrossRef
Zurück zum Zitat Ewert JP, Schurg-Pfeiffer E, Weerasuriya A (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71:590–591CrossRefPubMed Ewert JP, Schurg-Pfeiffer E, Weerasuriya A (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71:590–591CrossRefPubMed
Zurück zum Zitat Ewert JP, Buxbaum-Conradi H, Glagow M, Rottgen A, Schurg-Pfeiffer E, Schwippert WW (1999) Forebrain and midbrain structures involved in prey-catching behaviour of toads: stimulus-response mediating circuits and their modulating loops. Eur J Morphol 37:172–176CrossRefPubMed Ewert JP, Buxbaum-Conradi H, Glagow M, Rottgen A, Schurg-Pfeiffer E, Schwippert WW (1999) Forebrain and midbrain structures involved in prey-catching behaviour of toads: stimulus-response mediating circuits and their modulating loops. Eur J Morphol 37:172–176CrossRefPubMed
Zurück zum Zitat Fanardjian VV, Sarkisian VS (1988) Synaptic mechanisms of interaction between Deiters’ nucleus and the nuclei of some cranial nerves. Neuroscience 24:135–142 (pii: 0306-4522(88)90318-1)CrossRefPubMed Fanardjian VV, Sarkisian VS (1988) Synaptic mechanisms of interaction between Deiters’ nucleus and the nuclei of some cranial nerves. Neuroscience 24:135–142 (pii: 0306-4522(88)90318-1)CrossRefPubMed
Zurück zum Zitat Fregosi RF, Fuller DD (1997) Respiratory-related control of extrinsic tongue muscle activity. Respir Physiol 110:295–306CrossRefPubMed Fregosi RF, Fuller DD (1997) Respiratory-related control of extrinsic tongue muscle activity. Respir Physiol 110:295–306CrossRefPubMed
Zurück zum Zitat Gaupp E (1904) A. Ecker’s und R. Wiedersheim’s Anatomie des Frosches vol 3. Vieweg und Sohn, Braunschweig Gaupp E (1904) A. Ecker’s und R. Wiedersheim’s Anatomie des Frosches vol 3. Vieweg und Sohn, Braunschweig
Zurück zum Zitat Harwood DV, Anderson CW (2000) Evidence for the anatomical origins of hypoglossal afferents in the tongue of the leopard frog, Rana pipiens. Brain Res 862:288–291 (pii: S0006-8993(00)02146-6)CrossRefPubMed Harwood DV, Anderson CW (2000) Evidence for the anatomical origins of hypoglossal afferents in the tongue of the leopard frog, Rana pipiens. Brain Res 862:288–291 (pii: S0006-8993(00)02146-6)CrossRefPubMed
Zurück zum Zitat Ishiwata Y, Ono T, Kuroda T, Nakamura Y (2000) Jaw-tongue reflex: afferents, central pathways, and synaptic potentials in hypoglossal motoneurons in the cat. J Dent Res 79:1626–1634CrossRefPubMed Ishiwata Y, Ono T, Kuroda T, Nakamura Y (2000) Jaw-tongue reflex: afferents, central pathways, and synaptic potentials in hypoglossal motoneurons in the cat. J Dent Res 79:1626–1634CrossRefPubMed
Zurück zum Zitat Kecskes S, Matesz C, Birinyi A (2013) Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior. Brain Res Bull 99:109–116. doi:10.1016/j.brainresbull.2013.09.006 CrossRefPubMed Kecskes S, Matesz C, Birinyi A (2013) Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior. Brain Res Bull 99:109–116. doi:10.​1016/​j.​brainresbull.​2013.​09.​006 CrossRefPubMed
Zurück zum Zitat Krammer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537 (pii: 0006-8993(79)90970-3)CrossRefPubMed Krammer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537 (pii: 0006-8993(79)90970-3)CrossRefPubMed
Zurück zum Zitat Kumai T (1981) Reflex response of the hypoglossal nerve induced by gustatory stimulation of the frog tongue. Brain Res 208:432–435 (pii: 0006-8993(81)90572-2)CrossRefPubMed Kumai T (1981) Reflex response of the hypoglossal nerve induced by gustatory stimulation of the frog tongue. Brain Res 208:432–435 (pii: 0006-8993(81)90572-2)CrossRefPubMed
Zurück zum Zitat Llinás RR, Precht W, Capranica RR (1976) Frog neurobiology : a handbook. Springer, BerlinCrossRef Llinás RR, Precht W, Capranica RR (1976) Frog neurobiology : a handbook. Springer, BerlinCrossRef
Zurück zum Zitat Luo P, Moritani M, Dessem D (2001) Jaw-muscle spindle afferent pathways to the trigeminal motor nucleus in the rat. J Comp Neurol 435:341–353CrossRefPubMed Luo P, Moritani M, Dessem D (2001) Jaw-muscle spindle afferent pathways to the trigeminal motor nucleus in the rat. J Comp Neurol 435:341–353CrossRefPubMed
Zurück zum Zitat Lysakowski A (1996) Synaptic organization of the crista ampullaris in vertebrates. Ann N Y Acad Sci 781:164–182CrossRefPubMed Lysakowski A (1996) Synaptic organization of the crista ampullaris in vertebrates. Ann N Y Acad Sci 781:164–182CrossRefPubMed
Zurück zum Zitat Mameli O, Tolu E (1986) Vestibular ampullar modulation of hypoglossal neurons. Physiol Behav 37:773–775 (pii: 0031-9384(86)90183-6)CrossRefPubMed Mameli O, Tolu E (1986) Vestibular ampullar modulation of hypoglossal neurons. Physiol Behav 37:773–775 (pii: 0031-9384(86)90183-6)CrossRefPubMed
Zurück zum Zitat Mameli O, Tolu E, Melis F, Caria MA (1988) Labyrinthine projection to the hypoglossal nucleus. Brain Res Bull 20:83–88 (pii: 0361-9230(88)90011-1)CrossRefPubMed Mameli O, Tolu E, Melis F, Caria MA (1988) Labyrinthine projection to the hypoglossal nucleus. Brain Res Bull 20:83–88 (pii: 0361-9230(88)90011-1)CrossRefPubMed
Zurück zum Zitat Mameli O, Melis F, De Riu PL (1994) Visual and vestibular projections to tongue motoneurons. Brain Res Bull 33:7–16 (pii: 0361-9230(94)90044-2)CrossRefPubMed Mameli O, Melis F, De Riu PL (1994) Visual and vestibular projections to tongue motoneurons. Brain Res Bull 33:7–16 (pii: 0361-9230(94)90044-2)CrossRefPubMed
Zurück zum Zitat Mandal R, Anderson CW (2010) Identification of muscle spindles in the submentalis muscle of the marine toad, Bufo marinus and its potential proprioceptive capacity in jaw-tongue coordination. Anat Rec (Hoboken) 293:1568–1573. doi:10.1002/ar.21197 CrossRef Mandal R, Anderson CW (2010) Identification of muscle spindles in the submentalis muscle of the marine toad, Bufo marinus and its potential proprioceptive capacity in jaw-tongue coordination. Anat Rec (Hoboken) 293:1568–1573. doi:10.​1002/​ar.​21197 CrossRef
Zurück zum Zitat Matesz C (1979) Central projection of the VIIIth cranial nerve in the frog. Neuroscience 4:2061–2071 (pii: 0306-4522(79)90078-2)CrossRefPubMed Matesz C (1979) Central projection of the VIIIth cranial nerve in the frog. Neuroscience 4:2061–2071 (pii: 0306-4522(79)90078-2)CrossRefPubMed
Zurück zum Zitat Matesz C (1994) Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta). Eur J Morphol 32:117–121PubMed Matesz C (1994) Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta). Eur J Morphol 32:117–121PubMed
Zurück zum Zitat Matesz C, Szekely G (1977) The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol Acad Sci Hung 28:461–474PubMed Matesz C, Szekely G (1977) The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol Acad Sci Hung 28:461–474PubMed
Zurück zum Zitat Matesz C, Schmidt I, Szabo L, Birinyi A, Szekely G (1999) Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog. Eur J Morphol 37:190–194CrossRefPubMed Matesz C, Schmidt I, Szabo L, Birinyi A, Szekely G (1999) Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog. Eur J Morphol 37:190–194CrossRefPubMed
Zurück zum Zitat Matesz K, Kecskes S, Bacskai T, Racz E, Birinyi A (2014) Brainstem circuits underlying the prey-catching behavior of the frog. Brain Behav Evol 83:104–111. doi:10.1159/000357751 PubMed Matesz K, Kecskes S, Bacskai T, Racz E, Birinyi A (2014) Brainstem circuits underlying the prey-catching behavior of the frog. Brain Behav Evol 83:104–111. doi:10.​1159/​000357751 PubMed
Zurück zum Zitat Matsushima TA, Satou M, Ueda K (1986) Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad. Brain Res 365:198–203CrossRefPubMed Matsushima TA, Satou M, Ueda K (1986) Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad. Brain Res 365:198–203CrossRefPubMed
Zurück zum Zitat Matsushima T, Satou M, Ueda K (1987) Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double labeling with cobaltic-lysine and horseradish peroxidase in the Japanese toad. Neurosci Lett 80:241–245CrossRefPubMed Matsushima T, Satou M, Ueda K (1987) Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double labeling with cobaltic-lysine and horseradish peroxidase in the Japanese toad. Neurosci Lett 80:241–245CrossRefPubMed
Zurück zum Zitat Montuelle SJ, Herrel A, Libourel PA, Reveret L, Bels VL (2009) Locomotor-feeding coupling during prey capture in a lizard (Gerrhosaurus major): effects of prehension mode. J Exp Biol 212:768–777. doi:10.1242/jeb.026617 CrossRefPubMed Montuelle SJ, Herrel A, Libourel PA, Reveret L, Bels VL (2009) Locomotor-feeding coupling during prey capture in a lizard (Gerrhosaurus major): effects of prehension mode. J Exp Biol 212:768–777. doi:10.​1242/​jeb.​026617 CrossRefPubMed
Zurück zum Zitat Morimoto T, Takebe H, Sakan I, Kawamura Y (1978) Reflex activation of extrinsic tongue muscles by jaw closing muscle proprioceptors. Jpn J Physiol 28:461–471CrossRefPubMed Morimoto T, Takebe H, Sakan I, Kawamura Y (1978) Reflex activation of extrinsic tongue muscles by jaw closing muscle proprioceptors. Jpn J Physiol 28:461–471CrossRefPubMed
Zurück zum Zitat Morimoto T, Inoue T, Masuda Y, Nagashima T (1989) Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res 76:424–440CrossRefPubMed Morimoto T, Inoue T, Masuda Y, Nagashima T (1989) Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res 76:424–440CrossRefPubMed
Zurück zum Zitat Nakachi T, Ishiko N (1986) Gustatory signal processing in the glossopharyngeo-hypoglossal reflex arc of the frog. Jpn J Physiol 36:189–208CrossRefPubMed Nakachi T, Ishiko N (1986) Gustatory signal processing in the glossopharyngeo-hypoglossal reflex arc of the frog. Jpn J Physiol 36:189–208CrossRefPubMed
Zurück zum Zitat Nishikawa KC (2000) Feeding in frogs. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, pp 117–144CrossRef Nishikawa KC (2000) Feeding in frogs. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, pp 117–144CrossRef
Zurück zum Zitat Nishikawa KC, Gans C (1996) Mechanisms of tongue protraction and narial closure in the marine toad Bufo marinus. J Exp Biol 199:2511–2529PubMed Nishikawa KC, Gans C (1996) Mechanisms of tongue protraction and narial closure in the marine toad Bufo marinus. J Exp Biol 199:2511–2529PubMed
Zurück zum Zitat Nishikawa KC, Roth G, Dicke U (1991) Motor neurons and motor columns of the anterior spinal cord of salamanders: posthatching development and phylogenetic distribution. Brain Behav Evol 37:368–382CrossRefPubMed Nishikawa KC, Roth G, Dicke U (1991) Motor neurons and motor columns of the anterior spinal cord of salamanders: posthatching development and phylogenetic distribution. Brain Behav Evol 37:368–382CrossRefPubMed
Zurück zum Zitat Nishikawa KC, Anderson CW, Deban SM, O’Reilly JC (1992) The evolution of neural circuits controlling feeding behavior in frogs. Brain Behav Evol 40:125–140CrossRefPubMed Nishikawa KC, Anderson CW, Deban SM, O’Reilly JC (1992) The evolution of neural circuits controlling feeding behavior in frogs. Brain Behav Evol 40:125–140CrossRefPubMed
Zurück zum Zitat Oka Y, Takeuchi H, Satou M, Ueda K (1987) Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. J Comp Neurol 259:400–423. doi:10.1002/cne.902590308 CrossRefPubMed Oka Y, Takeuchi H, Satou M, Ueda K (1987) Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. J Comp Neurol 259:400–423. doi:10.​1002/​cne.​902590308 CrossRefPubMed
Zurück zum Zitat Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211:25–28 (pii: 0304394096127105)CrossRefPubMed Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211:25–28 (pii: 0304394096127105)CrossRefPubMed
Zurück zum Zitat Sauerland EK, Mitchell SP (1970) Electromyographic activity of the human Genioglossus muscle in response to respiration and to positional changes of the head. Bull Los Angeles Neurol Soc 35:69–73PubMed Sauerland EK, Mitchell SP (1970) Electromyographic activity of the human Genioglossus muscle in response to respiration and to positional changes of the head. Bull Los Angeles Neurol Soc 35:69–73PubMed
Zurück zum Zitat Stensaas LJ, Stensaas SS (1971) Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res 31:67–84 (pii: 0006-8993(71)90634-2)CrossRefPubMed Stensaas LJ, Stensaas SS (1971) Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res 31:67–84 (pii: 0006-8993(71)90634-2)CrossRefPubMed
Zurück zum Zitat Szekely G, Matesz C (1993) The efferent system of cranial nerve nuclei: a comparative neuromorphological study. Adv Anat Embryol Cell Biol 128:1–92CrossRefPubMed Szekely G, Matesz C (1993) The efferent system of cranial nerve nuclei: a comparative neuromorphological study. Adv Anat Embryol Cell Biol 128:1–92CrossRefPubMed
Zurück zum Zitat Takei K, Oka Y, Satou M, Ueda K (1987) Distribution of motoneurons involved in the prey-catching behavior in the Japanese toad, Bufo japonicus. Brain Res 410:395–400 (pii: 0006-8993(87)90346-5)CrossRefPubMed Takei K, Oka Y, Satou M, Ueda K (1987) Distribution of motoneurons involved in the prey-catching behavior in the Japanese toad, Bufo japonicus. Brain Res 410:395–400 (pii: 0006-8993(87)90346-5)CrossRefPubMed
Zurück zum Zitat Tolu E, Caria MA, Simula ME, Lacana P (1994) Muscle spindle and periodontal trigeminal afferents modulate the hypoglossal motoneuronal activity. Arch Ital Biol 132:93–104PubMed Tolu E, Caria MA, Simula ME, Lacana P (1994) Muscle spindle and periodontal trigeminal afferents modulate the hypoglossal motoneuronal activity. Arch Ital Biol 132:93–104PubMed
Zurück zum Zitat Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22:31–35 (pii: 0304-3940(81)90280-9)CrossRefPubMed Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22:31–35 (pii: 0304-3940(81)90280-9)CrossRefPubMed
Zurück zum Zitat Valdez CM, Nishikawa KC (1997) Sensory modulation and behavioral choice during feeding in the Australian frog, Cyclorana novaehollandiae. J Comp Physiol A 180:187–202CrossRefPubMed Valdez CM, Nishikawa KC (1997) Sensory modulation and behavioral choice during feeding in the Australian frog, Cyclorana novaehollandiae. J Comp Physiol A 180:187–202CrossRefPubMed
Zurück zum Zitat Weerasuriya A (1989) In search of the motor pattern generator for snapping in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum, New York Weerasuriya A (1989) In search of the motor pattern generator for snapping in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum, New York
Zurück zum Zitat Wouterlood FG, van Haeften T, Blijleven N, Perez-Templado P, Perez-Templado H (2002) Double-label confocal laser-scanning microscopy, image restoration, and real-time three-dimensional reconstruction to study axons in the central nervous system and their contacts with target neurons. Appl Immunohistochem Mol Morphol 10:85–95PubMed Wouterlood FG, van Haeften T, Blijleven N, Perez-Templado P, Perez-Templado H (2002) Double-label confocal laser-scanning microscopy, image restoration, and real-time three-dimensional reconstruction to study axons in the central nervous system and their contacts with target neurons. Appl Immunohistochem Mol Morphol 10:85–95PubMed
Zurück zum Zitat Wouterlood FG, Bockers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. J Neurosci Methods 128:129–142 (pii: S0165027003001717)CrossRefPubMed Wouterlood FG, Bockers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. J Neurosci Methods 128:129–142 (pii: S0165027003001717)CrossRefPubMed
Metadaten
Titel
Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue
verfasst von
Szilvia Kecskes
Clara Matesz
Botond Gaál
András Birinyi
Publikationsdatum
10.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 3/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0988-1

Weitere Artikel der Ausgabe 3/2016

Brain Structure and Function 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.