Skip to main content
Erschienen in: Neuroradiology 4/2008

01.04.2008 | Functional Neuroradiology

Neural correlates of simple unimanual discrete and continuous movements: a functional imaging study at 3 T

verfasst von: Christophe Habas, Emmanuel Alain Cabanis

Erschienen in: Neuroradiology | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The cerebral and cerebellar network involved in unimanual continuous and discrete movements was studied in blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) at 3 T.

Methods

Seven healthy right-handed volunteers were scanned (1) while drawing a circle with the tip of the right index finger (continuous motor task), and (2) while drawing a triangle with the tip of the right index finger (discrete motor task).

Results

In both motor tasks, extensive activations were observed in the sensorimotor (M1/S1), parietal, prefrontal, insular, lateral occipital (LOC) and anterior cerebellar cortices. Subcortical activations within red, thalamic and lentiform nuclei were also detected. However, discrete movements were specifically followed by the recruitment of the left orbitofrontal cortex, right dentate nucleus and the second cerebellar homunculus (HVIII), and bilateral and stronger activation of the sensorimotor cortical areas, whereas continuous movements specifically activated the right prefrontal cortex and the lateral hemispherical part of the neocerebellum (crus 1).

Conclusion

We confirm the findings of previous studies showing partly distinct neural networks involved in monitoring continuous and discrete movements, but we found new differential neural relays within the prefrontal, insular and neocerebellar cortices.
Literatur
1.
Zurück zum Zitat Spencer RMC, Verstynen T, Brett M, Ivry R (2007) Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage 36:378–387PubMedCrossRef Spencer RMC, Verstynen T, Brett M, Ivry R (2007) Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage 36:378–387PubMedCrossRef
2.
Zurück zum Zitat Spencer RM, Ivry RB, Zelaznik HN (2005) Role of the cerebellum in movements: control of timing or movements. Exp Brain Res 161:383–396PubMedCrossRef Spencer RM, Ivry RB, Zelaznik HN (2005) Role of the cerebellum in movements: control of timing or movements. Exp Brain Res 161:383–396PubMedCrossRef
3.
Zurück zum Zitat Spencer RM, Zelaznik HN, Diedrischsen J, Ivry RB (2003) Disrupted timing of continuous movements by cerebellar lesions. Science 300:1437–1439PubMedCrossRef Spencer RM, Zelaznik HN, Diedrischsen J, Ivry RB (2003) Disrupted timing of continuous movements by cerebellar lesions. Science 300:1437–1439PubMedCrossRef
4.
Zurück zum Zitat Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143PubMedCrossRef Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143PubMedCrossRef
5.
Zurück zum Zitat Gowen E, Miall RC (2007) Differentiation between external and internal cuing: a fMRI study comparing tracing with drawing. Neuroimage 36:396–410PubMedCrossRef Gowen E, Miall RC (2007) Differentiation between external and internal cuing: a fMRI study comparing tracing with drawing. Neuroimage 36:396–410PubMedCrossRef
6.
Zurück zum Zitat Hogan N, Dagmar S (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181:13–30PubMedCrossRef Hogan N, Dagmar S (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181:13–30PubMedCrossRef
7.
Zurück zum Zitat Lacquatini F, Terzuolo C, Viviani P (1983) The law relating kinematic and figural aspects of drawing movements. Acta Psychol 54:115–130CrossRef Lacquatini F, Terzuolo C, Viviani P (1983) The law relating kinematic and figural aspects of drawing movements. Acta Psychol 54:115–130CrossRef
8.
Zurück zum Zitat Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431PubMedCrossRef Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431PubMedCrossRef
9.
Zurück zum Zitat Verschueren SMP, Swinnen SP, Cordo PJ, Dounskaia NV (1999) Proprioceptive control of multijoint movement: unimanual circle drawing. Exp Brain Res 127:171–181PubMedCrossRef Verschueren SMP, Swinnen SP, Cordo PJ, Dounskaia NV (1999) Proprioceptive control of multijoint movement: unimanual circle drawing. Exp Brain Res 127:171–181PubMedCrossRef
10.
Zurück zum Zitat Habas C, Axelrad H, Nguyen TH, Cabanis EA (2004) Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport 15:595–599PubMedCrossRef Habas C, Axelrad H, Nguyen TH, Cabanis EA (2004) Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport 15:595–599PubMedCrossRef
11.
Zurück zum Zitat Habas C, Cabanis EA (2006) Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements. Neuroradiology 48:273–279PubMedCrossRef Habas C, Cabanis EA (2006) Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements. Neuroradiology 48:273–279PubMedCrossRef
12.
Zurück zum Zitat Habas C, Axelrad H, Cabanis EA (2004) The cerebellar second homunculus remains silent during passive bimanual movements. Neuroreport 15:1571–1574PubMedCrossRef Habas C, Axelrad H, Cabanis EA (2004) The cerebellar second homunculus remains silent during passive bimanual movements. Neuroreport 15:1571–1574PubMedCrossRef
13.
Zurück zum Zitat Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224PubMed Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224PubMed
14.
Zurück zum Zitat Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353PubMedCrossRef Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353PubMedCrossRef
15.
Zurück zum Zitat Jueptner M, Jenkins IH, Brooks DJ, Frackoviak RSJ, Passingham RE (1996) The sensory guidance of movements: a comparison of the cerebellum and basal ganglia. Exp Brain Res 112:462–474PubMedCrossRef Jueptner M, Jenkins IH, Brooks DJ, Frackoviak RSJ, Passingham RE (1996) The sensory guidance of movements: a comparison of the cerebellum and basal ganglia. Exp Brain Res 112:462–474PubMedCrossRef
16.
Zurück zum Zitat Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, Roy SA, Simo LS (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362:1573–1583PubMedCrossRef Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, Roy SA, Simo LS (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362:1573–1583PubMedCrossRef
17.
Zurück zum Zitat Ito M (1984) The cerebellum and neural control. Raven Press, New York Ito M (1984) The cerebellum and neural control. Raven Press, New York
18.
Zurück zum Zitat Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21:236–246PubMedCrossRef Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21:236–246PubMedCrossRef
19.
Zurück zum Zitat Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA et al (1995) Object-related activity revealed by functional brain imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedCrossRef Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA et al (1995) Object-related activity revealed by functional brain imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedCrossRef
20.
Zurück zum Zitat Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Satthian K (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45:476–483PubMedCrossRef Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Satthian K (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45:476–483PubMedCrossRef
21.
Zurück zum Zitat Habas C, Cabanis EA (2007) The neural network involved in a bimanual tactile-tactile matching discrimination task: a functional imaging study at 3 T. Neuroradiology 49:681–688PubMedCrossRef Habas C, Cabanis EA (2007) The neural network involved in a bimanual tactile-tactile matching discrimination task: a functional imaging study at 3 T. Neuroradiology 49:681–688PubMedCrossRef
22.
Zurück zum Zitat Mutschler I, Schulze-Bonhage A, Glauche V, Demandt E, Speck O, Ball T (2007) A rapid sound-action association effect in human insular cortex. PloS ONE 2:e259PubMedCrossRef Mutschler I, Schulze-Bonhage A, Glauche V, Demandt E, Speck O, Ball T (2007) A rapid sound-action association effect in human insular cortex. PloS ONE 2:e259PubMedCrossRef
23.
Zurück zum Zitat Deutschlander JK, Stephan T, Strupp M, Wiesmann M et al (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731PubMedCrossRef Deutschlander JK, Stephan T, Strupp M, Wiesmann M et al (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731PubMedCrossRef
24.
Zurück zum Zitat Mosier K, Bereznaya I (2001) Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 140:280–289PubMedCrossRef Mosier K, Bereznaya I (2001) Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 140:280–289PubMedCrossRef
25.
Zurück zum Zitat Farrer C, Frith CD (2002) Experiencing oneself vs another person as being the cause of action: the neural correlates of the experience of agency. Neuroimage 15:596–603PubMedCrossRef Farrer C, Frith CD (2002) Experiencing oneself vs another person as being the cause of action: the neural correlates of the experience of agency. Neuroimage 15:596–603PubMedCrossRef
26.
Zurück zum Zitat Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35:1238–1246PubMedCrossRef Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35:1238–1246PubMedCrossRef
27.
Zurück zum Zitat Seidler RD, Noll DC, Theirs G (2004) Feedforward and feedback processes in motor control. Neuroimage 22:1775–1783PubMedCrossRef Seidler RD, Noll DC, Theirs G (2004) Feedforward and feedback processes in motor control. Neuroimage 22:1775–1783PubMedCrossRef
28.
Zurück zum Zitat Serien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167CrossRef Serien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167CrossRef
29.
Zurück zum Zitat Tüller B, Kelso JA (1989) Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–307PubMedCrossRef Tüller B, Kelso JA (1989) Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–307PubMedCrossRef
30.
Zurück zum Zitat Hagen MC, Zald DH, Tricia A, Thornton A, Pardo JV (2002) Somatosensory processing in human inferior prefrontal cortex. J Neurophysiol 88:1400–1406PubMed Hagen MC, Zald DH, Tricia A, Thornton A, Pardo JV (2002) Somatosensory processing in human inferior prefrontal cortex. J Neurophysiol 88:1400–1406PubMed
31.
Zurück zum Zitat Tracy JI, Faro SS, Mohamed FB, Pinus AB, Madi SM, Laskas JW (2001) Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology 57:1862–1869PubMed Tracy JI, Faro SS, Mohamed FB, Pinus AB, Madi SM, Laskas JW (2001) Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology 57:1862–1869PubMed
32.
Zurück zum Zitat Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162PubMedCrossRef Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162PubMedCrossRef
33.
Zurück zum Zitat Smith DT, Jackson SR, Rorden C (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia 43:1288–1296PubMedCrossRef Smith DT, Jackson SR, Rorden C (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia 43:1288–1296PubMedCrossRef
34.
Zurück zum Zitat Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943PubMedCrossRef Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943PubMedCrossRef
35.
Zurück zum Zitat Le TH, Pardo JV, Hu X (1998) 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol 79:1535–1548PubMed Le TH, Pardo JV, Hu X (1998) 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol 79:1535–1548PubMed
36.
Zurück zum Zitat Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kompf D, Seitz RJ, Heide W (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22:155–164PubMedCrossRef Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kompf D, Seitz RJ, Heide W (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22:155–164PubMedCrossRef
37.
Zurück zum Zitat Blouin J-S, Bard C, Paillard J (2003) Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res 115:63–68 Blouin J-S, Bard C, Paillard J (2003) Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res 115:63–68
38.
Zurück zum Zitat Sakai K, Takino R, Hikosaka O, Miyauchi S, Sasaki Y, Pütz B et al (1998) Separate cerebellar areas for motor control. Neuroreport 9:2359–2363PubMedCrossRef Sakai K, Takino R, Hikosaka O, Miyauchi S, Sasaki Y, Pütz B et al (1998) Separate cerebellar areas for motor control. Neuroreport 9:2359–2363PubMedCrossRef
39.
Zurück zum Zitat Tesche CD, Karhu JJ (2000) Anticipatory cerebellar responses during somatosensory omission in man. Hum Brain Mapp 9:115–118CrossRef Tesche CD, Karhu JJ (2000) Anticipatory cerebellar responses during somatosensory omission in man. Hum Brain Mapp 9:115–118CrossRef
40.
Zurück zum Zitat Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501PubMedCrossRef Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501PubMedCrossRef
41.
Zurück zum Zitat Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535CrossRef Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535CrossRef
42.
Zurück zum Zitat Diener HC, Dichgans J (1992) Pathophysiology of ataxia in humans. In: Plaitakis A (ed) Cerebellar degenerations: clinical neurobiology, Kluwer Academic Publishers, Boston, pp 261–280 Diener HC, Dichgans J (1992) Pathophysiology of ataxia in humans. In: Plaitakis A (ed) Cerebellar degenerations: clinical neurobiology, Kluwer Academic Publishers, Boston, pp 261–280
43.
Zurück zum Zitat Manto MU, Setta F, Godaux E, Hidebrand J, Roland H, Blum S, Brohee P (1998) Different types of cerebellar hypometria associated with distinct topography of the lesion in the cerebellum. J Neurol Sci 158:88–95PubMedCrossRef Manto MU, Setta F, Godaux E, Hidebrand J, Roland H, Blum S, Brohee P (1998) Different types of cerebellar hypometria associated with distinct topography of the lesion in the cerebellum. J Neurol Sci 158:88–95PubMedCrossRef
44.
Zurück zum Zitat Butler EG, Horne MK, Rawson JA (1992) Sensory characteristics of monkey thalamic and motor cortex neurones. J Physiol 445:1–24PubMed Butler EG, Horne MK, Rawson JA (1992) Sensory characteristics of monkey thalamic and motor cortex neurones. J Physiol 445:1–24PubMed
45.
Zurück zum Zitat Butler EG, Horne MK, Rawson JA (1992) The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement. J Physiol 445:25–48PubMed Butler EG, Horne MK, Rawson JA (1992) The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement. J Physiol 445:25–48PubMed
46.
Zurück zum Zitat Butler EG, Horne MK, Rawson JA (1992) A frequency analysis of neuronal activity in thalamus, motor cortex and electromyograms in wrist oscillations. J Physiol 445:49–68PubMed Butler EG, Horne MK, Rawson JA (1992) A frequency analysis of neuronal activity in thalamus, motor cortex and electromyograms in wrist oscillations. J Physiol 445:49–68PubMed
47.
Zurück zum Zitat Ekerot CF, Garwicz M, Jörntell H (1997) The control of forelimb movements by intermediate cerebellum. Prog Brain Res 114:423–429PubMedCrossRef Ekerot CF, Garwicz M, Jörntell H (1997) The control of forelimb movements by intermediate cerebellum. Prog Brain Res 114:423–429PubMedCrossRef
48.
Zurück zum Zitat Sanes JN, Mauritz KH, Dalakas MC, Evarts EV (1985) Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol 4:101–114PubMed Sanes JN, Mauritz KH, Dalakas MC, Evarts EV (1985) Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol 4:101–114PubMed
49.
Zurück zum Zitat Ivry RB, Spencer RM, Zelaniznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann N Y Acad Sci 978:302–317PubMedCrossRef Ivry RB, Spencer RM, Zelaniznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann N Y Acad Sci 978:302–317PubMedCrossRef
50.
Zurück zum Zitat Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41:555–573PubMed Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41:555–573PubMed
51.
Zurück zum Zitat Robertson SD, Zelaznik HN, Lantero AD, Bojczyk G, Spencer RM, Doffin JG, Schneidt T (1999) Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Hum Percept Perform 25:1316–1330PubMedCrossRef Robertson SD, Zelaznik HN, Lantero AD, Bojczyk G, Spencer RM, Doffin JG, Schneidt T (1999) Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. J Exp Psychol Hum Percept Perform 25:1316–1330PubMedCrossRef
52.
Zurück zum Zitat Scott Kelso JA (1995) Dynamic patterns. The self-organization of brain and behaviour. MIT Press, Cambridge, MA Scott Kelso JA (1995) Dynamic patterns. The self-organization of brain and behaviour. MIT Press, Cambridge, MA
53.
Zurück zum Zitat Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 68:945–960PubMed Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 68:945–960PubMed
54.
Zurück zum Zitat Pasquereau B, Nadjar A, Arkadir D, Bezard E, Goillandeau M, Bioulac B, Gross CE, Boraud T (2007) Shaping of motor responses by incentive values through the basal ganglia. J Neurosci 27:1176–1183PubMedCrossRef Pasquereau B, Nadjar A, Arkadir D, Bezard E, Goillandeau M, Bioulac B, Gross CE, Boraud T (2007) Shaping of motor responses by incentive values through the basal ganglia. J Neurosci 27:1176–1183PubMedCrossRef
55.
Zurück zum Zitat Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337PubMed Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337PubMed
56.
Zurück zum Zitat Montgomery EB, Buchholz SR (1991) The striatum and motor initiation and execution. Brain Res 549:222–229PubMedCrossRef Montgomery EB, Buchholz SR (1991) The striatum and motor initiation and execution. Brain Res 549:222–229PubMedCrossRef
57.
Zurück zum Zitat Harrington DL, Haaland KY, Hermanowicz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3–12PubMedCrossRef Harrington DL, Haaland KY, Hermanowicz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3–12PubMedCrossRef
58.
Zurück zum Zitat Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758PubMedCrossRef Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758PubMedCrossRef
59.
Zurück zum Zitat Mink JW, Thach WT (1987) Preferential relation of pallidal neurons to ballistic movements. Brain Res 417:393–398PubMedCrossRef Mink JW, Thach WT (1987) Preferential relation of pallidal neurons to ballistic movements. Brain Res 417:393–398PubMedCrossRef
60.
Zurück zum Zitat Kato M, Kimura M (1992) Effects of reversible blockade of basal ganglia on a voluntary arm movement. J Neurophysiol 68:1516–1534PubMed Kato M, Kimura M (1992) Effects of reversible blockade of basal ganglia on a voluntary arm movement. J Neurophysiol 68:1516–1534PubMed
61.
Zurück zum Zitat Gerardin E, Pochon JB, Poline JB, Tremblay L, Van De Moortele PF, Levy R, Dubois B, Le Bihan D, Lehericy S (2004) Distinct striatal regions support movement selection, preparation, and execution. Neuroreport 15:2327–2331PubMedCrossRef Gerardin E, Pochon JB, Poline JB, Tremblay L, Van De Moortele PF, Levy R, Dubois B, Le Bihan D, Lehericy S (2004) Distinct striatal regions support movement selection, preparation, and execution. Neuroreport 15:2327–2331PubMedCrossRef
62.
Zurück zum Zitat Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449PubMedCrossRef Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449PubMedCrossRef
63.
Zurück zum Zitat Brotchie P, Iansek R, Horne MK (1991) Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. Brain 114:1676–1683 Brotchie P, Iansek R, Horne MK (1991) Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. Brain 114:1676–1683
64.
Zurück zum Zitat Turner RS, Anderson ME (1997) Pallidal discharge related to the kinematics of reaching movements in two dimensions. J Neurophysiol 77:1051–1074PubMed Turner RS, Anderson ME (1997) Pallidal discharge related to the kinematics of reaching movements in two dimensions. J Neurophysiol 77:1051–1074PubMed
65.
Zurück zum Zitat Brotchie P, Iansek R, Horne MK (1991) Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain 114:1685–1702PubMedCrossRef Brotchie P, Iansek R, Horne MK (1991) Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain 114:1685–1702PubMedCrossRef
66.
Zurück zum Zitat Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13172–13177PubMedCrossRef Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13172–13177PubMedCrossRef
67.
Zurück zum Zitat Hoschi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493CrossRef Hoschi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493CrossRef
68.
Zurück zum Zitat Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3T. Neuroradiology 49:777–784PubMedCrossRef Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3T. Neuroradiology 49:777–784PubMedCrossRef
69.
Zurück zum Zitat Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233PubMedCrossRef Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233PubMedCrossRef
Metadaten
Titel
Neural correlates of simple unimanual discrete and continuous movements: a functional imaging study at 3 T
verfasst von
Christophe Habas
Emmanuel Alain Cabanis
Publikationsdatum
01.04.2008
Verlag
Springer-Verlag
Erschienen in
Neuroradiology / Ausgabe 4/2008
Print ISSN: 0028-3940
Elektronische ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-007-0354-6

Weitere Artikel der Ausgabe 4/2008

Neuroradiology 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.