Skip to main content
Erschienen in: Acta Neuropathologica 2/2016

18.03.2016 | Original Paper

Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy

verfasst von: Elisa Volmering, Pitt Niehusmann, Viktoriya Peeva, Alexander Grote, Gábor Zsurka, Janine Altmüller, Peter Nürnberg, Albert J. Becker, Susanne Schoch, Christian E. Elger, Wolfram S. Kunz

Erschienen in: Acta Neuropathologica | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Accumulation of mitochondrial DNA (mtDNA) deletions has been proposed to be responsible for the presence of respiratory-deficient neurons in several CNS diseases. Deletions are thought to originate from double-strand breaks due to attack of reactive oxygen species (ROS) of putative inflammatory origin. In epileptogenesis, emerging evidence points to chronic inflammation as an important feature. Here we aimed to analyze the potential association of inflammation and mtDNA deletions in the hippocampal tissue of patients with mesial temporal lobe epilepsy (mTLE) and hippocampal sclerosis (HS). Hippocampal and parahippocampal tissue samples from 74 patients with drug-refractory mTLE served for mtDNA analysis by multiplex PCR as well as long-range PCR, single-molecule PCR and ultra-deep sequencing of mtDNA in selected samples. Patients were sub-classified according to neuropathological findings. Semi-quantitative assessment of neuronal cell loss was performed in the hippocampal regions CA1–CA4. Inflammatory infiltrates were quantified by cell counts in the CA1, CA3 and CA4 regions from well preserved hippocampal samples (n = 33). Samples with HS showed a significantly increased frequency of a 7436-bp mtDNA deletion (p < 0.0001) and a higher proportion of somatic G>T transversions compared to mTLE patients with different histopathology. Interestingly, the number of T-lymphocytes in the hippocampal CA1, CA3 and CA4 regions was, similar to the 7436-bp mtDNA deletion, significantly increased in samples with HS compared to other subgroups. Our findings show a coincidence of HS, increased somatic G>T transversions, the presence of a specific mtDNA deletion, and increased inflammatory infiltrates. These results support the hypothesis that chronic inflammation leads to mitochondrial dysfunction by ROS-mediated mtDNA mutagenesis which promotes epileptogenesis and neuronal cell loss in patients with mTLE and HS.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7:e1002028CrossRefPubMedPubMedCentral Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7:e1002028CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Baris OR, Ederer S, Neuhaus JF, von Kleist-Retzow JC, Wunderlich CM, Pal M, Wunderlich FT, Peeva V, Zsurka G, Kunz WS, Hickethier T, Bunck AC, Stöckigt F, Schrickel JW, Wiesner RJ (2015) Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metab 21:667–677CrossRefPubMed Baris OR, Ederer S, Neuhaus JF, von Kleist-Retzow JC, Wunderlich CM, Pal M, Wunderlich FT, Peeva V, Zsurka G, Kunz WS, Hickethier T, Bunck AC, Stöckigt F, Schrickel JW, Wiesner RJ (2015) Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metab 21:667–677CrossRefPubMed
3.
Zurück zum Zitat Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F, Jellinger KA, Reuss DE, Ribalta T, Schlegel J, Sutton I, Lassmann H, Bauer J (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638CrossRefPubMed Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F, Jellinger KA, Reuss DE, Ribalta T, Schlegel J, Sutton I, Lassmann H, Bauer J (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638CrossRefPubMed
4.
Zurück zum Zitat Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54:1315–1329CrossRefPubMed Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54:1315–1329CrossRefPubMed
5.
Zurück zum Zitat Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863CrossRefPubMedPubMedCentral Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492CrossRefPubMed Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492CrossRefPubMed
7.
Zurück zum Zitat Cheng KC, Cahill DS, Kasais H, Nishimuras S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267:166–172PubMed Cheng KC, Cahill DS, Kasais H, Nishimuras S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267:166–172PubMed
8.
Zurück zum Zitat Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet 64:1158–1165CrossRefPubMedPubMedCentral Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet 64:1158–1165CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H (2013) Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci 33:18270–18276CrossRefPubMedPubMedCentral Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H (2013) Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci 33:18270–18276CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948CrossRefPubMed Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948CrossRefPubMed
11.
Zurück zum Zitat Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633CrossRefPubMedPubMedCentral Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123CrossRefPubMed DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123CrossRefPubMed
13.
Zurück zum Zitat Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806CrossRefPubMedPubMedCentral Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12:35–40CrossRefPubMed Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12:35–40CrossRefPubMed
15.
Zurück zum Zitat Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218CrossRefPubMedPubMedCentral Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–916CrossRefPubMed Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–916CrossRefPubMed
17.
Zurück zum Zitat Guo X, Popadin KY, Markuzon N, Orlov YL, Kraytsberg Y, Krishnan KJ, Zsurka G, Turnbull DM, Kunz WS, Khrapko K (2010) Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’. Trends Genet 26:340–343CrossRefPubMedPubMedCentral Guo X, Popadin KY, Markuzon N, Orlov YL, Kraytsberg Y, Krishnan KJ, Zsurka G, Turnbull DM, Kunz WS, Khrapko K (2010) Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’. Trends Genet 26:340–343CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696CrossRefPubMed Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696CrossRefPubMed
19.
Zurück zum Zitat Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9:e1003794CrossRefPubMedPubMedCentral Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9:e1003794CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5:e1442CrossRefPubMedPubMedCentral Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5:e1442CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kowald A, Dawson M, Kirkwood TB (2014) Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage? J Theor Biol 340:111–118CrossRefPubMed Kowald A, Dawson M, Kirkwood TB (2014) Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage? J Theor Biol 340:111–118CrossRefPubMed
22.
Zurück zum Zitat Kral T, Clusmann H, Urbach J, Schramm J, Elger CE, Kurthen M, Grunwald T (2002) Preoperative evaluation for epilepsy surgery (Bonn Algorithm). Zentralbl Neurochir 63:106–110CrossRefPubMed Kral T, Clusmann H, Urbach J, Schramm J, Elger CE, Kurthen M, Grunwald T (2002) Preoperative evaluation for epilepsy surgery (Bonn Algorithm). Zentralbl Neurochir 63:106–110CrossRefPubMed
23.
Zurück zum Zitat Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMed Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520CrossRefPubMed
24.
Zurück zum Zitat Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279CrossRefPubMed Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279CrossRefPubMed
25.
Zurück zum Zitat Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135CrossRefPubMed Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135CrossRefPubMed
26.
Zurück zum Zitat Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332CrossRefPubMed Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332CrossRefPubMed
27.
Zurück zum Zitat Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773CrossRefPubMed Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773CrossRefPubMed
28.
29.
Zurück zum Zitat Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296CrossRefPubMed Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296CrossRefPubMed
30.
Zurück zum Zitat Müller-Höcker J, Schäfer S, Krebs S, Blum H, Zsurka G, Kunz WS, Prokisch H, Seibel P, Jung A (2014) Oxyphil cell metaplasia in the parathyroids is characterized by somatic mitochondrial DNA mutations in NADH dehydrogenase genes and cytochrome c oxidase activity-impairing genes. Am J Pathol 184:2922–2935CrossRefPubMed Müller-Höcker J, Schäfer S, Krebs S, Blum H, Zsurka G, Kunz WS, Prokisch H, Seibel P, Jung A (2014) Oxyphil cell metaplasia in the parathyroids is characterized by somatic mitochondrial DNA mutations in NADH dehydrogenase genes and cytochrome c oxidase activity-impairing genes. Am J Pathol 184:2922–2935CrossRefPubMed
31.
Zurück zum Zitat Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N (2014) Epileptic focus and alteration of metabolism. Int Rev Neurobiol 114:209–243CrossRefPubMed Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N (2014) Epileptic focus and alteration of metabolism. Int Rev Neurobiol 114:209–243CrossRefPubMed
32.
Zurück zum Zitat Plum GE, Grollman AP, Johnson F, Breslauer KJ (1992) Influence of an exocyclic guanine adduct on the thermal stability, conformation, and melting thermodynamics of a DNA duplex. Biochemistry 31:12096–12102CrossRefPubMed Plum GE, Grollman AP, Johnson F, Breslauer KJ (1992) Influence of an exocyclic guanine adduct on the thermal stability, conformation, and melting thermodynamics of a DNA duplex. Biochemistry 31:12096–12102CrossRefPubMed
33.
Zurück zum Zitat Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230CrossRefPubMed Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230CrossRefPubMed
34.
Zurück zum Zitat Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548CrossRefPubMedPubMedCentral Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Talhaoui I, Shafirovich V, Liu Z, Saint-Pierre C, Akishev Z, Matkarimov BT, Gasparutto D, Geacintov NE, Saparbaev M (2015) Oxidatively generated guanine(C8)-thymine(N3) intrastrand cross-links in double-stranded DNA are repaired by base excision repair pathways. J Biol Chem 290:14610–14617CrossRefPubMedPubMedCentral Talhaoui I, Shafirovich V, Liu Z, Saint-Pierre C, Akishev Z, Matkarimov BT, Gasparutto D, Geacintov NE, Saparbaev M (2015) Oxidatively generated guanine(C8)-thymine(N3) intrastrand cross-links in double-stranded DNA are repaired by base excision repair pathways. J Biol Chem 290:14610–14617CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491CrossRefPubMed Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491CrossRefPubMed
38.
Zurück zum Zitat Téllez-Zenteno JF, Hernández-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853PubMed Téllez-Zenteno JF, Hernández-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853PubMed
39.
Zurück zum Zitat Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101CrossRefPubMed Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101CrossRefPubMed
40.
Zurück zum Zitat Yang T, Zhou D, Stefan H (2010) Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 296:1–6CrossRefPubMed Yang T, Zhou D, Stefan H (2010) Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 296:1–6CrossRefPubMed
41.
Zurück zum Zitat Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234CrossRefPubMed Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234CrossRefPubMed
42.
Zurück zum Zitat Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455CrossRefPubMedPubMedCentral Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632CrossRefPubMed Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632CrossRefPubMed
44.
Zurück zum Zitat Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050CrossRefPubMed Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050CrossRefPubMed
45.
Zurück zum Zitat Zsurka G, Baron M, Stewart JD, Kornblum C, Bös M, Sassen R, Taylor RW, Elger CE, Chinnery PF, Kunz WS (2008) Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase gamma. J Neuropathol Exp Neurol 67:857–866CrossRefPubMed Zsurka G, Baron M, Stewart JD, Kornblum C, Bös M, Sassen R, Taylor RW, Elger CE, Chinnery PF, Kunz WS (2008) Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase gamma. J Neuropathol Exp Neurol 67:857–866CrossRefPubMed
46.
Zurück zum Zitat Zsurka G, Kunz WS (2010) Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr 42:443–448CrossRefPubMed Zsurka G, Kunz WS (2010) Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr 42:443–448CrossRefPubMed
47.
Zurück zum Zitat Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14:956–966CrossRefPubMed Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14:956–966CrossRefPubMed
Metadaten
Titel
Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy
verfasst von
Elisa Volmering
Pitt Niehusmann
Viktoriya Peeva
Alexander Grote
Gábor Zsurka
Janine Altmüller
Peter Nürnberg
Albert J. Becker
Susanne Schoch
Christian E. Elger
Wolfram S. Kunz
Publikationsdatum
18.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 2/2016
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-016-1561-1

Weitere Artikel der Ausgabe 2/2016

Acta Neuropathologica 2/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.