Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2007

01.06.2007 | Original Paper

New iron chelators in anthracycline-induced cardiotoxicity

verfasst von: Helena Kaiserová, Tomáš Šimůnek, Martin Štěrba, Gertjan J. M. den Hartog, Ladislava Schröterová, Olga Popelová, Vladimír Geršl, Eva Kvasničková, Aalt Bast

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The use of anthracycline anticancer drugs is limited by a cumulative, dose-dependent cardiac toxicity. Iron chelation has long been considered as a promising strategy to limit this unfavorable side effect, either by restoring the disturbed cellular iron homeostasis or by removing redox-active iron, which may promote anthracycline-induced oxidative stress. Aroylhydrazone lipophilic iron chelators have shown promising results in the rabbit model of daunorubicin-induced cardiomyopathy as well as in cellular models. The lack of interference with the antiproliferative effects of the anthracyclines also favors their use in clinical settings. The dose, however, should be carefully titrated to prevent iron depletion, which apparently also applies for other strong iron chelators. We have shown that a mere ability of a compound to chelate iron is not the sole determinant of a good cardioprotector and the protective potential does not directly correlate with the ability of the chelators to prevent hydroxyl radical formation. These findings, however, do not weaken the role of iron in doxorubicin cardiotoxicity as such, they rather appeal for further investigations into the molecular mechanisms how anthracyclines interact with iron and how iron chelation may interfere with these processes.
Literatur
1.
Zurück zum Zitat Mladenka, P., Simunek, T., Hubl, M., & Hrdina, R. (2006). The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radical Research, 40(3), 263–272.PubMedCrossRef Mladenka, P., Simunek, T., Hubl, M., & Hrdina, R. (2006). The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radical Research, 40(3), 263–272.PubMedCrossRef
2.
Zurück zum Zitat Walter, P. B., Knutson, M. D., Paler-Martinez, A., Lee, S., Xu, Y., Viteri, F. E., & Ames, B. N. (2002). Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2264–2269.PubMedCrossRef Walter, P. B., Knutson, M. D., Paler-Martinez, A., Lee, S., Xu, Y., Viteri, F. E., & Ames, B. N. (2002). Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2264–2269.PubMedCrossRef
3.
Zurück zum Zitat Minotti, G., Ronchi, R., Salvatorelli, E., Menna, P., & Cairo, G. (2001). Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Research, 61, 8422–8428.PubMed Minotti, G., Ronchi, R., Salvatorelli, E., Menna, P., & Cairo, G. (2001). Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Research, 61, 8422–8428.PubMed
4.
Zurück zum Zitat Hrdina, R., Gersl, V., Klimtova, I., Simunek, T., Machackova, J., & Adamcova, M. (2000). Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Kralove), 43(3), 75–82. Hrdina, R., Gersl, V., Klimtova, I., Simunek, T., Machackova, J., & Adamcova, M. (2000). Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Kralove), 43(3), 75–82.
5.
Zurück zum Zitat Kwok, J. C., & Richardson, D. R. (2003). Anthracyclines induce accumulation of iron in ferritin in myocardial and neoplastic cells: Inhibition of the ferritin iron mobilization pathway. Molecular Pharmacology, 63, 849–861.PubMedCrossRef Kwok, J. C., & Richardson, D. R. (2003). Anthracyclines induce accumulation of iron in ferritin in myocardial and neoplastic cells: Inhibition of the ferritin iron mobilization pathway. Molecular Pharmacology, 63, 849–861.PubMedCrossRef
6.
Zurück zum Zitat Simunek, T., Sterba, M., Holeckova, M., Kaplanova, J., Klimtova, I., Adamcova, M., Gersl, V., & Hrdina, R. (2005). Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals, 18(2), 163–169.PubMedCrossRef Simunek, T., Sterba, M., Holeckova, M., Kaplanova, J., Klimtova, I., Adamcova, M., Gersl, V., & Hrdina, R. (2005). Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals, 18(2), 163–169.PubMedCrossRef
7.
Zurück zum Zitat Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxicology, 3(2), 89–99.PubMedCrossRef Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxicology, 3(2), 89–99.PubMedCrossRef
8.
Zurück zum Zitat Voest, E. E., van Acker, S. A., van der Vijgh, W. J., van Asbeck, B. S., & Bast, A. (1994). Comparison of different iron chelators as protective agents against acute doxorubicin-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 26(9), 1179–1185.PubMedCrossRef Voest, E. E., van Acker, S. A., van der Vijgh, W. J., van Asbeck, B. S., & Bast, A. (1994). Comparison of different iron chelators as protective agents against acute doxorubicin-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 26(9), 1179–1185.PubMedCrossRef
9.
Zurück zum Zitat Barnabe, N., Zastre, J. A., Venkataram, S., & Hasinoff, B. B. (2002). Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radical and Biology Medicine, 33(2), 266–275.CrossRef Barnabe, N., Zastre, J. A., Venkataram, S., & Hasinoff, B. B. (2002). Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radical and Biology Medicine, 33(2), 266–275.CrossRef
10.
Zurück zum Zitat Link, G., Tirosh, R., Pinson, A., & Hershko, C. (1996). Role of iron in the potentiation of anthracycline cardiotoxicity: Identification of heart cell mitochondria as a major site of iron-anthracycline interaction. The Journal of Laboratory and Clinical Medicine, 127(3), 272–278.PubMedCrossRef Link, G., Tirosh, R., Pinson, A., & Hershko, C. (1996). Role of iron in the potentiation of anthracycline cardiotoxicity: Identification of heart cell mitochondria as a major site of iron-anthracycline interaction. The Journal of Laboratory and Clinical Medicine, 127(3), 272–278.PubMedCrossRef
11.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical and Biology Medicine, 35(11), 1469–1479.CrossRef Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical and Biology Medicine, 35(11), 1469–1479.CrossRef
12.
Zurück zum Zitat Simunek, T., Klimtova, I., Kaplanova, J., Mazurova, Y., Adamcova, M., Sterba, M., Hrdina, R., & Gersl, V. (2004). Rabbit model for in vivo study of anthracycline-induced heart failure and for the evaluation of protective agents. European Journal of Heart Failure, 6(4), 377–387.PubMedCrossRef Simunek, T., Klimtova, I., Kaplanova, J., Mazurova, Y., Adamcova, M., Sterba, M., Hrdina, R., & Gersl, V. (2004). Rabbit model for in vivo study of anthracycline-induced heart failure and for the evaluation of protective agents. European Journal of Heart Failure, 6(4), 377–387.PubMedCrossRef
13.
Zurück zum Zitat Richardson, D. R., Tran, E. H., & Ponka, P. (1995). The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood, 86, 4295–4306.PubMed Richardson, D. R., Tran, E. H., & Ponka, P. (1995). The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood, 86, 4295–4306.PubMed
14.
Zurück zum Zitat Kovarikova, P., Klimes, J., Sterba, M., Popelova, O., Gersl, V., & Ponka, P. (2006). HPLC determination of novel aroylhydrazone iron chelator (o-108) in rabbit plasma and its application to a pilot pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 838, 107–112.PubMedCrossRef Kovarikova, P., Klimes, J., Sterba, M., Popelova, O., Gersl, V., & Ponka, P. (2006). HPLC determination of novel aroylhydrazone iron chelator (o-108) in rabbit plasma and its application to a pilot pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 838, 107–112.PubMedCrossRef
15.
Zurück zum Zitat Kovarikova, P., Klimes, J., Sterba, M., Popelova, O., Mokry, M., Gersl, V., & Ponka, P. (2005). Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study. Journal of Seperation Science, 28, 1300–1306.CrossRef Kovarikova, P., Klimes, J., Sterba, M., Popelova, O., Mokry, M., Gersl, V., & Ponka, P. (2005). Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study. Journal of Seperation Science, 28, 1300–1306.CrossRef
16.
Zurück zum Zitat Charkoudian, L. K., Pham, D. M., & Franz, K. J. (2006). A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. Journal of the American Chemical Society, 128(38), 12424–12425.PubMedCrossRef Charkoudian, L. K., Pham, D. M., & Franz, K. J. (2006). A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. Journal of the American Chemical Society, 128(38), 12424–12425.PubMedCrossRef
17.
Zurück zum Zitat Simunek, T., Boer, C., Bouwman, R. A., Vlasblom, R., Versteilen, A. M., Sterba, M., Gersl, V., Hrdina, R., Ponka, P., de Lange, J. J., Paulus, W. J., & Musters, R. J. (2005). SIH–––a novel lipophilic iron chelator–protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death. Journal of Molecular and Cellular Cardiology, 39(2), 345–354.PubMedCrossRef Simunek, T., Boer, C., Bouwman, R. A., Vlasblom, R., Versteilen, A. M., Sterba, M., Gersl, V., Hrdina, R., Ponka, P., de Lange, J. J., Paulus, W. J., & Musters, R. J. (2005). SIH–––a novel lipophilic iron chelator–protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death. Journal of Molecular and Cellular Cardiology, 39(2), 345–354.PubMedCrossRef
18.
Zurück zum Zitat Schroterova, L., Kaiserova, H., Baliharova, V., Velik, J., Gersl, V., & Kvasnickova, E. (2004). The effect of new lipophilic chelators on the activities of cytosolic reductases and P450 cytochromes involved in the metabolism of anthracycline antibiotics: studies in vitro. Physiological Research, 53(6), 683–691.PubMed Schroterova, L., Kaiserova, H., Baliharova, V., Velik, J., Gersl, V., & Kvasnickova, E. (2004). The effect of new lipophilic chelators on the activities of cytosolic reductases and P450 cytochromes involved in the metabolism of anthracycline antibiotics: studies in vitro. Physiological Research, 53(6), 683–691.PubMed
19.
Zurück zum Zitat Kaiserova, H., den Hartog, G. J., Simunek, T., Schroterova, L., Kvasnickova, E., & Bast, A. (2006). Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. British Journal of Pharmacology, 149(7), 920–930.PubMedCrossRef Kaiserova, H., den Hartog, G. J., Simunek, T., Schroterova, L., Kvasnickova, E., & Bast, A. (2006). Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. British Journal of Pharmacology, 149(7), 920–930.PubMedCrossRef
20.
Zurück zum Zitat Sterba, M., Popelova, O., Simunek, T., Mazurova, Y., Potacova, A., Adamcova, M., Kaiserova, H., Ponka, P., & Gersl, V. (2006). Cardioprotective effects of a novel iron chelator, pyridoxal 2-chlorobenzoyl hydrazone, in the rabbit model of daunorubicin-induced cardiotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 319(3), 1336–1337.PubMedCrossRef Sterba, M., Popelova, O., Simunek, T., Mazurova, Y., Potacova, A., Adamcova, M., Kaiserova, H., Ponka, P., & Gersl, V. (2006). Cardioprotective effects of a novel iron chelator, pyridoxal 2-chlorobenzoyl hydrazone, in the rabbit model of daunorubicin-induced cardiotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 319(3), 1336–1337.PubMedCrossRef
21.
Zurück zum Zitat Simunek, T., Klimtova, I., Kaplanova, J., Sterba, M., Mazurova, Y., Adamcova, M., Hrdina, R., Gersl, V., & Ponka, P. (2005). Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacology Research, 51(3), 223–231.CrossRef Simunek, T., Klimtova, I., Kaplanova, J., Sterba, M., Mazurova, Y., Adamcova, M., Hrdina, R., Gersl, V., & Ponka, P. (2005). Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacology Research, 51(3), 223–231.CrossRef
22.
Zurück zum Zitat Bast, A., Kaiserova, H., den Hartog, G. J., Haenen, G. R., van der Vijgh1, W. J. (2007). Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biology and Toxicology, 23(1), 39–47.PubMedCrossRef Bast, A., Kaiserova, H., den Hartog, G. J., Haenen, G. R., van der Vijgh1, W. J. (2007). Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biology and Toxicology, 23(1), 39–47.PubMedCrossRef
23.
Zurück zum Zitat Hershko, C., Link, G., Tzahor, M., Kaltwasser, J. P., Athias, P., Grynberg, A., & Pinson, A. (1993). Anthracycline toxicity is potentiated by iron and inhibited by deferoxamine: Studies in rat heart cells in culture. The Journal of Laboratory and Clinical Medicine, 122(3), 245–251.PubMed Hershko, C., Link, G., Tzahor, M., Kaltwasser, J. P., Athias, P., Grynberg, A., & Pinson, A. (1993). Anthracycline toxicity is potentiated by iron and inhibited by deferoxamine: Studies in rat heart cells in culture. The Journal of Laboratory and Clinical Medicine, 122(3), 245–251.PubMed
24.
Zurück zum Zitat Herman, E. H., Zhang, J., & Ferrans, V. J. (1994). Comparison of the protective effects of desferrioxamine and ICRF-187 against doxorubicin-induced toxicity in spontaneously hypertensive rats. Cancer Chemotherapy and Pharmacology, 35(2), 93–100.PubMedCrossRef Herman, E. H., Zhang, J., & Ferrans, V. J. (1994). Comparison of the protective effects of desferrioxamine and ICRF-187 against doxorubicin-induced toxicity in spontaneously hypertensive rats. Cancer Chemotherapy and Pharmacology, 35(2), 93–100.PubMedCrossRef
25.
Zurück zum Zitat Saad, S. Y., Najjar, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacology Research, 43(3), 211–218.CrossRef Saad, S. Y., Najjar, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacology Research, 43(3), 211–218.CrossRef
Metadaten
Titel
New iron chelators in anthracycline-induced cardiotoxicity
verfasst von
Helena Kaiserová
Tomáš Šimůnek
Martin Štěrba
Gertjan J. M. den Hartog
Ladislava Schröterová
Olga Popelová
Vladimír Geršl
Eva Kvasničková
Aalt Bast
Publikationsdatum
01.06.2007
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2007
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0020-6

Weitere Artikel der Ausgabe 2/2007

Cardiovascular Toxicology 2/2007 Zur Ausgabe