Skip to main content
Erschienen in: BMC Medicine 1/2012

Open Access 01.12.2012 | Commentary

New race and ethnicity standards: elucidating health disparities in diabetes

verfasst von: Peter T Katzmarzyk, Amanda E Staiano

Erschienen in: BMC Medicine | Ausgabe 1/2012

Abstract

The concepts of race and ethnicity are useful for understanding the distribution of disease in the population and for identifying at-risk groups for prevention and treatment efforts. The U.S. Department of Health and Human Services recently updated the race and ethnicity classifications in order to more effectively monitor health disparities. Differences in chronic disease mortality rates are contributing to race and ethnic health disparities in life expectancy in the United States. The prevalence of diabetes is higher in African Americans and Hispanics compared to white Americans, and parallel trends are seen in diabetes risk factors, including physical inactivity, dietary patterns, and obesity. Further research is required to determine the extent to which the observed differences in diabetes prevalence are attributable to differences in lifestyle versus other characteristics across race and ethnic groups.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-10-42) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PTK and AES researched the literature and drafted the manuscript. Both authors approved the final version.
Abkürzungen
ARIC
Atherosclerosis Risk in Communities
BMI
body mass index
BRFSS
U.S. Behavioral Risk Factor Surveillance System
HEI
Healthy Eating Index
NHANES
U.S. National Health and Nutrition Examination Survey
OMB
Office of Management and Budget.

Introduction

'Distinctive racial or ethnic patterns of disease can be profitably applied by the public health official to the detection and prevention of disease and by the clinician in diagnosis and treatment.' Albert Damon, 1969 [1] p.79
Overall life expectancy at birth has increased steadily in the United States from 47 years in 1900 to 78 years in 2007 [2]. The increase in life expectancy has resulted from improvements in public health (for example sanitation, infectious disease control, food security) and the prevention and treatment of medical conditions. However, there remain significant racial gaps [2, 3]. In 2007, white Americans could expect to live 4.8 years longer than African Americans under current mortality patterns [2].
A major public health goal in the United States is to achieve health equity, eliminate disparities, and improve the health of all groups by 2020 [4]. A total of 51% and 64% of the racial gap in life expectancy in men and women, respectively, is attributable to differences in mortality rates from diabetes, cardiovascular disease, and cancer [3]. Indeed, diabetes is the eighth and fourth leading cause of death among white and African Americans, respectively [5]. Thus, efforts to reduce racial disparities in health should focus on understanding and reducing differences in the rates of chronic diseases such as diabetes.
There is considerable regional variation in the prevalence of diabetes at the global level; however, the overall prevalence is high and continues to increase [6]. Regional differences in the prevalence of diabetes are undoubtedly the result of complex interactions among socioeconomic forces, lifestyle factors, and genetic predisposition. Given that race and ethnic disparities are often viewed within a country-specific context, the focus of this discussion is on the United States.

Concepts of race and ethnicity

Race and ethnicity are interrelated concepts that have a long history in the fields of human biology and public health [1, 7]. Although the terms are often used interchangeably in the literature and there are no widely accepted definitions, race and ethnicity tend to have distinct meanings. Race is typically used to refer to groups that share biological similarities, whereas ethnicity refers to shared cultural similarities. In many cases, race and ethnic groups may overlap considerably; however, race and ethnicity are useful concepts when attempting to understand differential health risks and health disparities [8, 9].
The Institute of Medicine [10] reported that inadequate data on race and ethnicity lowered the likelihood of effective actions to address health disparities. In response, the Department of Health and Human Services recently updated standards to more consistently measure race and ethnicity and thereby improve the ability to monitor improvements in health disparities (Table 1) [11]. These new race and ethnic categories expand upon the current Office of Management and Budget (OMB) classifications that are often used in research [12]. The use of the new categories will allow for the more precise identification of health risks in specific race and ethnic groups, and could translate into more individualized treatment regimens for the prevention and management of diabetes in the future.
Table 1
New categories of race/ethnicity established by the U.S. Department of Health and Human Services [11]
Race
Ethnicity
• White
• Not of Hispanic, Latino/a, or Spanish origin
• Black or African American
• Hispanic Mexican, Mexican American, or Chicano/a
• American Indian or Alaska Native
• Hispanic Puerto Rican
• Asian Indian
• Hispanic Cuban
• Chinese
• Other Hispanic, Latino, or Spanish origin
• Filipino
 
• Japanese
 
• Korean
 
• Vietnamese
 
• Other Asian
 
• Native Hawaiian
 
• Guamanian or Chamorro
 
• Samoan
 
• Other Pacific Islander
 

Racial and ethnic differences in diabetes prevalence

Diabetes affects an estimated 20.4 million adults (9.6%) in the U.S., of which 19% are undiagnosed [13]. However, the age-adjusted prevalence of total diabetes (diagnosed and undiagnosed) differs by race and ethnicity, as African Americans (14.9%) and Mexican Americans (15.6%) had approximately double the prevalence as white Americans (7.6%) [13] in the 2003-2006 U.S. National Health and Nutrition Examination Survey (NHANES). Ethnic disparities are also evident in the number of medically diagnosed diabetes cases identified in the 2008 National Health Interview Survey, in which the age-adjusted prevalence of diagnosed diabetes for adults was 11.0% in African Americans, 10.7% in Hispanics, 8.2% in Asians, and 7.0% in whites [14]. The higher prevalence of diabetes among African Americans and Hispanics translates into a higher lifetime risk of developing diabetes than in white Americans (Figure 1) [15].
Race and ethnic differences in diabetes prevalence persist across different subgroups of the population. For example, among adults aged 65 years and over, 32.7% of African Americans, 31.8% of Mexican Americans, and 18.8% of white Americans have diagnosed or undiagnosed diabetes [13]. Few cases of diabetes are reported in youth; however, the prevalence of type 2 diabetes is two- to three-fold higher among American-Indian and African American youth compared to Asian/Pacific Islander and Hispanic youth, and nine-fold higher than in white youth [16]. Among immigrants to the U.S., diabetes prevalence increases as length of residence increases, independent of age or body mass index [17]. There is also evidence that risk factors such as physical inactivity and obesity differ according to length of residence in other Western countries such as Canada [18, 19].

Diabetes, ethnicity, and race: the role of lifestyle factors and socioeconomic status

Physical inactivity

Physical inactivity is an important risk factor for the development of diabetes [20]. Based on data from the 2005 U.S. Behavioral Risk Factor Surveillance System (BRFSS), African Americans and Hispanics had lower levels of leisure-time physical activity than white Americans [21]. These racial and ethnic differences in self-reported leisure-time physical activity appear to begin in adolescence [22]. On the other hand, based on objectively-measured (accelerometry) data from NHANES 2003-2004, Mexican American adults had higher physical activity levels compared to African Americans and white Americans [23]. Further, Mexican Americans were also less sedentary (< 100 accelerometer activity counts/min) than white or African Americans across the lifespan, while white and African Americans had similar levels of sedentary behavior [24]. The discrepant race and ethnic differences observed for self-reported versus objective methods are difficult to explain. The differences could be due to cultural influences in the reporting of physical activity, or the different aspects of human movement captured by the two methods: the accelerometry used in NHANES captures total ambulatory physical activity, including leisure-time, occupational, and domestic (such as chores) domains, whereas the BRFSS questionnaire captures information on leisure-time physical activity only.

Dietary patterns

A healthy dietary pattern has been linked to a reduced risk of developing diabetes [25]. For example, the consumption of red meat is associated with a higher risk of diabetes [26], and the intake of leafy green vegetables is associated with a lower risk [27]. Among adults from the Lower Mississippi Delta region of the U.S, whites had a higher Healthy Eating Index (HEI) as well as higher component scores for grains, vegetables, milk, and variety than African Americans [28]. Results from successive waves of NHANES (from 1971 to 2002) indicate that differences in dietary patterns between white and African Americans, such as the higher energy density of foods consumed among African Americans, have persisted over time [29]. These results suggest that race differences in dietary patterns may be significant; however, more research is required to better delineate the extent of the differences and their potential impact on health.

Obesity

Obese individuals have 20 to 50 times greater risk of developing diabetes than people who are normal weight [30, 31]. The estimated lifetime risk of developing diabetes from the age of 18 years in the U.S. increases from 19.8% and 17.1% for normal weight (body mass index (BMI) 18.5-24.9 kg/m2) men and women to 70.3% and 74.4% for men and women with a BMI ≥35 kg/m2, respectively [32]. The prevalence of obesity differs across race and ethnic groups in the U.S. The most recent data from the 2007-2008 NHANES indicates that the age-adjusted prevalence of obesity (BMI ≥30 kg/m2) was 32.4% in whites, 37.9% in Hispanics, and 44.1% in African Americans, and these differences are consistent in men and women (Figure 2) [33].
The degree to which race and ethnic groups differ in absolute risk for incident diabetes at a given level of body fatness has not been clearly delineated. After controlling for body weight, diabetes prevalence was more than twice as high among African Americans and Latinos compared to white Americans in a U.S. cohort [34]. Few studies have employed prospective designs to study racial differences in the relationship between obesity and diabetes. Data from the Atherosclerosis Risk in Communities (ARIC) Study indicated that the incidence of diabetes over a 9-year period was higher at all levels of BMI in African Americans compared with white adults [35]. This is in contrast to results from the NHANES Epidemiologic Follow-up Study in which the 20-year incidence of diabetes was higher in African Americans than white Americans at low BMI values, but equivalent at higher BMI values [36]. More research is required to understand the differential risks for diabetes related to obesity across race and ethnic groups.

Socioeconomic status

Race and ethnic disparities in diabetes prevalence may be confounded by socioeconomic inequalities. On average, African Americans and Hispanics tend to be poorer and less educated [37] and less likely to have health insurance [38], compared to white Americans. In the U.S. National Health Interview Survey, diabetes prevalence was highest among individuals with low educational attainment and those below the federal poverty line [14]. Disparity in diabetes prevalence due to income and education increased from 2004 to 2008, whereas race/ethnic disparities in diabetes prevalence and incidence did not change [14]. There was little race/ethnic difference in diabetes prevalence among a cohort of African American and white adults of similar low socioeconomic status from the southern U.S., except a moderately higher rate in African American versus white women [39]. Because socioeconomic status is a potentially modifiable factor, interventions to prevent diabetes could focus on improving social circumstances and access to care among the less educated and impoverished [40].

Conclusions

The concepts of race and ethnicity are useful in understanding the distribution of diabetes and related risk factors in the population. Data from representative surveys from the U.S. have demonstrated significant race and ethnic differences in the prevalence of diabetes and parallel differences in lifestyle risk factors. This mounting evidence for race and ethnic differences may indeed prove profitable both in understanding the epidemiology of diabetes and in targeting at-risk groups for prevention and treatment efforts. However, further research is required to determine the extent to which the disparities in diabetes risk are attributable to differences in lifestyle versus other characteristics that cluster within race and ethnic groups, such as differences in genetics or metabolism.
The new, more precise categories of race/ethnicity will allow investigators and clinicians to better understand disparities and to create individualized or group-specific treatment plans that target the individuals most at risk for the development of diabetes and related complications. Although the role of lifestyle factors in explaining race and ethnic differences has not been fully delineated, the adaptation of current physical activity and dietary guidelines for use in different ethnic and race groups could prove beneficial to prevention efforts. In addition, prevention and treatment efforts could target lifestyle factors that are known to be disproportionately higher or lower in specific race/ethnic groups.

Authors' information

PTK is Associate Executive Director for Population Science, Professor and Louisiana Public Facilities Authority Endowed Chair at Pennington Biomedical Research Center. AES is a Postdoctoral Research Fellow in the Division of Population Science at Pennington Biomedical Research Center.

Acknowledgements

PTK is supported, in part, by the Louisiana Public Facilities Authority Endowed Chair in Nutrition. AES is supported, in part, by the National Institutes of Health National Research Service Award.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PTK and AES researched the literature and drafted the manuscript. Both authors approved the final version.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
2.
Zurück zum Zitat U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Health, United States, 2010. With Special Feature on Death and Dying. 2011, Hyattsville, MD: NCHS Office of Information Services U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Health, United States, 2010. With Special Feature on Death and Dying. 2011, Hyattsville, MD: NCHS Office of Information Services
3.
Zurück zum Zitat Harper S, Lynch J, Burris S, Davey Smith G: Trends in the black-white life expectancy gap in the United States, 1983-2003. JAMA. 2007, 297: 1224-1232.CrossRefPubMed Harper S, Lynch J, Burris S, Davey Smith G: Trends in the black-white life expectancy gap in the United States, 1983-2003. JAMA. 2007, 297: 1224-1232.CrossRefPubMed
5.
Zurück zum Zitat Centers for Disease Control and Prevention: Racial/ethnic disparities in prevalence, treatment and control of hypertension - United States, 1999-2000. Morb Mortal Wkly Rep (MMWR). 2005, 54: 7-9. Centers for Disease Control and Prevention: Racial/ethnic disparities in prevalence, treatment and control of hypertension - United States, 1999-2000. Morb Mortal Wkly Rep (MMWR). 2005, 54: 7-9.
6.
Zurück zum Zitat Katzmarzyk PT, Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Gimble JM: Relationship between abdominal fat and bone mineral density in white and African American adults. Bone. 2012, 50: 576-579.CrossRefPubMed Katzmarzyk PT, Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Gimble JM: Relationship between abdominal fat and bone mineral density in white and African American adults. Bone. 2012, 50: 576-579.CrossRefPubMed
7.
Zurück zum Zitat Comstock RD, Castillo EM, Lindsay P: Four-year review of the use of race and ethnicity in epidemiologic and public health research. Am J Epidemiol. 2004, 159: 611-619.CrossRefPubMed Comstock RD, Castillo EM, Lindsay P: Four-year review of the use of race and ethnicity in epidemiologic and public health research. Am J Epidemiol. 2004, 159: 611-619.CrossRefPubMed
9.
Zurück zum Zitat Karter AJ: Race and ethnicity: vital constructs for diabetes research. Diabetes Care. 2003, 26: 2189-2193.CrossRefPubMed Karter AJ: Race and ethnicity: vital constructs for diabetes research. Diabetes Care. 2003, 26: 2189-2193.CrossRefPubMed
10.
Zurück zum Zitat Institute of Medicine: Race, ethnicity and language data: Standardization for health care quality improvement. 2009, Washington, DC: National Academies Press Institute of Medicine: Race, ethnicity and language data: Standardization for health care quality improvement. 2009, Washington, DC: National Academies Press
13.
Zurück zum Zitat Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, Bainbridge KE, Fradkin JE: Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the U.S. Population in 1988-2006. Diabetes Care. 2010, 33: 562-568.CrossRefPubMedPubMedCentral Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, Bainbridge KE, Fradkin JE: Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the U.S. Population in 1988-2006. Diabetes Care. 2010, 33: 562-568.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Beckles GL, Zhu J, Moonesinghe R: Diabetes - United States, 2004 and 2008. Morb Mortal Wkly Rep (MMWR). 2011, 60: 90-93. Beckles GL, Zhu J, Moonesinghe R: Diabetes - United States, 2004 and 2008. Morb Mortal Wkly Rep (MMWR). 2011, 60: 90-93.
15.
Zurück zum Zitat Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF: Lifetime risk for diabetes mellitus in the United States. JAMA. 2003, 290: 1884-1890.CrossRefPubMed Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF: Lifetime risk for diabetes mellitus in the United States. JAMA. 2003, 290: 1884-1890.CrossRefPubMed
16.
Zurück zum Zitat SEARCH for Diabetes in Youth Study Group, Liese AD, D'Agostino RB, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marcovina S, Rodriguez B, Standiford D, Williams DE: The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006, 118: 1510-1518.CrossRef SEARCH for Diabetes in Youth Study Group, Liese AD, D'Agostino RB, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marcovina S, Rodriguez B, Standiford D, Williams DE: The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006, 118: 1510-1518.CrossRef
18.
Zurück zum Zitat Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Katzmarzyk PT: Body adiposity index, body mass index, and body fat in white and black adults. JAMA. 2011, 306: 828-830.CrossRefPubMedPubMedCentral Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Katzmarzyk PT: Body adiposity index, body mass index, and body fat in white and black adults. JAMA. 2011, 306: 828-830.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Tremblay MS, Pérez C, Ardern CI, Bryan S, Katzmarzyk PT: Obesity, overweight and ethnicity. Health Reports. 2005, 16: 23-34.PubMed Tremblay MS, Pérez C, Ardern CI, Bryan S, Katzmarzyk PT: Obesity, overweight and ethnicity. Health Reports. 2005, 16: 23-34.PubMed
20.
Zurück zum Zitat Jeon CY, Lokken RP, Hu FB, van Dam RM: Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007, 30: 744-752.CrossRefPubMed Jeon CY, Lokken RP, Hu FB, van Dam RM: Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007, 30: 744-752.CrossRefPubMed
21.
Zurück zum Zitat Centers for Disease Control and Prevention: Prevalence of regular physical activity among adults - United States, 2001 and 2005. JAMA. 2007, 299: 30-32. Centers for Disease Control and Prevention: Prevalence of regular physical activity among adults - United States, 2001 and 2005. JAMA. 2007, 299: 30-32.
22.
Zurück zum Zitat Centers for Disease Control and Prevention: Youth Risk Behavior Surveillance - United States, 2009. Surveillance Summaries June 4, 2010. Morb Mortal Wkly Rep (MMWR). 2009, 1-142. Suppl 5 Centers for Disease Control and Prevention: Youth Risk Behavior Surveillance - United States, 2009. Surveillance Summaries June 4, 2010. Morb Mortal Wkly Rep (MMWR). 2009, 1-142. Suppl 5
23.
Zurück zum Zitat Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M: Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008, 40: 181-188.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M: Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008, 40: 181-188.CrossRefPubMed
24.
Zurück zum Zitat Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP: Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008, 167: 875-881.CrossRefPubMedPubMedCentral Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP: Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008, 167: 875-881.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D: Prevention of type 2 diabetes by dietary patterns: A systematic review of prospective studies and meta-analysis. Metab Syndr Relat Disord. 2010, 8: 471-476.CrossRefPubMed Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D: Prevention of type 2 diabetes by dietary patterns: A systematic review of prospective studies and meta-analysis. Metab Syndr Relat Disord. 2010, 8: 471-476.CrossRefPubMed
26.
Zurück zum Zitat Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, Hu FB: Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011, 94: 1088-1096.CrossRefPubMedPubMedCentral Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, Hu FB: Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011, 94: 1088-1096.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ: Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010, 341: c4229.CrossRefPubMedPubMedCentral Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ: Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010, 341: c4229.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat McCabe-Sellers BJ, Bowman S, Stuff JE, Champagne CM, Simpson PM, Bogle ML: Assessment of the diet quality of US adults in the Lower Mississippi Delta. Am J Clin Nutr. 2007, 86: 697-706.PubMed McCabe-Sellers BJ, Bowman S, Stuff JE, Champagne CM, Simpson PM, Bogle ML: Assessment of the diet quality of US adults in the Lower Mississippi Delta. Am J Clin Nutr. 2007, 86: 697-706.PubMed
29.
Zurück zum Zitat Kant AK, Graubard BI, Kumanyika SK: Trends in black-white differentials in dietary intakes of U.S. adults, 1971-2002. Am J Prev Med. 2007, 32: 264-272.CrossRefPubMedPubMedCentral Kant AK, Graubard BI, Kumanyika SK: Trends in black-white differentials in dietary intakes of U.S. adults, 1971-2002. Am J Prev Med. 2007, 32: 264-272.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC: Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994, 17: 961-969.CrossRefPubMed Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC: Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994, 17: 961-969.CrossRefPubMed
31.
Zurück zum Zitat Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, Speizer FE: Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990, 132: 501-513.PubMed Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, Speizer FE: Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990, 132: 501-513.PubMed
32.
Zurück zum Zitat Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF: Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007, 30: 1562-1566.CrossRefPubMed Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF: Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007, 30: 1562-1566.CrossRefPubMed
33.
Zurück zum Zitat Flegal KM, Carroll MD, Ogden CL, Curtin LR: Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010, 303: 235-241.CrossRefPubMed Flegal KM, Carroll MD, Ogden CL, Curtin LR: Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010, 303: 235-241.CrossRefPubMed
34.
Zurück zum Zitat Maskarinec G, Grandinetti A, Matsuura G, Sharma S, Mau M, Henderson BE, Kolonel LN: Diabetes prevalence and body mass index differ by ethnicity: The Multiethnic Cohort. Ethn Dis. 2009, 19: 49-55.PubMedPubMedCentral Maskarinec G, Grandinetti A, Matsuura G, Sharma S, Mau M, Henderson BE, Kolonel LN: Diabetes prevalence and body mass index differ by ethnicity: The Multiethnic Cohort. Ethn Dis. 2009, 19: 49-55.PubMedPubMedCentral
35.
Zurück zum Zitat Stevens J, Couper D, Pankow J, Folsom AR, Duncan BB, Nieto FJ, Jones D, Tyroler HA: Sensitivity and specificity of anthropometrics for the prediction of diabetes in a biracial cohort. Obes Res. 2001, 9: 696-705.CrossRefPubMed Stevens J, Couper D, Pankow J, Folsom AR, Duncan BB, Nieto FJ, Jones D, Tyroler HA: Sensitivity and specificity of anthropometrics for the prediction of diabetes in a biracial cohort. Obes Res. 2001, 9: 696-705.CrossRefPubMed
36.
Zurück zum Zitat Resnick HE, Valsania P, Halter JB, Lin X: Differential effects of BMI on diabetes risk among black and white Americans. Diabetes Care. 1998, 21: 1828-1835.CrossRefPubMed Resnick HE, Valsania P, Halter JB, Lin X: Differential effects of BMI on diabetes risk among black and white Americans. Diabetes Care. 1998, 21: 1828-1835.CrossRefPubMed
37.
Zurück zum Zitat Beckles GL, Truman BI: Education and income: United States, 2005 and 2009. Morb Mortal Wkly Rep. 2011, 60: 13-18. Beckles GL, Truman BI: Education and income: United States, 2005 and 2009. Morb Mortal Wkly Rep. 2011, 60: 13-18.
38.
Zurück zum Zitat Moonesinghe R, Zhu J, Truman BI: Health insurance coverage - United States, 2004 and 2008. Morb Mortal Wkly Rep. 2011, 60: 35-37. Moonesinghe R, Zhu J, Truman BI: Health insurance coverage - United States, 2004 and 2008. Morb Mortal Wkly Rep. 2011, 60: 35-37.
39.
Zurück zum Zitat Signorello LB, Schlundt DG, Cohen SS, Steinwandel MD, Buchowski MS, McLaughlin JK, Hargreaves MK, Blot WJ: Comparing diabetes prevalence between African Americans and whites of similar socioeconomic status. Am J Public Health. 2007, 97: 2260-2267.CrossRefPubMedPubMedCentral Signorello LB, Schlundt DG, Cohen SS, Steinwandel MD, Buchowski MS, McLaughlin JK, Hargreaves MK, Blot WJ: Comparing diabetes prevalence between African Americans and whites of similar socioeconomic status. Am J Public Health. 2007, 97: 2260-2267.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Link CL, McKinlay JB: Disparities in the prevalence of diabetes: Is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethn Dis. 2009, 19: 288-292.PubMedPubMedCentral Link CL, McKinlay JB: Disparities in the prevalence of diabetes: Is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethn Dis. 2009, 19: 288-292.PubMedPubMedCentral
Metadaten
Titel
New race and ethnicity standards: elucidating health disparities in diabetes
verfasst von
Peter T Katzmarzyk
Amanda E Staiano
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2012
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-10-42

Weitere Artikel der Ausgabe 1/2012

BMC Medicine 1/2012 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.