Skip to main content
Erschienen in: BMC Cancer 1/2021

Open Access 01.12.2021 | Research article

Nivolumab plus ipilimumab versus nivolumab in individuals with treatment-naive programmed death-ligand 1 positive metastatic soft tissue sarcomas: a multicentre retrospective study

verfasst von: Yaolin Chen, Xiangzhen Liu, Jijun Liu, Donghua Liang, Mingdong Zhao, Weiguang Yu, Pengfei Chen

Erschienen in: BMC Cancer | Ausgabe 1/2021

Abstract

Background

Currently, the choice of treatment for individuals with metastatic soft tissue sarcomas (MSTS) presents a significant challenge to clinicians. The aim of this retrospective study was to assess the efficacy and safety of nivolumab plus ipilimumab (NPI) versus nivolumab alone (NIV) in individuals with treatment-naive programmed death-ligand 1 (PD-L1) positive MSTS.

Methods

Prospectively maintained databases were reviewed from 2013 to 2018 to assess individuals with treatment-naive PD-L1 MSTS who received NPI (nivolumab 3 mg/kg and ipilimumab 1 mg/kg every 3 weeks for 4 doses followed by nivolumab 3 mg/kg every 2 weeks) or NIV (3 mg/kg every 2 weeks) until disease progression, withdrawal, unendurable [AEs], or death. The co-primary endpoints were overall survival (OS) and progression-free survival (PFS).

Results

The median follow-up was 16.0 months (IQR 14.4–18.5) after targeted intervention. The median OS was 12.2 months (95% confidence interval [CI], 6.1–13.7) and 9.2 months (95% CI, 4.2–11.5) for the NPI and NIV groups, respectively (hazard ratio [HR] 0.49, 95% CI, 0.33–0.73; p=0.0002); the median PFS was 4.1 months (95% CI, 3.2–4.5) and 2.2 months (95% CI, 1.1–3.4) for the NPI and NIV groups, respectively (HR 0.51, 95% CI, 0.36–0.71; p< 0.0001). Key grade 3–5 AEs occurred more frequently in the NPI group than in the NIV group (94 [72.9%] for NPI vs. 35 [27.1%], p< 0.001).

Conclusions

For treatment-naive PD-L1 positive MSTS, NPI seems to be less tolerated but has a greater survival advantage than NIV as the primary therapy.
Hinweise
Yaolin Chen and Xiangzhen Liu contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MSTS
Metastatic soft tissue sarcomas
NPI
Nivolumab plus ipilimumab
NIV
Nivolumab
AEs
Adverse events
OS
Overall survival
PFS
Progression-free survival
IQR
Interquartile range
PD-1
Programmed death 1
CIs
Confidence intervals
HRs
Hazard ratios
RECIST
Response Evaluation criteria in solid tumours
ECOG PS
Eastern Collaborative Oncology Group performance status
PD-L1
Programmed death-ligand 1
TMB
Tumour mutation burden

Background

Soft tissue sarcoma (STS) is a heterogeneous malignant tumour derived from mesenchymal cells that displays a heterogeneous mix of clinical and pathologic characteristics and is largely resistant to conventional therapies [13]. Evidence-based statistics [4, 5] have indicated that the majority of individuals with STS tend to develop recurrent or metastatic disease and are associated with poor outcomes. Few, if any, chemotherapy regimens, either alone or in combination, can reverse this situation [6]. For individuals with treatment-naive metastatic STS (MSTS), several approved chemotherapy regimens (i.e., doxorubicin, either alone or in combination) seem to have similar effects, with a low response rate, progression-free survival (PFS) of nearly 0.5 years and overall survival (OS) of 1–1.5 years [7, 8]. Except for first-line chemotherapeutics, all other chemotherapeutics that have been approved, to a certain extent, have improved OS in the absence of progression or metastasis of the STS [9, 10]. However, for MSTS, the median PFS tends to be approximately 4 months, and OS from a diagnosis of MSTS is less than 14 months [7, 11]. Management of such individuals is still a challenge, and a poor prognosis seems to be inevitable [5].
Nivolumab, a fully human immunoglobulin G4PD-1 immune checkpoint-blocking antibody, explicitly binds to programmed death 1(PD-1) and interrupts negative signalling to restore T-cell anti-tumour function, which leads to improved survival and a promising safety profile in individuals with specific progressed solid tumours involving STS [7, 11, 12]. Findings from a recent randomized clinical trial [7] demonstrated that nivolumab, alone or combined with ipilimumab (a cytotoxic T-lymphocyte antigen-4 checkpoint inhibitor), had promising efficacy for specified sarcoma subtypes, with a controllable safety profile consistent with current confirmed alternatives. However, there is a paucity of published information regarding the utilization of nivolumab and/or ipilimumab in treatment-naive programmed death-ligand 1 (PD-L1) positive MSTS individuals [11]. We report herein a retrospective study assessing the efficacy and safety of nivolumab alone or combined with ipilimumab in this setting.

Methods

Study design and patient eligibility

Clinical data of treatment-naive PD-L1 MSTS patients were identified retrospectively from a registry database involving three medical institutions from January 1, 2013 to December 31, 2018. The cohort consisted of 214 individuals with histologically confirmed, unresectable, treatment-naive MSTS who were treated with nivolumab plus ipilimumab (NPI: nivolumab 3 mg/kg and ipilimumab 1 mg/kg every 3 weeks for 4 doses followed by nivolumab 3 mg/kg every 2 weeks) or nivolumab alone (NIV: nivolumab 3 mg/kg every 2 weeks) until disease progression, withdrawal, unendurable AEs, or death [7]. The key inclusion criteria were as follows: age ≥ 16 years; a histologically definite diagnosis of STS with at least one measurable lesion per Response Evaluation Criteria in Solid Tumours (RECIST) v1.1 [8]; PD-L1 positive STS in the primary tissue; untreated MSTS; acceptable organ function (i.e., heart, liver, and kidney); and an Eastern Cooperative Oncology Group performance status of 0 or 1. The key exclusion criteria included a lack of baseline data; chemotherapy, radiotherapy, or surgery for MSTS prior to treatment; an interruption initiated by a non-drug itself in the NPI or NIV regimen; symptomatic central nervous metastasis; severe metabolic disorders (i.e., hyperthyroidism and hypophysoma); drug abuse; psychosis, or cognitive disorder.

Outcomes and assessments

PD-L1 expression on biopsy was assessed by immunochemistry using the anti PD-L1 monoclonal antibody, which was consistent with the previous description [13]. Positive PD-L1 expression was defined as staining of the plasma membrane in more than 1% of tumour cells [14]. OS was defined as the time from first dose to the date of death; PFS, from first dose to progression or death due to any cause, whichever came first. Drug toxicity analysis was performed using the approved product label for all evaluable patients who had undergone NPI or NIV treatment. Tumour responses were judged every 6 weeks until progression or drug interruption per RECIST v1.1. The RECIST was measured retrospectively. AEs were coded per the Medical Dictionary for Regulatory Activities (v 19.0). AE severity was graded per the Common Terminology Criteria for Adverse Events, v4.0 [7]. Follow-up was conducted every 2 months.

Statistical analysis

We used the chi-square test for categorical data; continuous variables were compared with Student t-test for normally distributed variables and Mann-Whitney U test for non- normally distributed variables. Median follow-up was estimated using the reverse Kaplan-Meier method. OS and PFS were estimated per the Kaplan-Meier method. Hazard ratios (HRs) were estimated by a Cox proportional hazard model with 95% confidence intervals (CIs). All p values were two-sided with the level of significance set to 0.05. We executed data analyses using SPSS v 26.0 (IBM, Inc., NY, USA).

Results

Comparison of baseline data

A total of 214 patients with treatment-naive PD-L1 positive MSTS were reviewed, 64 of whom were deemed to be ineligible according to our criteria, leaving 150 patients (NPI: n=74, median age 35 years [21.2–51.8] and NIV: n=76, median age 34 years [23.8–57.3]) who were finally included for eligibility (Fig. 1). Of the 150 evaluable patients whose PD-L1 expression was validated, 150 (100%) suffered PD-L1–positive tumours. Baseline data reported here were well balanced between groups (Table 1). Patients underwent a median 6 drug cycles (IQR 2.0–8.0), with a median follow-up period of 16.0 months (IQR 14.4–18.5) after targeted intervention.
Table 1
Patient demographics and disease characteristics at baseline
Variable
NPI (n=74)
NIV (n=76)
p-value
Age, years
 Median (range)
35 (21.2–51.8)
34 (23.8–57.3)
0.105
Sex, n (%)
  
0.729
 Male
42 (56.8)
41 (53.9)
 
 Female
32 (43.2)
35 (46.1)
 
BMI, kg/m2
 Median (range)
25.7 (17.1–41.3)
25.4 (15.6–43.7)
0.256
ECOG performance status, n (%)
  
0.619
 0
40 (54.1)
38 (50.0)
 
 1
34 (45.9)
38 (50.0)
 
Sarcoma typesa, n (%)
  
0.764
 Non-uterine leiomyosarcoma
43 (58.1)
40 (52.6)
 
 Liposarcomab
20 (27.0)
22 (28.9)
 
 Synovial sarcoma
11 (14.9)
14 (18.4)
 
Three major types of liposarcoma
  
0.078
 Atypical lipoma
9 (12.1)
11 (14.5)
 
 Myxoid liposarcoma
10 (13.5)
9 (11.8)
 
 Pleomorphic liposarcoma
1 (1.4)
2 (2.6)
 
Histological grade, n (%)
  
0.504
 G1 (well differentiated)
31 (41.9)
37 (48.7)
 
 G2 (moderately differentiated)
27 (36.5)
21 (27.6)
 
 G3 (poorly differentiated)
16 (21.6)
18 (23.7)
 
TMBc status (per Mb), n (%)
  
0.716
 TMB-High (> 5)
45 (60.8)
44 (57.9)
 
 TMB-Low (0–5)
29 (39.2)
32 (42.1)
 
Duration of treatment (months)
   
 Median (range)
3 (1.5–4.4)
3 (1.6–4.7)
0.317
Number of metastatic sites, n (%)
  
0.583
 3
12 (16.2)
10 (13.2)
 
 > 3
51 (68.9)
58 (76.3)
 
 Unknown
11(14.9)
8 (10.5)
 
aBased on a central review of pathology; bPrimary liposarcomas were located in the lower extremity (11%), upper extremity (6%), the trunk wall (11%), the retroperitoneum (64%), and the head and neck (8%); cdefined as the number of somatic coding base substitution and indels per megabase of genome. NPI nivolumab plus ipilimumab, NIV nivolumab, BMI body mass index, ECOG Eastern Collaborative Oncology Group, TMB tumour mutation burden

Comparison of efficacy

A significant difference was observed in the proportion of patients with a confirmed response rate (13% [95% CI, 1–17] for NPI vs. 7% [95% CI, 1–11] for NIV). At the final analysis, individuals with unresectable, treatment-naive MSTS who experienced NPI had a median OS of 12.2 months (95% CI, 6.1–13.7), which was significantly longer than that of patients receiving NIV (9.2 months, 95% CI, 4.2–11.5). The distinction in OS corresponded to an HR of 0.49 (95% CI, 0.33–0.73, p=0.0002) (Fig. 2). A significant difference was also detected in median PFS (4.1 months [95% CI, 3.2–4.5] for NPI vs. 2.2 months [95% CI, 1.1–3.4] for NIV; HR 0.51, 95% CI, 0.36–0.71; p< 0.0001), as shown in Fig. 3. The survival advantage of NPI versus NIV was more dramatic.

Adverse events

All 150 individuals included who underwent NPI or NIV treatment suffered AEs of any grade. The key grade 3–5 AEs observed were shown in Table 2. At the time of this analysis, key grade 3–5 AEs occurred more frequently in the NPI group than in the NIV group (94 [72.9%] for NPI vs. 35 [27.1%], p< 0.001). Discontinuation of NPI or NIV associated with AEs occurred in six (14%) of 74 patients in the NPI group and one (2%) of the 76 patients in the NIV group. Hyponatraemia occurred in 9 patients (12.2%) in the NPI group and 1 (1.3%) in the NIV group (p=0.008). Hypotension was more frequent in the NPI group than in the NIV group (8 [10.8%] vs. 0 [0.0%], respectively, p=0.003). Significant differences were also observed in terms of increased aspartate aminotransferase (5 [6.8%] for NPI vs. 0 [0.0%] for NIV, p=0.021), dyspnoea (6 [8.1%] for NPI vs. 0 [0.0%] for NIV, p=0.011), nervous system disorders (8 [10.8%] for NPI vs. 1 [1.3%] for NIV, p=0.014), urinary tract infection (4 [5.4%] for NPI vs. 0 [0.0%] for NIV, p=0.040), and ≥ 2 AEs in a patient (23 [31.1%] for NPI vs. 12 [15.8%] for NIV, p=0.027). The most frequent grade ≥3 AE was anaemia, which occurred in 9 patients (12.2%) in the NPI group and 8 (10.5%) in the NIV group (p=0.752). In addition, no significant differences were detected in regard to colonic perforation, increased creatinine, dehydration, vaginal fistula, increased lipases, lung infection, nausea, or skin infection. Drug-related deaths did not occur in either group.
Table 2
Comparison of the incidence of key drug-related grade ≥3 AEs at final follow-up
Event, n (%)
NPI (n=74)
NIV (n=76)
p-value
Anaemia
9 (12.2)
8 (10.5)
0.752
Aspartate aminotransferase increased
5 (6.8)
0 (0.0)
0.021a
Colonic perforation
0 (0.0)
1 (1.3)
1.000
Creatinine increased
2 (2.7)
2 (2.6)
0.978
Dehydration
3 (4.1)
1 (1.3)
0.298
Dyspnoea
6 (8.1)
0 (0.0)
0.011a
Hyponatraemia
9 (12.2)
1 (1.3)
0.008a
Hypotension
8 (10.8)
0 (0.0)
0.003a
Vaginal fistula
3 (4.1)
0 (0.0)
0.076
Lipases increased
4 (5.4)
4 (5.3)
0.969
Lung infection
3 (4.1)
3 (3.9)
0.973
Nausea
4 (5.4)
2 (2.6)
0.386
Nervous system disorders
8 (10.8)
1 (1.3)
0.014a
Skin infection
3 (4.1)
0 (0.0)
0.076
Urinary tract infection
4 (5.4)
0 (0.0)
0.040a
≥ 2 AEs in one patient
23 (31.1)
12 (15.8)
0.027a
aStatistically significant. AEs adverse events, NPI nivolumab plus ipilimumab, NIV nivolumab

Discussion

This study shows that for treatment-naive PD-L1 positive MSTS, the superiority of NPI over NIV in terms of survival benefit tends to be positive, which is in line with previous reports involving individuals with untreated MSTS [7, 11]. Safety profiles were consistent with those of other solid tumours (i.e., melanoma) [15].
Our findings might provide a confirmation that NPI improves survival for individuals with untreated MSTS. In a multicentre, open-label, non-comparative, randomized phase 2 study [7], 85 eligible patients with metastatic sarcoma who were treated using NPI (42 cases) or NIV (43 cases) showed a median PFS of 4.1 months (2.6–4.7) and 1.7 months (95% CI 1.4–4.3), respectively; the median OS was 14.3 months (9.6–not reached) with NPI and 10.7 months (5.5–15.4) with NIV. These findings may be instructive when placed in the context of presently accessible treatment options for individuals with untreated MSTS [16]. The classic treatment for MSTS tends to be based on cytotoxic chemotherapy, with first-line therapy predictably accomplishing objective responses in 15–18% of individuals, with a median PFS of 4–6 months [7, 17]. Activity beyond the first-line options tends to decline, with less than 10% of individuals reaching objective responses and a median PFS of 1–4 months [18]. In the current review, the choice of NPI or NIV as a monotherapy, regardless of its combination with cytotoxic chemotherapy, may have a negative impact on survival. However, a key challenge with MSTS is that well-established protocols for management tend to be lacking, and in the absence of distinguishable signs or symptoms identifiable by the clinicians, diagnosis tends to be difficult; indeed, once diagnosed with STS, the patient is generally in the late stage of the disease, ultimately leading to reduced survival [16, 19].
A double-blind trial [20] involving 142 patients with treatment-naive MSTS showed that meaningfully longer PFS was detected with NPI than with ipilimumab monotherapy (not reached vs. 4.4 months [95% CI 2.8–5.7]; HR 0.40, 95% CI 0.23–0.68, p< 0.001). The response rate associated with NPI in their study (61%) was higher than with NIV (61% vs. 40%) as first-line therapy in such individuals. The response rate of the combination therapy in our study was also higher than the rate detected in published trials involving anti–PD-1 agent-based monotherapy (i.e., pembrolizumab) [21, 22]. Nevertheless, a comparison of the efficacy of NPI and anti-PD-1 monotherapy may be challenging due to differences in the baseline data of individuals among the studies. The PFS and OS seen with NPI in our review are in accordance with those reported elsewhere [7, 11, 23], with the primary endpoint occurring by the time of the final tumour evaluation and, in a host of patients, OS being prolonged as follow-up continued regardless of termination of treatment, which might be elucidated by the fact that the individuals included in this review were diagnosed with treatment-naive MSTS.
Antibodies against PD-1 or PD-L1 have a positive effect in blocking tumour immune evasion and inducing tumour regression in STS [7, 24]. Previous reports [7, 11, 25, 26] of PD-L1 expression have shown that STS is potentially responsive to PD-1/PD-L1 blockade intervention in STS patients with PD-L1 positivity. The survival benefit of NIV monotherapy is inconsistent with presently existing chemotherapy-based untargeted therapies [7, 11]. Furthermore, in previous trials [8, 23], NIV patients failed to meet the predetermined primary outcome of completing responses in more than 13% of cases to sustain activity in their setting, which could exclude extended trials for heavily treated, unselected patients with MSTS [11, 16]. NPI patients met this predetermined primary outcome among those unselected patients with MSTS [24, 26, 27]. The proportion of NPI patients reaching an objective response appeared to be 16%, approximating that realized via accepted chemotherapy-based management [26, 27]. Additionally, an objective response of approximately 16% in 38 patients is in accordance with FDA-approved chemotherapy regimens, theoretically favouring future trials of NPI not only as second-line management in patients with MSTS but also as a first-line treatment option [7, 26]. Although patients undergoing a treatment regimen approved by the FDA exhibited a median OS of 26.5 months (95% CI, 20.9–31.7), their data might not truly reflect survival in an open-label phase 1b and randomized phase 2 trial [28]. However, the OS seen with NPI in this study is promising and indicates the potential to improve survival in patients with MSTS.
The safety results associated with NPI and NIV were in accordance with prior studies [7, 26]. In this review, NIV tended to be better tolerated, with a lower rate of AEs compared with NPI. The rate of grade 3–5 AEs among individuals experiencing NIV was 27.1%. The safety results contrasted with the results reported in a previous study [7], where the dose of NIV was higher than the recommended dose, and a higher percentage of individuals suffered from grade 3–5 AEs. Adopting a lower dose of NIV could potentially improve the rate of AEs. Remarkably, the proportion of grade 3–5 AEs described in this review for NIV was lower than that of cytotoxic drugs in the current setting.
Several limitations should be recognized in this review. First, this study is a retrospective study, with its inherent shortcomings and some potential confounding variables (i.e., potential comorbidities and complications, some patients who were followed up by telephone), which reduces the reliability of the conclusion. Second, the sample size of this retrospective review is limited, which restricts the generalizability of the results to some extent. Third, gene mutation types are not retested when the disease progresses, and drug resistance mutations during treatment have not been tested for each individual. Therefore, when drug resistance mutations appear in some individuals, the power of this study to reach a reliable conclusion is weakened. Fourth, the current research objects were collected from different tertiary medical centres, and there might be some differences in the diagnosis process of these medical institutions. Nevertheless, these research objects are coded and combined through standardized methods, which guarantees the reliability of the research conclusions.

Conclusion

The results reported in the current review reiterate an increasing body of evidence showing that for individuals with treatment-naive PD-L1 positive MSTS who undergo treatment with NPI or NIV, NPI seems to be less tolerated but has a greater survival advantage as the primary therapy than NIV. Our findings might underline the promise of combined checkpoint inhibition in the current setting. These data should be validated prospectively in subsequent analyses of larger cohorts with treatment-naive MSTS.

Acknowledgments

Not applicable.
The retrospective study was approved by the Institutional Review Boards (IRBs) of each participating hospital; and written informed consent was waived by the IRBs.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Martin-Broto J, Hindi N, Lopez-Pousa A, Peinado-Serrano J, Alvarez R, Alvarez-Gonzalez A, Italiano A, Sargos P, Cruz-Jurado J, Isern-Verdum J, Dolado MC, Rincon-Perez I, Sanchez-Bustos P, Gutierrez A, Romagosa C, Morosi C, Grignani G, Gatti M, Luna P, Alastuey I, Redondo A, Belinchon B, Martinez-Serra J, Sunyach MP, Coindre JM, Dei Tos AP, Romero J, Gronchi A, Blay JY, Moura DS. Assessment of Safety and Efficacy of Combined Trabectedin and Low-Dose Radiotherapy for Patients With Metastatic Soft-Tissue Sarcomas A Nonrandomized Phase 1/2 Clinical Trial. JAMA Oncol. 2020;6(4):535–41.CrossRef Martin-Broto J, Hindi N, Lopez-Pousa A, Peinado-Serrano J, Alvarez R, Alvarez-Gonzalez A, Italiano A, Sargos P, Cruz-Jurado J, Isern-Verdum J, Dolado MC, Rincon-Perez I, Sanchez-Bustos P, Gutierrez A, Romagosa C, Morosi C, Grignani G, Gatti M, Luna P, Alastuey I, Redondo A, Belinchon B, Martinez-Serra J, Sunyach MP, Coindre JM, Dei Tos AP, Romero J, Gronchi A, Blay JY, Moura DS. Assessment of Safety and Efficacy of Combined Trabectedin and Low-Dose Radiotherapy for Patients With Metastatic Soft-Tissue Sarcomas A Nonrandomized Phase 1/2 Clinical Trial. JAMA Oncol. 2020;6(4):535–41.CrossRef
2.
Zurück zum Zitat Kendall GM, Bunch KJ, Stiller CA, Vincent TJ, MFG M. Case-control study of paternal occupational exposures and childhood bone tumours and soft-tissue sarcomas in Great Britain, 1962–2010. Br J Cancer. 2020;122(8):1250–9.CrossRef Kendall GM, Bunch KJ, Stiller CA, Vincent TJ, MFG M. Case-control study of paternal occupational exposures and childhood bone tumours and soft-tissue sarcomas in Great Britain, 1962–2010. Br J Cancer. 2020;122(8):1250–9.CrossRef
3.
Zurück zum Zitat Blay JY, Blomqvist C, Bonvalot S, Boukovinas I, Casali PG, De Alava E, Dei Tos AP, Dirksen U, Duffaud F, Eriksson M, Fedenko A, Ferrari A, Ferrari S, Garcia del Muro X, Gelderblom H, Grimer R, Gronchi A, Hall KS, Hassan B, Hogendoorn P, Hohenberger P, Issels R, Joensuu H, Jost L, Jurgens H, Kager L, Le Cesne A, Leyvraz S, Martin J, Merimsky O, Nishida T, Picci P, Reichardt P, Rutkowski P, Schlemmer M, Sleijfer S, Stacchiotti S, Taminiau A, Wardelmann E, Grp EESNW. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:92–9.CrossRef Blay JY, Blomqvist C, Bonvalot S, Boukovinas I, Casali PG, De Alava E, Dei Tos AP, Dirksen U, Duffaud F, Eriksson M, Fedenko A, Ferrari A, Ferrari S, Garcia del Muro X, Gelderblom H, Grimer R, Gronchi A, Hall KS, Hassan B, Hogendoorn P, Hohenberger P, Issels R, Joensuu H, Jost L, Jurgens H, Kager L, Le Cesne A, Leyvraz S, Martin J, Merimsky O, Nishida T, Picci P, Reichardt P, Rutkowski P, Schlemmer M, Sleijfer S, Stacchiotti S, Taminiau A, Wardelmann E, Grp EESNW. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:92–9.CrossRef
4.
Zurück zum Zitat Hammer KJ, Copeland VC, Loggers ET, Pollack SM, Wagner MJ, Cranmer LD. Doxorubicin and Olaratumab Versus Doxorubicin, Ifosfamide, and Mesna for Treatment of Advanced Soft Tissue Sarcomas. Am J Clin Oncol-Cancer Clin Trials. 2020;43(6):446–51. Hammer KJ, Copeland VC, Loggers ET, Pollack SM, Wagner MJ, Cranmer LD. Doxorubicin and Olaratumab Versus Doxorubicin, Ifosfamide, and Mesna for Treatment of Advanced Soft Tissue Sarcomas. Am J Clin Oncol-Cancer Clin Trials. 2020;43(6):446–51.
5.
Zurück zum Zitat Chen YX, Zhu R, Chen M, Guo WN, Yang X, Xu XJ, Zhu LC. Prognostic Value of a Three-DNA Methylation Biomarker in Patients with Soft Tissue Sarcoma. J Oncol. 2020;2020:8106212.PubMedPubMedCentral Chen YX, Zhu R, Chen M, Guo WN, Yang X, Xu XJ, Zhu LC. Prognostic Value of a Three-DNA Methylation Biomarker in Patients with Soft Tissue Sarcoma. J Oncol. 2020;2020:8106212.PubMedPubMedCentral
6.
Zurück zum Zitat Van Tine BA, Agulnik M, Olson RD, Walsh GM, Klausner A, Frank NE, Talley TT, Milhem MM. A phase II clinical study of 13-deoxy, 5-iminodoxorubicin (GPX-150) with metastatic and unresectable soft tissue sarcoma. Cancer Med. 2019;8(6):2994–3003.CrossRef Van Tine BA, Agulnik M, Olson RD, Walsh GM, Klausner A, Frank NE, Talley TT, Milhem MM. A phase II clinical study of 13-deoxy, 5-iminodoxorubicin (GPX-150) with metastatic and unresectable soft tissue sarcoma. Cancer Med. 2019;8(6):2994–3003.CrossRef
7.
Zurück zum Zitat D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar BN, Antonescu CR, Horvath E, Tap WD, Schwartz GK, Streicher H. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018;19(3):416–26.CrossRef D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar BN, Antonescu CR, Horvath E, Tap WD, Schwartz GK, Streicher H. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018;19(3):416–26.CrossRef
8.
Zurück zum Zitat Kato K, Cho BC, Takahashi M, Okada M, Lin C-Y, Chin K, Kadowaki S, Ahn M-J, Hamamoto Y, Doki Y, Yen C-C, Kubota Y, Kim S-B, Hsu C-H, Holtved E, Xynos I, Kodani M, Kitagawa Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(11):1506–17.CrossRef Kato K, Cho BC, Takahashi M, Okada M, Lin C-Y, Chin K, Kadowaki S, Ahn M-J, Hamamoto Y, Doki Y, Yen C-C, Kubota Y, Kim S-B, Hsu C-H, Holtved E, Xynos I, Kodani M, Kitagawa Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(11):1506–17.CrossRef
9.
Zurück zum Zitat Wang HY, Chu JF, Zhang P, Wang JQ, Yan Z, Yao SN, Yao ZH, Liu YY. Safety and Efficacy of Chemotherapy Combined with Anlotinib Plus Anlotinib Maintenance in Chinese Patients with Advanced/Metastatic Soft Tissue Sarcoma. Onco Targets Ther. 2020;13:1561–8.CrossRef Wang HY, Chu JF, Zhang P, Wang JQ, Yan Z, Yao SN, Yao ZH, Liu YY. Safety and Efficacy of Chemotherapy Combined with Anlotinib Plus Anlotinib Maintenance in Chinese Patients with Advanced/Metastatic Soft Tissue Sarcoma. Onco Targets Ther. 2020;13:1561–8.CrossRef
10.
Zurück zum Zitat Salah S, Abuhijla F, Ismail T, Yaser S, Sultan I, Halalsheh H, Shehadeh A, Abdelal S, Almousa A, Jaber O, Abu-Hijlih R. Outcomes of extraskeletal vs. skeletal Ewing sarcoma patients treated with standard chemotherapy protocol. Clin Transl Oncol. 2020;22(6):878–83.CrossRef Salah S, Abuhijla F, Ismail T, Yaser S, Sultan I, Halalsheh H, Shehadeh A, Abdelal S, Almousa A, Jaber O, Abu-Hijlih R. Outcomes of extraskeletal vs. skeletal Ewing sarcoma patients treated with standard chemotherapy protocol. Clin Transl Oncol. 2020;22(6):878–83.CrossRef
11.
Zurück zum Zitat Paoluzzi L, Cacavio A, Ghesani M, Karambelkar A, Rapkiewicz A, Weber J, Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016;6:24.CrossRef Paoluzzi L, Cacavio A, Ghesani M, Karambelkar A, Rapkiewicz A, Weber J, Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016;6:24.CrossRef
12.
Zurück zum Zitat Zer A, Icht O, Joseph L, Avram D, Jacobi O, Fenig E, Shamai S, Frommer RS, Bernstine H, Weitzen R, Bar-Sela G, Stemmer SM, Lotem M. A phase II single-arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated Classic Kaposi sarcoma (CKS). J Clin Oncol. 2019;37(15):11064.CrossRef Zer A, Icht O, Joseph L, Avram D, Jacobi O, Fenig E, Shamai S, Frommer RS, Bernstine H, Weitzen R, Bar-Sela G, Stemmer SM, Lotem M. A phase II single-arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated Classic Kaposi sarcoma (CKS). J Clin Oncol. 2019;37(15):11064.CrossRef
13.
Zurück zum Zitat Kim C, Kim EK, Jung H, Chon HJ, Han JW, Shin KH, Hu H, Kim KS, Choi YD, Kim S, Lee YH, Suh JS, Ahn JB, Chung HC, Noh SH, Rha SY, Kim SH, Kim HS. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer. 2016;16:434.CrossRef Kim C, Kim EK, Jung H, Chon HJ, Han JW, Shin KH, Hu H, Kim KS, Choi YD, Kim S, Lee YH, Suh JS, Ahn JB, Chung HC, Noh SH, Rha SY, Kim SH, Kim HS. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer. 2016;16:434.CrossRef
14.
Zurück zum Zitat Patel KR, Martinez A, Stahl JM, Logan SJ, Perricone AJ, Ferris MJ, Buchwald ZS, Chowdhary M, Delman KA, Monson DK, Oskouei SV, Reimer NB, Cardona K, Edgar MA, Godette KD. Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. Oncoimmunology. 2018;7(7):e1442168.CrossRef Patel KR, Martinez A, Stahl JM, Logan SJ, Perricone AJ, Ferris MJ, Buchwald ZS, Chowdhary M, Delman KA, Monson DK, Oskouei SV, Reimer NB, Cardona K, Edgar MA, Godette KD. Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. Oncoimmunology. 2018;7(7):e1442168.CrossRef
15.
Zurück zum Zitat D’Angelo SP, Larkin J, Sosman JA, Lebbe C, Brady B, Neyns B, Schmidt H, Hassel JC, Hodi FS, Lorigan P, Savage KJ, Miller WH Jr, Mohr P, Marquez-Rodas I, Charles J, Kaatz M, Sznol M, Weber JS, Shoushtari AN, Ruisi M, Jiang J, Wolchok JD. Efficacy and Safety of Nivolumab Alone or in Combination With Ipilimumab in Patients With Mucosal Melanoma: A Pooled Analysis. J Clin Oncol. 2017;35(2):226.CrossRef D’Angelo SP, Larkin J, Sosman JA, Lebbe C, Brady B, Neyns B, Schmidt H, Hassel JC, Hodi FS, Lorigan P, Savage KJ, Miller WH Jr, Mohr P, Marquez-Rodas I, Charles J, Kaatz M, Sznol M, Weber JS, Shoushtari AN, Ruisi M, Jiang J, Wolchok JD. Efficacy and Safety of Nivolumab Alone or in Combination With Ipilimumab in Patients With Mucosal Melanoma: A Pooled Analysis. J Clin Oncol. 2017;35(2):226.CrossRef
16.
Zurück zum Zitat Gordon EM, Chua-Alcala VS, Kim K, Tseng WW, Quon DM, Chawla SP. Phase 1/2 study of safety/efficacy using trabectedin, ipilimumab, and nivolumab as first- line treatment of advanced soft tissue sarcoma (STS). J Clin Oncol. 2018;36(5):TPS46.CrossRef Gordon EM, Chua-Alcala VS, Kim K, Tseng WW, Quon DM, Chawla SP. Phase 1/2 study of safety/efficacy using trabectedin, ipilimumab, and nivolumab as first- line treatment of advanced soft tissue sarcoma (STS). J Clin Oncol. 2018;36(5):TPS46.CrossRef
17.
Zurück zum Zitat Gordon EM, Sankhala KK, Stumpf N, Ravicz J, Arasheben S, Leong B, Kang G, Kim S, Tseng WW, Chawla SP. Cancer immunotherapy using trabectedin and nivolumab in advanced soft tissue sarcoma: A retrospective analysis. J Clin Oncol. 2018;36(5):40.CrossRef Gordon EM, Sankhala KK, Stumpf N, Ravicz J, Arasheben S, Leong B, Kang G, Kim S, Tseng WW, Chawla SP. Cancer immunotherapy using trabectedin and nivolumab in advanced soft tissue sarcoma: A retrospective analysis. J Clin Oncol. 2018;36(5):40.CrossRef
18.
Zurück zum Zitat Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, Borghaei H, Ramalingam SS, Brahmer J, Reck M, O'Byrne KJ, Geese WJ, Green G, Chang H, Szustakowski J, Bhagavatheeswaran P, Healey D, Fu Y, Nathan F, Paz-Ares L. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093–104.CrossRef Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, Borghaei H, Ramalingam SS, Brahmer J, Reck M, O'Byrne KJ, Geese WJ, Green G, Chang H, Szustakowski J, Bhagavatheeswaran P, Healey D, Fu Y, Nathan F, Paz-Ares L. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093–104.CrossRef
19.
Zurück zum Zitat Agulnik M, RLB C, Milhem M, Rademaker AW, Prunder BC, Daniels D, Rhodes BT, Humphreys C, Abbinanti S, Nye L, Cehic R, Polish A, Vintilescu C, McFarland T, Skubitz K, Robinson S, Okuno S, Van Tine BA. A phase II study of tivozanib in patients with metastatic and nonresectable soft-tissue sarcomas. Ann Oncol. 2017;28(1):121–7.CrossRef Agulnik M, RLB C, Milhem M, Rademaker AW, Prunder BC, Daniels D, Rhodes BT, Humphreys C, Abbinanti S, Nye L, Cehic R, Polish A, Vintilescu C, McFarland T, Skubitz K, Robinson S, Okuno S, Van Tine BA. A phase II study of tivozanib in patients with metastatic and nonresectable soft-tissue sarcomas. Ann Oncol. 2017;28(1):121–7.CrossRef
20.
Zurück zum Zitat Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N Engl J Med. 2015;372(21):2006–17.CrossRef Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N Engl J Med. 2015;372(21):2006–17.CrossRef
21.
Zurück zum Zitat Wilky BA, Trucco MM, Subhawong TK, Florou V, Park W, Kwon D, Wieder ED, Kolonias D, Rosenberg AE, Kerr DA, Sfakianaki ER, Foley M, Merchan JR, Komanduri KV, Trent JC. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019;20(6):837–48.CrossRef Wilky BA, Trucco MM, Subhawong TK, Florou V, Park W, Kwon D, Wieder ED, Kolonias D, Rosenberg AE, Kerr DA, Sfakianaki ER, Foley M, Merchan JR, Komanduri KV, Trent JC. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019;20(6):837–48.CrossRef
22.
Zurück zum Zitat Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D’Angelo S, Attia S, Riedel RF, Priebat DA, Movva S, Davis LE, Okuno SH, Reed DR, Crowley J, Butterfield LH, Salazar R, Rodriguez-Canales J, Lazar AJ, Wistuba BLH II, Maki RG, Reinke D, Patel S. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–501.CrossRef Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D’Angelo S, Attia S, Riedel RF, Priebat DA, Movva S, Davis LE, Okuno SH, Reed DR, Crowley J, Butterfield LH, Salazar R, Rodriguez-Canales J, Lazar AJ, Wistuba BLH II, Maki RG, Reinke D, Patel S. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–501.CrossRef
23.
Zurück zum Zitat Zer A, Icht O, Jacobi O, Fenig E, Shamai S, Merimsky O, Shapira R, Bernstine H, Weitzen R, Vornikova O, Ben-Ami E, Bar-Sela G, Stemmer SM, Lotem M. A phase II single arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated Classical Kaposi Sarcoma (CKS). Ann Oncol. 2019;30:404O.CrossRef Zer A, Icht O, Jacobi O, Fenig E, Shamai S, Merimsky O, Shapira R, Bernstine H, Weitzen R, Vornikova O, Ben-Ami E, Bar-Sela G, Stemmer SM, Lotem M. A phase II single arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated Classical Kaposi Sarcoma (CKS). Ann Oncol. 2019;30:404O.CrossRef
24.
Zurück zum Zitat Chawla SP, Chua-Alcala VS, Kim K, Assudani N, Al-Shihabi A, Moradkhani A, Quon D, Wong S, Tseng WW, Pollack S, Srikureja AM, Jalas J, Jones RL, Gordon EM. The SAINT: Initial results of a phase I/II study of safety/efficacy using safe amounts of ipilimumab, nivolumab, and trabectedin as first-line treatment of advanced soft tissue sarcoma. J Clin Oncol. 2019;37(8):22.CrossRef Chawla SP, Chua-Alcala VS, Kim K, Assudani N, Al-Shihabi A, Moradkhani A, Quon D, Wong S, Tseng WW, Pollack S, Srikureja AM, Jalas J, Jones RL, Gordon EM. The SAINT: Initial results of a phase I/II study of safety/efficacy using safe amounts of ipilimumab, nivolumab, and trabectedin as first-line treatment of advanced soft tissue sarcoma. J Clin Oncol. 2019;37(8):22.CrossRef
25.
Zurück zum Zitat Tamura K, Hasegawa K, Katsumata N, Matsumoto K, Mukai H, Takahashi S, Nomura H, Minami H. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019;110(9):2894–904.CrossRef Tamura K, Hasegawa K, Katsumata N, Matsumoto K, Mukai H, Takahashi S, Nomura H, Minami H. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019;110(9):2894–904.CrossRef
26.
Zurück zum Zitat D’Angelo SP, Mahoney MR, Van Tine BA, Atkins JN, Milhem MM, Tap WD, Antonescu CR, Horvath LE, Schwartz GK, Streicher H. A multi-center phase II study of nivolumab plus /− ipilimumab for patients with metastatic sarcoma (Alliance A091401). J Clin Oncol. 2017;35:11007.CrossRef D’Angelo SP, Mahoney MR, Van Tine BA, Atkins JN, Milhem MM, Tap WD, Antonescu CR, Horvath LE, Schwartz GK, Streicher H. A multi-center phase II study of nivolumab plus /− ipilimumab for patients with metastatic sarcoma (Alliance A091401). J Clin Oncol. 2017;35:11007.CrossRef
27.
Zurück zum Zitat Gordon EM, Chua-Alcala VS, Kim K, Andrali SS, Del Rosario M, Tseng WW. Phase 1/2 study of safety/efficacy using trabectedin, ipilimumab and nivolumab triple therapy as first line treatment of advanced soft tissue sarcoma. J Clin Oncol. 2018;36(15):TPS11591.CrossRef Gordon EM, Chua-Alcala VS, Kim K, Andrali SS, Del Rosario M, Tseng WW. Phase 1/2 study of safety/efficacy using trabectedin, ipilimumab and nivolumab triple therapy as first line treatment of advanced soft tissue sarcoma. J Clin Oncol. 2018;36(15):TPS11591.CrossRef
28.
Zurück zum Zitat Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, Hameed MR, Shah GD, Qin A, Shahir A, Cronier DM, Ilaria R, Conti O, Cosaert J, Schwartz GK. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488–97.CrossRef Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, Hameed MR, Shah GD, Qin A, Shahir A, Cronier DM, Ilaria R, Conti O, Cosaert J, Schwartz GK. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488–97.CrossRef
Metadaten
Titel
Nivolumab plus ipilimumab versus nivolumab in individuals with treatment-naive programmed death-ligand 1 positive metastatic soft tissue sarcomas: a multicentre retrospective study
verfasst von
Yaolin Chen
Xiangzhen Liu
Jijun Liu
Donghua Liang
Mingdong Zhao
Weiguang Yu
Pengfei Chen
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2021
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07843-3

Weitere Artikel der Ausgabe 1/2021

BMC Cancer 1/2021 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.