Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 6/2023

16.10.2023

Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies

verfasst von: Muthukumaran Jayachandran, Shen Qu

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It’s also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world’s population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota’s potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Literatur
1.
Zurück zum Zitat Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2021;32(7):500–14.PubMedCrossRef Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2021;32(7):500–14.PubMedCrossRef
2.
3.
Zurück zum Zitat Kuchay MS, Martínez-Montoro JI, Choudhary NS, et al. Non-alcoholic fatty liver disease in lean and non-obese individuals: current and future challenges. Biomedicines. 2021;9(10):1346.PubMedPubMedCentralCrossRef Kuchay MS, Martínez-Montoro JI, Choudhary NS, et al. Non-alcoholic fatty liver disease in lean and non-obese individuals: current and future challenges. Biomedicines. 2021;9(10):1346.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Overi D, Carpino G, Franchitto A, et al. Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholic steatohepatitis. Cells. 2020;9(3):590.PubMedPubMedCentralCrossRef Overi D, Carpino G, Franchitto A, et al. Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholic steatohepatitis. Cells. 2020;9(3):590.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Alam S, Mustafa G, Alam M, et al. Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol. 2016;7(2):211–7.PubMedPubMedCentralCrossRef Alam S, Mustafa G, Alam M, et al. Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol. 2016;7(2):211–7.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Marušić M, Paić M, Knobloch M, et al. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021:1–9.CrossRef Marušić M, Paić M, Knobloch M, et al. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021:1–9.CrossRef
7.
Zurück zum Zitat Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42.PubMedCrossRef Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42.PubMedCrossRef
8.
Zurück zum Zitat Samuel VT, Shulman GI. Nonalcoholic fatty liver disease, insulin resistance, and ceramides. Phimister EG, ed. N Engl J Med. 2019;381(19):1866–1869. Samuel VT, Shulman GI. Nonalcoholic fatty liver disease, insulin resistance, and ceramides. Phimister EG, ed. N Engl J Med. 2019;381(19):1866–1869.
9.
Zurück zum Zitat Dharmalingam M, Yamasandhi P. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocr Metab. 2018;22(3):421.CrossRef Dharmalingam M, Yamasandhi P. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocr Metab. 2018;22(3):421.CrossRef
10.
Zurück zum Zitat Zhang J, Zhao Y, Xu C, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep. 2014;4(1):5832.PubMedPubMedCentralCrossRef Zhang J, Zhao Y, Xu C, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep. 2014;4(1):5832.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Lomonaco R, Godinez Leiva E, Bril F, et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406.PubMedPubMedCentralCrossRef Lomonaco R, Godinez Leiva E, Bril F, et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7(1):135.CrossRef Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7(1):135.CrossRef
13.
Zurück zum Zitat Tomah S, Alkhouri N, Hamdy O. Nonalcoholic fatty liver disease and type 2 diabetes: where do diabetologists stand? Clin Diabetes Endocrinol. 2020;6(1):9.PubMedPubMedCentralCrossRef Tomah S, Alkhouri N, Hamdy O. Nonalcoholic fatty liver disease and type 2 diabetes: where do diabetologists stand? Clin Diabetes Endocrinol. 2020;6(1):9.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Jia X, Xu W, Zhang L, et al. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 2021;11:634780.PubMedPubMedCentralCrossRef Jia X, Xu W, Zhang L, et al. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 2021;11:634780.PubMedPubMedCentralCrossRef
16.
17.
Zurück zum Zitat Jasirwan COM, Lesmana CRA, Hasan I, et al. The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci Microbiota Food Health. 2019;38(3):81–8.PubMedPubMedCentralCrossRef Jasirwan COM, Lesmana CRA, Hasan I, et al. The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci Microbiota Food Health. 2019;38(3):81–8.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Breton J, Galmiche M, Déchelotte P. Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. Microorganisms. 2022;10(2):452.PubMedPubMedCentralCrossRef Breton J, Galmiche M, Déchelotte P. Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. Microorganisms. 2022;10(2):452.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kang GG, Trevaskis NL, Murphy AJ, et al. Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH. iScience. 2023;26(1):105905.PubMedCrossRef Kang GG, Trevaskis NL, Murphy AJ, et al. Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH. iScience. 2023;26(1):105905.PubMedCrossRef
20.
Zurück zum Zitat Asadi A, Shadab Mehr N, Mohamadi MH et al. Obesity and gut–microbiota–brain axis: a narrative review. Clin Lab Anal 2022;36(5). Asadi A, Shadab Mehr N, Mohamadi MH et al. Obesity and gut–microbiota–brain axis: a narrative review. Clin Lab Anal 2022;36(5).
21.
Zurück zum Zitat Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. Longo DL, ed. N Engl J Med. 2017;377(21):2063–2072. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. Longo DL, ed. N Engl J Med. 2017;377(21):2063–2072.
22.
Zurück zum Zitat Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.PubMedPubMedCentralCrossRef Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Feng YY, Chen H. [Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in Alzheimer’s disease]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021;43(5):788–95.PubMed Feng YY, Chen H. [Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in Alzheimer’s disease]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021;43(5):788–95.PubMed
24.
Zurück zum Zitat Tang R, Liu R, Zha H et al. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci. 2023;e2300016. Tang R, Liu R, Zha H et al. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci. 2023;e2300016.
25.
Zurück zum Zitat Atic AI, Thiele M, Munk A, et al. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol. 2023;324:C588–c602.PubMedCrossRef Atic AI, Thiele M, Munk A, et al. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol. 2023;324:C588–c602.PubMedCrossRef
26.
Zurück zum Zitat Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol‐related liver disease: current concepts and perspectives. Hepatol Res. 2020;50(4):407–18.PubMedPubMedCentralCrossRef Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol‐related liver disease: current concepts and perspectives. Hepatol Res. 2020;50(4):407–18.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Hydes TJ, Ravi S, Loomba R, et al. Evidence-based clinical advice for nutrition and dietary weight loss strategies for the management of NAFLD and NASH. Clin Mol Hepatol. 2020;26(4):383–400.PubMedPubMedCentralCrossRef Hydes TJ, Ravi S, Loomba R, et al. Evidence-based clinical advice for nutrition and dietary weight loss strategies for the management of NAFLD and NASH. Clin Mol Hepatol. 2020;26(4):383–400.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Park Y, Sinn DH, Kim K, et al. Associations of physical activity domains and muscle strength exercise with non-alcoholic fatty liver disease: a nation-wide cohort study. Sci Rep. 2023;13(1):4724.PubMedPubMedCentralCrossRef Park Y, Sinn DH, Kim K, et al. Associations of physical activity domains and muscle strength exercise with non-alcoholic fatty liver disease: a nation-wide cohort study. Sci Rep. 2023;13(1):4724.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lange NF, Graf V, Caussy C, et al. PPAR-targeted therapies in the treatment of non-alcoholic fatty liver disease in diabetic patients. IJMS. 2022;23(8):4305.PubMedPubMedCentralCrossRef Lange NF, Graf V, Caussy C, et al. PPAR-targeted therapies in the treatment of non-alcoholic fatty liver disease in diabetic patients. IJMS. 2022;23(8):4305.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Głuszyńska P, Lemancewicz D, Dzięcioł JB, et al. Non-alcoholic fatty liver disease (NAFLD) and bariatric/metabolic surgery as its treatment option: a review. JCM. 2021;10(24):5721.PubMedPubMedCentralCrossRef Głuszyńska P, Lemancewicz D, Dzięcioł JB, et al. Non-alcoholic fatty liver disease (NAFLD) and bariatric/metabolic surgery as its treatment option: a review. JCM. 2021;10(24):5721.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Carpi RZ, Barbalho SM, Sloan KP, et al. The effects of probiotics, prebiotics and synbiotics in non-alcoholic fat liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a systematic review. IJMS. 2022;23(15):8805.PubMedPubMedCentralCrossRef Carpi RZ, Barbalho SM, Sloan KP, et al. The effects of probiotics, prebiotics and synbiotics in non-alcoholic fat liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a systematic review. IJMS. 2022;23(15):8805.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tan P, Li X, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharmacol. 2020;11:574533.PubMedPubMedCentralCrossRef Tan P, Li X, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharmacol. 2020;11:574533.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zheng L, Ji YY, Wen XL, et al. Fecal microbiota transplantation in the metabolic diseases: current status and perspectives. WJG. 2022;28(23):2546–60.PubMedPubMedCentralCrossRef Zheng L, Ji YY, Wen XL, et al. Fecal microbiota transplantation in the metabolic diseases: current status and perspectives. WJG. 2022;28(23):2546–60.PubMedPubMedCentralCrossRef
38.
39.
Zurück zum Zitat Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.PubMedPubMedCentralCrossRef Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Woźniak D, Cichy W, Przysławski J, et al. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci. 2021;66(2):284–92.PubMedCrossRef Woźniak D, Cichy W, Przysławski J, et al. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci. 2021;66(2):284–92.PubMedCrossRef
41.
Zurück zum Zitat Xia Y, Ren M, Yang J, et al. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: correlation and causality. Front Microbiol. 2022;13:1003755.PubMedPubMedCentralCrossRef Xia Y, Ren M, Yang J, et al. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: correlation and causality. Front Microbiol. 2022;13:1003755.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34.PubMedPubMedCentralCrossRef Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Abenavoli L, Scarlata GGM, Scarpellini E, et al. Metabolic-dysfunction-associated fatty liver disease and gut microbiota: from fatty liver to dysmetabolic syndrome. Medicina. 2023;59(3):594.PubMedPubMedCentralCrossRef Abenavoli L, Scarlata GGM, Scarpellini E, et al. Metabolic-dysfunction-associated fatty liver disease and gut microbiota: from fatty liver to dysmetabolic syndrome. Medicina. 2023;59(3):594.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Forlano R, Mullish BH, Roberts LA, et al. The intestinal barrier and its dysfunction in patients with metabolic diseases and non-alcoholic fatty liver disease. IJMS. 2022;23(2):662.PubMedPubMedCentralCrossRef Forlano R, Mullish BH, Roberts LA, et al. The intestinal barrier and its dysfunction in patients with metabolic diseases and non-alcoholic fatty liver disease. IJMS. 2022;23(2):662.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208.PubMedPubMedCentralCrossRef Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Zhou J, Tripathi M, Sinha RA et al. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. HR. 2021;2021. Zhou J, Tripathi M, Sinha RA et al. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. HR. 2021;2021.
50.
Zurück zum Zitat Fang J, Yu CH, Li XJ, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997018.PubMedPubMedCentralCrossRef Fang J, Yu CH, Li XJ, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997018.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Pan Y, Zhang X. Diet and gut microbiome in fatty liver and its associated liver cancer. J Gastro and Hepatol. 2022;37(1):7–14.CrossRef Pan Y, Zhang X. Diet and gut microbiome in fatty liver and its associated liver cancer. J Gastro and Hepatol. 2022;37(1):7–14.CrossRef
52.
Zurück zum Zitat Jiang X, Zheng J, Zhang S, et al. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med. 2020;7:361.CrossRef Jiang X, Zheng J, Zhang S, et al. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med. 2020;7:361.CrossRef
53.
Zurück zum Zitat Albhaisi SAM, Bajaj JS. The influence of the microbiome on NAFLD and NASH. Clin Liver Dis. 2021;17(1):15–8.CrossRef Albhaisi SAM, Bajaj JS. The influence of the microbiome on NAFLD and NASH. Clin Liver Dis. 2021;17(1):15–8.CrossRef
54.
Zurück zum Zitat Gudan A, Kozłowska-Petriczko K, Wunsch E, et al. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease: what do we know in 2023? Nutrients. 2023;15(6):1323.PubMedPubMedCentralCrossRef Gudan A, Kozłowska-Petriczko K, Wunsch E, et al. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease: what do we know in 2023? Nutrients. 2023;15(6):1323.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Deehan EC, Zhang Z, Riva A, et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome. 2022;10(1):77.PubMedPubMedCentralCrossRef Deehan EC, Zhang Z, Riva A, et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome. 2022;10(1):77.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Wang H, Mehal W, Nagy LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.PubMedCrossRef Wang H, Mehal W, Nagy LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.PubMedCrossRef
57.
Zurück zum Zitat Fukunishi S, Sujishi T, Takeshita A, et al. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J Clin Biochem Nutr. 2014;54(1):39–44.PubMedCrossRef Fukunishi S, Sujishi T, Takeshita A, et al. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J Clin Biochem Nutr. 2014;54(1):39–44.PubMedCrossRef
58.
Zurück zum Zitat Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47–64.PubMedCrossRef Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47–64.PubMedCrossRef
59.
Zurück zum Zitat Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol. 2022;44(4):547–64.PubMedPubMedCentralCrossRef Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol. 2022;44(4):547–64.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Stofan M, Guo GL. Bile acids and fxr: novel targets for liver diseases. Front Med. 2020;7:544.CrossRef Stofan M, Guo GL. Bile acids and fxr: novel targets for liver diseases. Front Med. 2020;7:544.CrossRef
63.
Zurück zum Zitat Radun R, Trauner M. Role of FXR in bile acid and metabolic homeostasis in NASH: pathogenetic concepts and therapeutic opportunities. Semin Liver Dis. 2021;41(04):461–75.PubMedPubMedCentralCrossRef Radun R, Trauner M. Role of FXR in bile acid and metabolic homeostasis in NASH: pathogenetic concepts and therapeutic opportunities. Semin Liver Dis. 2021;41(04):461–75.PubMedPubMedCentralCrossRef
65.
66.
Zurück zum Zitat Xu Z, Jiang W, Huang W, et al. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 2022;17(1):2.PubMedPubMedCentralCrossRef Xu Z, Jiang W, Huang W, et al. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 2022;17(1):2.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol. 2022;44(4):485–507.PubMedPubMedCentralCrossRef Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol. 2022;44(4):485–507.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Li F, Ye J, Shao C, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis. 2021;20(1):22.PubMedPubMedCentralCrossRef Li F, Ye J, Shao C, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis. 2021;20(1):22.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Juárez-Fernández M, Porras D, Petrov P, et al. The synbiotic combination of Akkermansia Muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation. Antioxidants. 2021;10(12):2001.PubMedPubMedCentralCrossRef Juárez-Fernández M, Porras D, Petrov P, et al. The synbiotic combination of Akkermansia Muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation. Antioxidants. 2021;10(12):2001.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Xu Y, Wang N, Tan HY, et al. Function of akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020;11:219.PubMedPubMedCentralCrossRef Xu Y, Wang N, Tan HY, et al. Function of akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020;11:219.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Régnier M, Rastelli M, Morissette A, et al. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia Muciniphila in mice. Nutrients. 2020;12(10):2932.PubMedPubMedCentralCrossRef Régnier M, Rastelli M, Morissette A, et al. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia Muciniphila in mice. Nutrients. 2020;12(10):2932.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Gieryńska M, Szulc-Dąbrowska L, Struzik J, et al. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota—a mutual relationship. Animals. 2022;12(2):145.PubMedPubMedCentralCrossRef Gieryńska M, Szulc-Dąbrowska L, Struzik J, et al. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota—a mutual relationship. Animals. 2022;12(2):145.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Mori–Akiyama Y, Van Den Born M, Van Es JH, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133(2):539–46.PubMedCrossRef Mori–Akiyama Y, Van Den Born M, Van Es JH, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133(2):539–46.PubMedCrossRef
74.
Zurück zum Zitat Zhang S, Tun HM, Zhang D, et al. Alleviation of hepatic steatosis: dithizone-related gut microbiome restoration during paneth cell dysfunction. Front Microbiol. 2022;13:813783.PubMedPubMedCentralCrossRef Zhang S, Tun HM, Zhang D, et al. Alleviation of hepatic steatosis: dithizone-related gut microbiome restoration during paneth cell dysfunction. Front Microbiol. 2022;13:813783.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43.PubMedCrossRef Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43.PubMedCrossRef
76.
Zurück zum Zitat Yang S, Yu M. Role of goblet cells in intestinal barrier and mucosal immunity. JIR 2021;Volume 14:3171–83. Yang S, Yu M. Role of goblet cells in intestinal barrier and mucosal immunity. JIR 2021;Volume 14:3171–83.
77.
79.
Zurück zum Zitat Yuksel H, Ocalan M, Yilmaz O. E-cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front Physiol. 2021;12:720227.PubMedPubMedCentralCrossRef Yuksel H, Ocalan M, Yilmaz O. E-cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front Physiol. 2021;12:720227.PubMedPubMedCentralCrossRef
80.
82.
Zurück zum Zitat Xiong J, Chen X, Zhao Z, et al. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: a retrospective study. Exp Ther Med. 2022;24(3):598.PubMedPubMedCentralCrossRef Xiong J, Chen X, Zhao Z, et al. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: a retrospective study. Exp Ther Med. 2022;24(3):598.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Sohail MU, Althani A, Anwar H et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res 2017: 9631435. Sohail MU, Althani A, Anwar H et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res 2017: 9631435.
84.
Zurück zum Zitat Mallat A, Teixeira-Clerc F, Deveaux V, et al. The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings. Br J Pharmacol. 2011;163(7):1432–40.PubMedPubMedCentralCrossRef Mallat A, Teixeira-Clerc F, Deveaux V, et al. The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings. Br J Pharmacol. 2011;163(7):1432–40.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and gut endocannabinoid system in the regulation of stress responses and metabolism. Front Cell Neurosci. 2022;16:867267.PubMedPubMedCentralCrossRef Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and gut endocannabinoid system in the regulation of stress responses and metabolism. Front Cell Neurosci. 2022;16:867267.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Arias N, Arboleya S, Allison J, et al. The relationship between Choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients. 2020;12(8):2340.PubMedPubMedCentralCrossRef Arias N, Arboleya S, Allison J, et al. The relationship between Choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients. 2020;12(8):2340.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7:91.PubMedPubMedCentralCrossRef Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7:91.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Khan A, Ding Z, Ishaq M, et al. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: recent updates. Int J Biol Sci. 2021;17(3):818–33.PubMedPubMedCentralCrossRef Khan A, Ding Z, Ishaq M, et al. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: recent updates. Int J Biol Sci. 2021;17(3):818–33.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Luo M, Yan J, Wu L, et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/fxr/fgf15 signaling pathway. J Immunol Res. 2021;2021:1–10.CrossRef Luo M, Yan J, Wu L, et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/fxr/fgf15 signaling pathway. J Immunol Res. 2021;2021:1–10.CrossRef
91.
Zurück zum Zitat Huang Y, Wang X, Zhang L, et al. Effect of probiotics therapy on nonalcoholic fatty liver disease. Comput Math Methods Med. 2022;2022:1–15.CrossRef Huang Y, Wang X, Zhang L, et al. Effect of probiotics therapy on nonalcoholic fatty liver disease. Comput Math Methods Med. 2022;2022:1–15.CrossRef
92.
Zurück zum Zitat Arai N, Miura K, Aizawa K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice. Sci Rep. 2022;12(1):16206.PubMedCentralCrossRef Arai N, Miura K, Aizawa K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice. Sci Rep. 2022;12(1):16206.PubMedCentralCrossRef
93.
Zurück zum Zitat Ritze Y, Bárdos G, Claus A et al. Lactobacillus rhamnosus gg protects against non-alcoholic fatty liver disease in mice. Covasa M, ed. PLoS ONE. 2014;9(1):e80169. Ritze Y, Bárdos G, Claus A et al. Lactobacillus rhamnosus gg protects against non-alcoholic fatty liver disease in mice. Covasa M, ed. PLoS ONE. 2014;9(1):e80169.
94.
Zurück zum Zitat Scorletti E, Afolabi PR, Miles EA, et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology. 2020;158(6):1597–1610e7.PubMedCrossRef Scorletti E, Afolabi PR, Miles EA, et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology. 2020;158(6):1597–1610e7.PubMedCrossRef
95.
Zurück zum Zitat Kobyliak N, Abenavoli L, Mykhalchyshyn G, et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: evidence from a randomized clinical trial. JGLD. 2018;27(1):41–9.PubMedCrossRef Kobyliak N, Abenavoli L, Mykhalchyshyn G, et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: evidence from a randomized clinical trial. JGLD. 2018;27(1):41–9.PubMedCrossRef
96.
Zurück zum Zitat Behrouz V, Aryaeian N, Zahedi MJ, et al. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J Food Sci. 2020;85(10):3611–7.PubMedCrossRef Behrouz V, Aryaeian N, Zahedi MJ, et al. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J Food Sci. 2020;85(10):3611–7.PubMedCrossRef
97.
Zurück zum Zitat Chong CYL, Orr D, Plank LD, et al. Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2020;12(4):937.PubMedPubMedCentralCrossRef Chong CYL, Orr D, Plank LD, et al. Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2020;12(4):937.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Ayob N, Muhammad Nawawi KN, Mohamad Nor MH, et al. The effects of probiotics on small intestinal microbiota composition, inflammatory cytokines and intestinal permeability in patients with non-alcoholic fatty liver disease. Biomedicines. 2023;11(2):640.PubMedPubMedCentralCrossRef Ayob N, Muhammad Nawawi KN, Mohamad Nor MH, et al. The effects of probiotics on small intestinal microbiota composition, inflammatory cytokines and intestinal permeability in patients with non-alcoholic fatty liver disease. Biomedicines. 2023;11(2):640.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Naudin CR, Maner-Smith K, Owens JA, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology. 2020;159(2):639–651e5.PubMedCrossRef Naudin CR, Maner-Smith K, Owens JA, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology. 2020;159(2):639–651e5.PubMedCrossRef
100.
Zurück zum Zitat Choi SI, You S, Kim S et al. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food & Nutr Res. 2021;65. Choi SI, You S, Kim S et al. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food & Nutr Res. 2021;65.
101.
Zurück zum Zitat Werlinger P, Nguyen HT, Gu M, et al. Lactobacillus reuteri mjm60668 prevent progression of non-alcoholic fatty liver disease through anti-adipogenesis and anti-inflammatory pathway. Microorganisms. 2022;10(11):2203.PubMedPubMedCentralCrossRef Werlinger P, Nguyen HT, Gu M, et al. Lactobacillus reuteri mjm60668 prevent progression of non-alcoholic fatty liver disease through anti-adipogenesis and anti-inflammatory pathway. Microorganisms. 2022;10(11):2203.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Hu W, Gao W, Liu Z, et al. Specific strains of faecalibacterium prausnitzii ameliorate nonalcoholic fatty liver disease in mice in association with gut microbiota regulation. Nutrients. 2022;14(14):2945.PubMedPubMedCentralCrossRef Hu W, Gao W, Liu Z, et al. Specific strains of faecalibacterium prausnitzii ameliorate nonalcoholic fatty liver disease in mice in association with gut microbiota regulation. Nutrients. 2022;14(14):2945.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Bakhshimoghaddam F, Shateri K, Sina M, et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Nutr. 2018;148(8):1276–84.PubMedCrossRef Bakhshimoghaddam F, Shateri K, Sina M, et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Nutr. 2018;148(8):1276–84.PubMedCrossRef
104.
Zurück zum Zitat Ahn SB, Jun DW, Kang BK, et al. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep. 2019;9(1):5688.PubMedPubMedCentralCrossRef Ahn SB, Jun DW, Kang BK, et al. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep. 2019;9(1):5688.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Chong PL, Laight D, Aspinall RJ, et al. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol. 2021;21(1):144.PubMedPubMedCentralCrossRef Chong PL, Laight D, Aspinall RJ, et al. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol. 2021;21(1):144.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Nguyen HT, Gu M, Werlinger P, et al. Lactobacillus sakei mjm60958 as a potential probiotic alleviated non-alcoholic fatty liver disease in mice fed a high-fat diet by modulating lipid metabolism, inflammation, and gut microbiota. IJMS. 2022;23(21):13436.PubMedPubMedCentralCrossRef Nguyen HT, Gu M, Werlinger P, et al. Lactobacillus sakei mjm60958 as a potential probiotic alleviated non-alcoholic fatty liver disease in mice fed a high-fat diet by modulating lipid metabolism, inflammation, and gut microbiota. IJMS. 2022;23(21):13436.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Do MH, Oh MJ, Lee HB, et al. Bifidobacterium animalis ssp. Lactis mg741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines. Nutrients. 2022;14(9):1965.PubMedPubMedCentralCrossRef Do MH, Oh MJ, Lee HB, et al. Bifidobacterium animalis ssp. Lactis mg741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines. Nutrients. 2022;14(9):1965.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Yan Y, Liu C, Zhao S, et al. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Expr. 2020;10(1):101.CrossRef Yan Y, Liu C, Zhao S, et al. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Expr. 2020;10(1):101.CrossRef
109.
Zurück zum Zitat Zhang Z, Zhou H, Zhou X, et al. lactobacillus casei yrl577 ameliorates markers of non-alcoholic fatty liver and alters expression of genes within the intestinal bile acid pathway. Br J Nutr. 2021;125(5):521–9.PubMedCrossRef Zhang Z, Zhou H, Zhou X, et al. lactobacillus casei yrl577 ameliorates markers of non-alcoholic fatty liver and alters expression of genes within the intestinal bile acid pathway. Br J Nutr. 2021;125(5):521–9.PubMedCrossRef
110.
Zurück zum Zitat Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother. 2019;111:537–47.PubMedCrossRef Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother. 2019;111:537–47.PubMedCrossRef
111.
Zurück zum Zitat Kim S, Lee Y, Kim Y, et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol. 2020;86:e03004–19.PubMedPubMedCentralCrossRef Kim S, Lee Y, Kim Y, et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol. 2020;86:e03004–19.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.PubMedCrossRef Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.PubMedCrossRef
113.
Zurück zum Zitat Jian H, Liu Y, Wang X, et al. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut-liver-brain axes? Int J Mol Sci. 2023;24(4):3900.PubMedPubMedCentralCrossRef Jian H, Liu Y, Wang X, et al. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut-liver-brain axes? Int J Mol Sci. 2023;24(4):3900.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Chiantera V, Laganà AS, Basciani S, et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms. Life (Basel). 2023;13(6):1247.PubMed Chiantera V, Laganà AS, Basciani S, et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms. Life (Basel). 2023;13(6):1247.PubMed
116.
Zurück zum Zitat Han TR, Yang WJ, Tan QH, et al. Gut microbiota therapy for nonalcoholic fatty liver disease: evidence from randomized clinical trials. Front Microbiol. 2023;13:1004911.PubMedPubMedCentralCrossRef Han TR, Yang WJ, Tan QH, et al. Gut microbiota therapy for nonalcoholic fatty liver disease: evidence from randomized clinical trials. Front Microbiol. 2023;13:1004911.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Cho JM, Pestana L, Pardi R, et al. Fecal microbiota transplant via colonoscopy may be preferred due to intraprocedure findings. Intest Res. 2019;17(3):434–7.PubMedPubMedCentralCrossRef Cho JM, Pestana L, Pardi R, et al. Fecal microbiota transplant via colonoscopy may be preferred due to intraprocedure findings. Intest Res. 2019;17(3):434–7.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Almeida C, Oliveira R, Baylina P, et al. Current trends and challenges of fecal microbiota transplantation—an easy method that works for all? Biomedicines. 2022;10(11):2742.PubMedPubMedCentralCrossRef Almeida C, Oliveira R, Baylina P, et al. Current trends and challenges of fecal microbiota transplantation—an easy method that works for all? Biomedicines. 2022;10(11):2742.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Xue L, Deng Z, Luo W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front Cell Infect Microbiol. 2022;12:759306.PubMedPubMedCentralCrossRef Xue L, Deng Z, Luo W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front Cell Infect Microbiol. 2022;12:759306.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Witjes JJ, Smits LP, Pekmez CT, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun. 2020;4(11):1578–90.PubMedPubMedCentralCrossRef Witjes JJ, Smits LP, Pekmez CT, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun. 2020;4(11):1578–90.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Craven L, Rahman A, Nair Parvathy S, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol. 2020;115:1055–65.PubMedCrossRef Craven L, Rahman A, Nair Parvathy S, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol. 2020;115:1055–65.PubMedCrossRef
122.
Zurück zum Zitat Lahtinen P, Juuti A, Luostarinen M, et al. Effectiveness of fecal microbiota transplantation for weight loss in patients with obesity undergoing bariatric surgery: a randomized clinical trial. JAMA Netw Open. 2022;5(12):e2247226.PubMedPubMedCentralCrossRef Lahtinen P, Juuti A, Luostarinen M, et al. Effectiveness of fecal microbiota transplantation for weight loss in patients with obesity undergoing bariatric surgery: a randomized clinical trial. JAMA Netw Open. 2022;5(12):e2247226.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7(1):1529.PubMedPubMedCentralCrossRef Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7(1):1529.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916e7.PubMedCrossRef Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916e7.PubMedCrossRef
125.
Zurück zum Zitat Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–71.PubMedPubMedCentralCrossRef Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–71.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Freitag TL, Hartikainen A, Jouhten H, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.PubMedPubMedCentralCrossRef Freitag TL, Hartikainen A, Jouhten H, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.PubMedCrossRef Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.PubMedCrossRef
128.
Zurück zum Zitat Le Bastard Q, Ward T, Sidiropoulos D, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep. 2018;8(1):6219.PubMedPubMedCentralCrossRef Le Bastard Q, Ward T, Sidiropoulos D, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep. 2018;8(1):6219.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Zeng X, Li X, Li X, et al. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood. 2023;141(14):1691–707.PubMedPubMedCentralCrossRef Zeng X, Li X, Li X, et al. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood. 2023;141(14):1691–707.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Forlano R, Sivakumar M, Mullish BH, et al. Gut microbiota—a future therapeutic target for people with non-alcoholic fatty liver disease: a systematic review. IJMS. 2022;23(15):8307.PubMedPubMedCentralCrossRef Forlano R, Sivakumar M, Mullish BH, et al. Gut microbiota—a future therapeutic target for people with non-alcoholic fatty liver disease: a systematic review. IJMS. 2022;23(15):8307.PubMedPubMedCentralCrossRef
132.
133.
Zurück zum Zitat Marrs T, Walter J. Pros and cons: is faecal microbiota transplantation a safe and efficient treatment option for gut dysbiosis? Allergy. 2021;76(7):2312–7.PubMedCrossRef Marrs T, Walter J. Pros and cons: is faecal microbiota transplantation a safe and efficient treatment option for gut dysbiosis? Allergy. 2021;76(7):2312–7.PubMedCrossRef
134.
Zurück zum Zitat Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019;11(2):e9302.PubMedCrossRef Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019;11(2):e9302.PubMedCrossRef
135.
Zurück zum Zitat Tkach S, Dorofeyev A, Kuzenko I, et al. Current status and future therapeutic options for fecal microbiota transplantation. Med (Kaunas). 2022;58(1):84. Tkach S, Dorofeyev A, Kuzenko I, et al. Current status and future therapeutic options for fecal microbiota transplantation. Med (Kaunas). 2022;58(1):84.
Metadaten
Titel
Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies
verfasst von
Muthukumaran Jayachandran
Shen Qu
Publikationsdatum
16.10.2023
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 6/2023
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-023-09843-z

Weitere Artikel der Ausgabe 6/2023

Reviews in Endocrine and Metabolic Disorders 6/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Wie managen Sie die schmerzhafte diabetische Polyneuropathie?

10.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Mit Capsaicin-Pflastern steht eine neue innovative Therapie bei schmerzhafter diabetischer Polyneuropathie zur Verfügung. Bei therapierefraktären Schmerzen stellt die Hochfrequenz-Rückenmarkstimulation eine adäquate Option dar.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.