Skip to main content
Erschienen in: Drugs 15/2019

01.10.2019 | Review Article

Novel Treatment Strategies for Biofilm-Based Infections

verfasst von: Claudia Vuotto, Gianfranco Donelli

Erschienen in: Drugs | Ausgabe 15/2019

Einloggen, um Zugang zu erhalten

Abstract

Biofilm-growing cells show an enhanced antimicrobial tolerance with respect to the same cells growing in a free-floating way. This is due to physical or chemical diffusion barriers and increased transfer of resistance markers. Thus, tissue- and medical device-related biofilms can be considered among the leading sources of antibiotic treatment failure, causing many of the deadliest chronic infections afflicting humans nowadays. To find a satisfying way to counteract this major health threat, a great effort has been made in recent years to develop safe, effective and fast-acting anti-biofilm strategies. In this review, we summarise and evaluate the most promising tools and molecules that have demonstrated their ability to modulate steps involved in biofilm formation or to disperse pre-formed biofilms, without conferring evolutionary pressure to microorganisms.
Literatur
2.
Zurück zum Zitat Akers KS, Cardile AP, Wenke JC, Murray CK. Biofilm formation by clinical isolates and its relevance to clinical infections. Adv Exp Med Biol. 2015;830:1–28.PubMedCrossRef Akers KS, Cardile AP, Wenke JC, Murray CK. Biofilm formation by clinical isolates and its relevance to clinical infections. Adv Exp Med Biol. 2015;830:1–28.PubMedCrossRef
3.
Zurück zum Zitat Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209.PubMedCrossRef Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209.PubMedCrossRef
5.
Zurück zum Zitat Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol. 1999;181:5993–6002.PubMedPubMedCentral Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol. 1999;181:5993–6002.PubMedPubMedCentral
6.
Zurück zum Zitat Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280:295–8.PubMedCrossRef Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280:295–8.PubMedCrossRef
7.
Zurück zum Zitat Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–5.PubMedCrossRef Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–5.PubMedCrossRef
8.
Zurück zum Zitat Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–3.PubMedCrossRef Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–3.PubMedCrossRef
9.
Zurück zum Zitat Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol. 2004;294:203–12.PubMedCrossRef Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol. 2004;294:203–12.PubMedCrossRef
10.
Zurück zum Zitat Stewart PS, Davison WM, Steenbergen JN. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 2009;53:3505–7.PubMedPubMedCentralCrossRef Stewart PS, Davison WM, Steenbergen JN. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 2009;53:3505–7.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Doroshenko N, Tseng BS, Howlin RP, Deacon J, Wharton JA, Thurner PJ, Gilmore BF, Parsek MR, Stoodley P. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother. 2014;58:7273–82.PubMedPubMedCentralCrossRef Doroshenko N, Tseng BS, Howlin RP, Deacon J, Wharton JA, Thurner PJ, Gilmore BF, Parsek MR, Stoodley P. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother. 2014;58:7273–82.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Siala W, Mingeot-Leclercq MP, Tulkens PM, Hallin M, Denis O, Van Bambeke F. Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014;58:6385–97.PubMedPubMedCentralCrossRef Siala W, Mingeot-Leclercq MP, Tulkens PM, Hallin M, Denis O, Van Bambeke F. Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014;58:6385–97.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436:1171–5.PubMedCrossRef Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436:1171–5.PubMedCrossRef
14.
Zurück zum Zitat Cargill JS, Upton M. Low concentrations of vancomycin stimulate biofilm formation in some clinical isolates of Staphylococcus epidermidis. J Clin Pathol. 2009;62:1112–6.PubMedCrossRef Cargill JS, Upton M. Low concentrations of vancomycin stimulate biofilm formation in some clinical isolates of Staphylococcus epidermidis. J Clin Pathol. 2009;62:1112–6.PubMedCrossRef
15.
Zurück zum Zitat Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis. 2016;74:ftv114.PubMedCrossRef Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis. 2016;74:ftv114.PubMedCrossRef
16.
Zurück zum Zitat Pasquaroli S, Citterio B, Cesare AD, Amiri M, Manti A, Vuotto C, Biavasco F. Role of daptomycin in the induction and persistence of the viable but non-culturable state of Staphylococcus aureus biofilms. Pathogens. 2014;3:759–68.PubMedPubMedCentralCrossRef Pasquaroli S, Citterio B, Cesare AD, Amiri M, Manti A, Vuotto C, Biavasco F. Role of daptomycin in the induction and persistence of the viable but non-culturable state of Staphylococcus aureus biofilms. Pathogens. 2014;3:759–68.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Pasquaroli S, Zandri G, Vignaroli C, Vuotto C, Donelli G, Biavasco F. Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. J Antimicrob Chemother. 2013;68:1812–7.PubMedCrossRef Pasquaroli S, Zandri G, Vignaroli C, Vuotto C, Donelli G, Biavasco F. Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. J Antimicrob Chemother. 2013;68:1812–7.PubMedCrossRef
18.
Zurück zum Zitat Bragg RR, Meyburgh CM, Lee JY, Coetzee M. Potential treatment options in a post-antibiotic era. Adv Exp Med Biol. 2018;1052:51–61.PubMedCrossRef Bragg RR, Meyburgh CM, Lee JY, Coetzee M. Potential treatment options in a post-antibiotic era. Adv Exp Med Biol. 2018;1052:51–61.PubMedCrossRef
19.
Zurück zum Zitat Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272:541–61.PubMedCrossRef Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272:541–61.PubMedCrossRef
20.
Zurück zum Zitat Günther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hänsch GM. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol. 2009;46:1805–13.PubMedCrossRef Günther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hänsch GM. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol. 2009;46:1805–13.PubMedCrossRef
21.
Zurück zum Zitat Rodney MD. Biofilm formation; a clinically relevant microbiological process. Clin Infect Dis. 2001;33:1387–92.CrossRef Rodney MD. Biofilm formation; a clinically relevant microbiological process. Clin Infect Dis. 2001;33:1387–92.CrossRef
22.
Zurück zum Zitat Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. Med Microbiol. 2015;64:323–41.CrossRef Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. Med Microbiol. 2015;64:323–41.CrossRef
23.
Zurück zum Zitat Donelli G, Vuotto C. Biofilm-based infections in long-term care facilities. Future Microbiol. 2014;9:175–88.PubMedCrossRef Donelli G, Vuotto C. Biofilm-based infections in long-term care facilities. Future Microbiol. 2014;9:175–88.PubMedCrossRef
24.
Zurück zum Zitat Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21:S1–25.PubMedCrossRef Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21:S1–25.PubMedCrossRef
25.
Zurück zum Zitat Vuotto C, Donelli G, Buckley A, Chilton C. Clostridium difficile biofilm. Adv Exp Med Biol. 2018;1050:97–115.PubMedCrossRef Vuotto C, Donelli G, Buckley A, Chilton C. Clostridium difficile biofilm. Adv Exp Med Biol. 2018;1050:97–115.PubMedCrossRef
26.
Zurück zum Zitat Percival SL, Vuotto C, Donelli G, Lipsky BA. Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care (New Rochelle). 2015;4:389–97.CrossRef Percival SL, Vuotto C, Donelli G, Lipsky BA. Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care (New Rochelle). 2015;4:389–97.CrossRef
27.
Zurück zum Zitat Fabbri S, Johnston DA, Rmaile A, Gottenbos B, De Jager M, Aspiras M, Starke EM, Ward MT, Stoodley P. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays. J Mech Behav Biomed Mater. 2016;59:197–206.PubMedCrossRef Fabbri S, Johnston DA, Rmaile A, Gottenbos B, De Jager M, Aspiras M, Starke EM, Ward MT, Stoodley P. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays. J Mech Behav Biomed Mater. 2016;59:197–206.PubMedCrossRef
28.
Zurück zum Zitat Urish KL, DeMuth PW, Craft DW, Haider H, Davis CM 3rd. Pulse lavage is inadequate at removal of biofilm from the surface of total knee arthroplasty materials. J Arthroplasty. 2014;29:1128–32.PubMedCrossRef Urish KL, DeMuth PW, Craft DW, Haider H, Davis CM 3rd. Pulse lavage is inadequate at removal of biofilm from the surface of total knee arthroplasty materials. J Arthroplasty. 2014;29:1128–32.PubMedCrossRef
29.
Zurück zum Zitat Raad I, Chaftari AM, Zakhour R, Jordan M, Al Hamal Z, Jiang Y, Yousif A, Garoge K, Mulanovich V, Viola GM, Kanj S, Pravinkumar E, Rosenblatt J, Hachem R. Successful salvage of central venous catheters in patients with catheter-related or central line-associated bloodstream infections by using a catheter lock solution consisting of minocycline, edta, and 25% ethanol. Antimicrob Agents Chemother. 2016;60:3426–32.PubMedPubMedCentralCrossRef Raad I, Chaftari AM, Zakhour R, Jordan M, Al Hamal Z, Jiang Y, Yousif A, Garoge K, Mulanovich V, Viola GM, Kanj S, Pravinkumar E, Rosenblatt J, Hachem R. Successful salvage of central venous catheters in patients with catheter-related or central line-associated bloodstream infections by using a catheter lock solution consisting of minocycline, edta, and 25% ethanol. Antimicrob Agents Chemother. 2016;60:3426–32.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Walder B, Pittet D, Tramèr MR. Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: evidence from a meta-analysis. Infect Control Hosp Epidemiol. 2002;23:748–56.PubMedCrossRef Walder B, Pittet D, Tramèr MR. Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: evidence from a meta-analysis. Infect Control Hosp Epidemiol. 2002;23:748–56.PubMedCrossRef
31.
Zurück zum Zitat Darouiche RO, Berger DH, Khardori N, Robertson CS, Wall MJ Jr, Metzler MH, Shah S, Mansouri MD, Cerra-Stewart C, Versalovic J, Reardon MJ, Raad II. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters: a randomized controlled trial. Ann Surg. 2005;242:193–200.PubMedPubMedCentralCrossRef Darouiche RO, Berger DH, Khardori N, Robertson CS, Wall MJ Jr, Metzler MH, Shah S, Mansouri MD, Cerra-Stewart C, Versalovic J, Reardon MJ, Raad II. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters: a randomized controlled trial. Ann Surg. 2005;242:193–200.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Boelch SP, Rueckl K, Fuchs C, Jordan M, Knauer M, Steinert A, Rudert M, Luedemann M. Comparison of elution characteristics and compressive strength of biantibiotic-loaded PMMA bone cement for spacers: copal® spacem with gentamicin and vancomycin versus Palacos® R+G with vancomycin. Biomed Res Int. 2018;2018:4323518.PubMedPubMedCentral Boelch SP, Rueckl K, Fuchs C, Jordan M, Knauer M, Steinert A, Rudert M, Luedemann M. Comparison of elution characteristics and compressive strength of biantibiotic-loaded PMMA bone cement for spacers: copal® spacem with gentamicin and vancomycin versus Palacos® R+G with vancomycin. Biomed Res Int. 2018;2018:4323518.PubMedPubMedCentral
33.
Zurück zum Zitat Kalfon P, de Vaumas C, Samba D, Boulet E, Lefrant JY, Eyraud D, Lherm T, Santoli F, Naija W, Riou B. Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med. 2007;35:1032–9.PubMedCrossRef Kalfon P, de Vaumas C, Samba D, Boulet E, Lefrant JY, Eyraud D, Lherm T, Santoli F, Naija W, Riou B. Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med. 2007;35:1032–9.PubMedCrossRef
34.
Zurück zum Zitat Ramos ER, Reitzel R, Jiang Y, Hachem RY, Chaftari AM, Chemaly RF, Hackett B, Pravinkumar SE, Nates J, Tarrand JJ, Raad II. Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med. 2011;39:245–51.PubMedCrossRef Ramos ER, Reitzel R, Jiang Y, Hachem RY, Chaftari AM, Chemaly RF, Hackett B, Pravinkumar SE, Nates J, Tarrand JJ, Raad II. Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med. 2011;39:245–51.PubMedCrossRef
35.
Zurück zum Zitat Bianchi T, Wolcott RD, Peghetti A, Leaper D, Cutting K, Polignano R, Rosa Rita Z, Moscatelli A, Greco A, Romanelli M, Pancani S, Bellingeri A, Ruggeri V, Postacchini L, Tedesco S, Manfredi L, Camerlingo M, Rowan S, Gabrielli A, Pomponio G. Recommendations for the management of biofilm: a consensus document. J Wound Care. 2016;25:305–17.PubMedCrossRef Bianchi T, Wolcott RD, Peghetti A, Leaper D, Cutting K, Polignano R, Rosa Rita Z, Moscatelli A, Greco A, Romanelli M, Pancani S, Bellingeri A, Ruggeri V, Postacchini L, Tedesco S, Manfredi L, Camerlingo M, Rowan S, Gabrielli A, Pomponio G. Recommendations for the management of biofilm: a consensus document. J Wound Care. 2016;25:305–17.PubMedCrossRef
36.
Zurück zum Zitat Bjerkan G, Witso E, Bergh K. Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop. 2009;80:245–50.PubMedPubMedCentralCrossRef Bjerkan G, Witso E, Bergh K. Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop. 2009;80:245–50.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23:179–230.PubMedCrossRef Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23:179–230.PubMedCrossRef
38.
Zurück zum Zitat Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol. 2010;8:471–80.PubMedCrossRef Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol. 2010;8:471–80.PubMedCrossRef
39.
40.
Zurück zum Zitat Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, van Winkelhoff AJ, Neut D, Stoodley P, van der Mei HC, Busscher HJ. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev. 2015;39:234–45.PubMedPubMedCentralCrossRef Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, van Winkelhoff AJ, Neut D, Stoodley P, van der Mei HC, Busscher HJ. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev. 2015;39:234–45.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, Bassler BL, Stone HA. Bacterial biofilm material properties enable removal and transfer by capillary peeling. Adv Mater. 2019;31:e1807586.PubMedCrossRef Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, Bassler BL, Stone HA. Bacterial biofilm material properties enable removal and transfer by capillary peeling. Adv Mater. 2019;31:e1807586.PubMedCrossRef
42.
Zurück zum Zitat Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–16.PubMedCrossRef Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–16.PubMedCrossRef
43.
Zurück zum Zitat Cai Y, Wang J, Liu X, Wang R, Xia L. A review of the combination therapy of low frequency ultrasound with antibiotics. Biomed Res Int. 2017;2017:2317846.PubMedPubMedCentral Cai Y, Wang J, Liu X, Wang R, Xia L. A review of the combination therapy of low frequency ultrasound with antibiotics. Biomed Res Int. 2017;2017:2317846.PubMedPubMedCentral
44.
Zurück zum Zitat Qian Z, Stoodley P, Pitt WG. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials. 1996;17:1975–80.PubMedCrossRef Qian Z, Stoodley P, Pitt WG. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials. 1996;17:1975–80.PubMedCrossRef
45.
Zurück zum Zitat Peterson RV, Pitt WG. The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids Surf B. 2000;17:219–27.CrossRef Peterson RV, Pitt WG. The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids Surf B. 2000;17:219–27.CrossRef
46.
Zurück zum Zitat Hou Y, Yang M, Jiang H, Li D, Du Y. Effects of low-intensity and low-frequency ultrasound combined with tobramycin on biofilms of extended-spectrum beta-lactamases (ESBLs) Escherichia coli. FEMS Microbiol Lett. 2019;366:fnz026.PubMedCrossRef Hou Y, Yang M, Jiang H, Li D, Du Y. Effects of low-intensity and low-frequency ultrasound combined with tobramycin on biofilms of extended-spectrum beta-lactamases (ESBLs) Escherichia coli. FEMS Microbiol Lett. 2019;366:fnz026.PubMedCrossRef
47.
Zurück zum Zitat Yang M, Du K, Hou Y, Xie S, Dong Y, Li D, Du Y. Synergistic antifungal effect of amphotericin B-loaded PLGA nanoparticle with ultrasound against C. albicans biofilms. Antimicrob Agents Chemother. 2019;63:e02022-18.PubMedPubMedCentralCrossRef Yang M, Du K, Hou Y, Xie S, Dong Y, Li D, Du Y. Synergistic antifungal effect of amphotericin B-loaded PLGA nanoparticle with ultrasound against C. albicans biofilms. Antimicrob Agents Chemother. 2019;63:e02022-18.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Liu X, Yin H, Weng CX, Cai Y. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii. Ultrasound Med Biol. 2016;42:1968–75.PubMedCrossRef Liu X, Yin H, Weng CX, Cai Y. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii. Ultrasound Med Biol. 2016;42:1968–75.PubMedCrossRef
49.
Zurück zum Zitat Karosi T, Sziklai I, Csomor P. Low-frequency ultrasound for biofilm disruption in chronic rhinosinusitis with nasal polyposis: in vitro pilot study. Laryngoscope. 2013;123:17–23.PubMedCrossRef Karosi T, Sziklai I, Csomor P. Low-frequency ultrasound for biofilm disruption in chronic rhinosinusitis with nasal polyposis: in vitro pilot study. Laryngoscope. 2013;123:17–23.PubMedCrossRef
50.
Zurück zum Zitat Carmen JC, Roeder BL, Nelson JL, Ogilvie RL, Robison RA, Schaalje GB, Pitt WG. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control. 2005;33:78–82.PubMedPubMedCentralCrossRef Carmen JC, Roeder BL, Nelson JL, Ogilvie RL, Robison RA, Schaalje GB, Pitt WG. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control. 2005;33:78–82.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Seth AK, Nguyen KT, Geringer MR, Hong SJ, Leung KP, Mustoe TA, Galiano RD. Noncontact, low-frequency ultrasound as an effective therapy against Pseudomonas aeruginosa-infected biofilm wounds. Wound Repair Regen. 2013;21:266–74.PubMedCrossRef Seth AK, Nguyen KT, Geringer MR, Hong SJ, Leung KP, Mustoe TA, Galiano RD. Noncontact, low-frequency ultrasound as an effective therapy against Pseudomonas aeruginosa-infected biofilm wounds. Wound Repair Regen. 2013;21:266–74.PubMedCrossRef
52.
Zurück zum Zitat Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, Dror N, Barliya T, Mandel M, Lavie G. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother. 2006;50:4144–52.PubMedPubMedCentralCrossRef Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, Dror N, Barliya T, Mandel M, Lavie G. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother. 2006;50:4144–52.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Carmen JC, Nelson JL, Beckstead BL, Runyan CM, Robison RA, Schaalje GB, Pitt WG. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother. 2004;10:193–9.PubMedPubMedCentralCrossRef Carmen JC, Nelson JL, Beckstead BL, Runyan CM, Robison RA, Schaalje GB, Pitt WG. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother. 2004;10:193–9.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Rapoport N, Smirnov AI, Timoshin A, Pratt AM, Pitt WG. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: effects of ultrasound and cell age. Arch Biochem Biophys. 1997;344:114–24.PubMedCrossRef Rapoport N, Smirnov AI, Timoshin A, Pratt AM, Pitt WG. Factors affecting the permeability of Pseudomonas aeruginosa cell walls toward lipophilic compounds: effects of ultrasound and cell age. Arch Biochem Biophys. 1997;344:114–24.PubMedCrossRef
56.
Zurück zum Zitat Pitt WG, McBride MO, Lunceford JK, Roper RJ, Sagers RD. Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Chemother. 1994;38:2577–82.PubMedPubMedCentralCrossRef Pitt WG, McBride MO, Lunceford JK, Roper RJ, Sagers RD. Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Chemother. 1994;38:2577–82.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Vyas N, Manmi K, Wang Q, Jadhav AJ, Barigou M, Sammons RL, Kuehne SA, Walmsley AD. Which parameters affect biofilm removal with acoustic cavitation? A review. Ultrasound Med Biol. 2019;45:1044–55.PubMedCrossRef Vyas N, Manmi K, Wang Q, Jadhav AJ, Barigou M, Sammons RL, Kuehne SA, Walmsley AD. Which parameters affect biofilm removal with acoustic cavitation? A review. Ultrasound Med Biol. 2019;45:1044–55.PubMedCrossRef
58.
Zurück zum Zitat Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett DJ, Mandrekar JN, Patel R. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS One. 2016;11:e0168595.PubMedPubMedCentralCrossRef Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett DJ, Mandrekar JN, Patel R. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS One. 2016;11:e0168595.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015;59:4610–5.PubMedPubMedCentralCrossRef Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015;59:4610–5.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Sahrmann P, Zehnder M, Mohn D, Meier A, Imfeld T, Thurnheer T. Effect of low direct current on anaerobic multispecies biofilm adhering to a titanium implant surface. Clin Implant Dent Relat Res. 2014;16:552–6.PubMedCrossRef Sahrmann P, Zehnder M, Mohn D, Meier A, Imfeld T, Thurnheer T. Effect of low direct current on anaerobic multispecies biofilm adhering to a titanium implant surface. Clin Implant Dent Relat Res. 2014;16:552–6.PubMedCrossRef
61.
Zurück zum Zitat Lasserre JF, Leprince JG, Toma S, Brecx MC. Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. New Microbiol. 2015;38:511–9.PubMed Lasserre JF, Leprince JG, Toma S, Brecx MC. Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. New Microbiol. 2015;38:511–9.PubMed
62.
Zurück zum Zitat Wattanakaroon W, Stewart PS. Electrical enhancement of Streptococcus gordonii biofilm killing by gentamicin. Arch Oral Biol. 2000;45:167–71.PubMedCrossRef Wattanakaroon W, Stewart PS. Electrical enhancement of Streptococcus gordonii biofilm killing by gentamicin. Arch Oral Biol. 2000;45:167–71.PubMedCrossRef
63.
Zurück zum Zitat Lasserre JF, Toma S, Bourgeois T, El Khatmaoui H, Marichal E, Brecx MC. Influence of low direct electric currents and chlorhexidine upon human dental biofilms. Clin Exp Dent Res. 2016;2:146–54.PubMedPubMedCentralCrossRef Lasserre JF, Toma S, Bourgeois T, El Khatmaoui H, Marichal E, Brecx MC. Influence of low direct electric currents and chlorhexidine upon human dental biofilms. Clin Exp Dent Res. 2016;2:146–54.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Voegele P, Badiola J, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance KE, Mandrekar JN, Patel R. Antibiofilm activity of electrical current in a catheter model. Antimicrob Agents Chemother. 2016;60:1476–80.PubMedCentralCrossRef Voegele P, Badiola J, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance KE, Mandrekar JN, Patel R. Antibiofilm activity of electrical current in a catheter model. Antimicrob Agents Chemother. 2016;60:1476–80.PubMedCentralCrossRef
65.
Zurück zum Zitat Alshawabkeh AN, Maillacheruvu K. Electrochemical and biogeochemical interactions under DC electric fields. In: Smith JA, Burns SE, editors. Physicochemical groundwater remediation. New York: Kluwer Academic/Plenum Publishers; 2001. p. 73–90. Alshawabkeh AN, Maillacheruvu K. Electrochemical and biogeochemical interactions under DC electric fields. In: Smith JA, Burns SE, editors. Physicochemical groundwater remediation. New York: Kluwer Academic/Plenum Publishers; 2001. p. 73–90.
66.
Zurück zum Zitat Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthc Mater. 2014;3:1588–96.PubMedCrossRef Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthc Mater. 2014;3:1588–96.PubMedCrossRef
67.
Zurück zum Zitat Levering V, Cao C, Shivapooja P, Levinson H, Zhao X, López GP. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials. 2016;77:77–86.PubMedCrossRef Levering V, Cao C, Shivapooja P, Levinson H, Zhao X, López GP. Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials. 2016;77:77–86.PubMedCrossRef
68.
Zurück zum Zitat Maskarinec SA, Parlak Z, Tu Q, Levering V, Zauscher S, López GP, Fowler VG Jr, Perfect JR. On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation. Biofouling. 2018;34:595–604.PubMedPubMedCentralCrossRef Maskarinec SA, Parlak Z, Tu Q, Levering V, Zauscher S, López GP, Fowler VG Jr, Perfect JR. On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation. Biofouling. 2018;34:595–604.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt SC, Coenye T, Braeckmans K. Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat Commun. 2018;9:4518.PubMedPubMedCentralCrossRef Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt SC, Coenye T, Braeckmans K. Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat Commun. 2018;9:4518.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci. 2014;6:189–94.PubMedPubMedCentralCrossRef Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci. 2014;6:189–94.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Vuotto C, Barbanti F, Mastrantonio P, Donelli G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 2014;20:668–74.PubMedCrossRef Vuotto C, Barbanti F, Mastrantonio P, Donelli G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 2014;20:668–74.PubMedCrossRef
72.
Zurück zum Zitat Rossoni RD, Velloso MDS, de Barros PP, de Alvarenga JA, Santos JDD, Santos Prado ACCD, Ribeiro FC, Anbinder AL, Junqueira JC. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb Pathog. 2018;123:361–7.PubMedCrossRef Rossoni RD, Velloso MDS, de Barros PP, de Alvarenga JA, Santos JDD, Santos Prado ACCD, Ribeiro FC, Anbinder AL, Junqueira JC. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb Pathog. 2018;123:361–7.PubMedCrossRef
73.
Zurück zum Zitat Bidossi A, De Grandi R, Toscano M, Bottagisio M, De Vecchi E, Gelardi M, Drago L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect Dis. 2018;18:653.PubMedPubMedCentralCrossRef Bidossi A, De Grandi R, Toscano M, Bottagisio M, De Vecchi E, Gelardi M, Drago L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect Dis. 2018;18:653.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Humphreys GJ, McBain AJ. Antagonistic effects of Streptococcus and Lactobacillus probiotics in pharyngeal biofilms. Lett Appl Microbiol. 2019;68:303–12.PubMedCrossRef Humphreys GJ, McBain AJ. Antagonistic effects of Streptococcus and Lactobacillus probiotics in pharyngeal biofilms. Lett Appl Microbiol. 2019;68:303–12.PubMedCrossRef
75.
Zurück zum Zitat Collado MC, Jalonen L, Meriluoto, Salminen S. Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pac J Clin Nutr. 2006;15:570–5.PubMed Collado MC, Jalonen L, Meriluoto, Salminen S. Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pac J Clin Nutr. 2006;15:570–5.PubMed
76.
Zurück zum Zitat Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol. 2008;125:286–92.PubMedCrossRef Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol. 2008;125:286–92.PubMedCrossRef
77.
Zurück zum Zitat Saunders S, Bocking A, Challis J, Reid G. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55:138–42.PubMedCrossRef Saunders S, Bocking A, Challis J, Reid G. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55:138–42.PubMedCrossRef
78.
Zurück zum Zitat McMillan A, Dell M, Zellar MP, Cribby S, Martz S, Hong E, Fu J, Abbas A, Dang T, Miller W, Reid G. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces. 2011;86:58–64.PubMedCrossRef McMillan A, Dell M, Zellar MP, Cribby S, Martz S, Hong E, Fu J, Abbas A, Dang T, Miller W, Reid G. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces. 2011;86:58–64.PubMedCrossRef
79.
Zurück zum Zitat Valdez JC, Peral MC, Rachid M, Santana M, Perdigón G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect. 2005;1:472–9.CrossRef Valdez JC, Peral MC, Rachid M, Santana M, Perdigón G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect. 2005;1:472–9.CrossRef
82.
Zurück zum Zitat Samot J, Lebreton J, Badet C. Adherence capacities of oral lactobacilli for potential probiotic purposes. Anaerobe. 2011;17:69–72.PubMedCrossRef Samot J, Lebreton J, Badet C. Adherence capacities of oral lactobacilli for potential probiotic purposes. Anaerobe. 2011;17:69–72.PubMedCrossRef
83.
Zurück zum Zitat Caselli E, Brusaferro S, Coccagna M, Arnoldo L, Berloco F, Antonioli P, Tarricone R, Pelissero G, Nola S, La Fauci V, Conte A, Tognon L, Villone G, Trua N, Mazzacane S, SAN-ICA Study Group. Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: a multicentre, prospective, intervention study. PLoS One. 2018;13:e0199616.PubMedPubMedCentralCrossRef Caselli E, Brusaferro S, Coccagna M, Arnoldo L, Berloco F, Antonioli P, Tarricone R, Pelissero G, Nola S, La Fauci V, Conte A, Tognon L, Villone G, Trua N, Mazzacane S, SAN-ICA Study Group. Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: a multicentre, prospective, intervention study. PLoS One. 2018;13:e0199616.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A. Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Adv Mater. 2018;30:e1803925.PubMedCrossRef Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A. Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Adv Mater. 2018;30:e1803925.PubMedCrossRef
85.
Zurück zum Zitat Hallstrom H, Lindgren S, Yucel-Lindberg T, Dahlén G, Renvert S, Twetman S. Effect of probiotic lozenges on inflammatory reactions and oral biofilm during experimental gingivitis. Acta Odontol Scand. 2013;71:828–33.PubMedCrossRef Hallstrom H, Lindgren S, Yucel-Lindberg T, Dahlén G, Renvert S, Twetman S. Effect of probiotic lozenges on inflammatory reactions and oral biofilm during experimental gingivitis. Acta Odontol Scand. 2013;71:828–33.PubMedCrossRef
86.
Zurück zum Zitat Miyazaki Y, Kamiya S, Hanawa T, Fukuda M, Kawakami H, Takahashi H, Yokota H. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli. J Infect Chemother. 2010;16:10–8.PubMedCrossRef Miyazaki Y, Kamiya S, Hanawa T, Fukuda M, Kawakami H, Takahashi H, Yokota H. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli. J Infect Chemother. 2010;16:10–8.PubMedCrossRef
87.
Zurück zum Zitat Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS. 2017;125:392–417.PubMedCrossRef Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS. 2017;125:392–417.PubMedCrossRef
88.
Zurück zum Zitat Francolini I, Donelli G, Vuotto C, Baroncini FA, Stoodley P, Taresco V, Martinelli A, D’Ilario L, Piozzi A. Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis. 2014;70:401–7.PubMedCrossRef Francolini I, Donelli G, Vuotto C, Baroncini FA, Stoodley P, Taresco V, Martinelli A, D’Ilario L, Piozzi A. Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis. 2014;70:401–7.PubMedCrossRef
89.
Zurück zum Zitat Bertesteanu S, Chifiriuc MC, Grumezescu AM, Printza AG, Marie-Paule T, Grumezescu V, Mihaela V, Lazar V, Grigore R. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies. Curr Med Chem. 2014;21:3383–90.PubMedCrossRef Bertesteanu S, Chifiriuc MC, Grumezescu AM, Printza AG, Marie-Paule T, Grumezescu V, Mihaela V, Lazar V, Grigore R. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies. Curr Med Chem. 2014;21:3383–90.PubMedCrossRef
90.
Zurück zum Zitat Skovdal SM, Jørgensen NP, Petersen E, Jensen-Fangel S, Ogaki R, Zeng G, Johansen M, Wang M, Rohde H, Meyer RL. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater. 2018;76:46–55.PubMedCrossRef Skovdal SM, Jørgensen NP, Petersen E, Jensen-Fangel S, Ogaki R, Zeng G, Johansen M, Wang M, Rohde H, Meyer RL. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater. 2018;76:46–55.PubMedCrossRef
91.
Zurück zum Zitat Hoyos-Nogués M, Buxadera-Palomero J, Ginebra MP, Manero JM, Gil FJ, Mas-Moruno C. All-in-one trifunctional strategy: a cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids Surf B Biointerfaces. 2018;169:30–40.PubMedCrossRef Hoyos-Nogués M, Buxadera-Palomero J, Ginebra MP, Manero JM, Gil FJ, Mas-Moruno C. All-in-one trifunctional strategy: a cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids Surf B Biointerfaces. 2018;169:30–40.PubMedCrossRef
92.
Zurück zum Zitat Zeng G, Ogaki R, Meyer RL. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings. Acta Biomater. 2015;24:64–73.PubMedCrossRef Zeng G, Ogaki R, Meyer RL. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings. Acta Biomater. 2015;24:64–73.PubMedCrossRef
93.
Zurück zum Zitat Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed Engl. 2015;54:3387–99.PubMedCrossRef Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed Engl. 2015;54:3387–99.PubMedCrossRef
94.
Zurück zum Zitat Banat IM, De Rienzo MAD, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 2014;98:9915–29.PubMedCrossRef Banat IM, De Rienzo MAD, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 2014;98:9915–29.PubMedCrossRef
95.
Zurück zum Zitat Ueda Y, Mashima K, Miyazaki M, Hara S, Takata T, Kamimura H, Takagi S, Jimi S. Inhibitory effects of polysorbate 80 on MRSA biofilm formed on different substrates including dermal tissue. Sci Rep. 2019;9:3128.PubMedPubMedCentralCrossRef Ueda Y, Mashima K, Miyazaki M, Hara S, Takata T, Kamimura H, Takagi S, Jimi S. Inhibitory effects of polysorbate 80 on MRSA biofilm formed on different substrates including dermal tissue. Sci Rep. 2019;9:3128.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Sloup RE, Cieza RJ, Needle DB, Abramovitch RB, Torres AG, Waters CM. Polysorbates prevent biofilm formation and pathogenesis of Escherichia coli O104:H4. Biofouling. 2016;32:1131–40.PubMedPubMedCentralCrossRef Sloup RE, Cieza RJ, Needle DB, Abramovitch RB, Torres AG, Waters CM. Polysorbates prevent biofilm formation and pathogenesis of Escherichia coli O104:H4. Biofouling. 2016;32:1131–40.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Toutain-Kidd CM, Kadivar SC, Bramante CT, Bobin SA, Zegans ME. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother. 2009;53:136–45.PubMedCrossRef Toutain-Kidd CM, Kadivar SC, Bramante CT, Bobin SA, Zegans ME. Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother. 2009;53:136–45.PubMedCrossRef
98.
Zurück zum Zitat Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127:12–28.PubMedCrossRef Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127:12–28.PubMedCrossRef
99.
Zurück zum Zitat Rodrigues L, van der Mei H, Banat IM, Teixeira J, Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol. 2006;46:107–12.PubMedCrossRef Rodrigues L, van der Mei H, Banat IM, Teixeira J, Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol. 2006;46:107–12.PubMedCrossRef
100.
Zurück zum Zitat Ciandrini E, Campana R, Casettari L, Perinelli DR, Fagioli L, Manti A, Palmieri GF, Papa S, Baffone W. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. ApplMicrobiol Biotechnol. 2016;100:6767–77. Ciandrini E, Campana R, Casettari L, Perinelli DR, Fagioli L, Manti A, Palmieri GF, Papa S, Baffone W. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. ApplMicrobiol Biotechnol. 2016;100:6767–77.
101.
Zurück zum Zitat Satpute SK, Mone NS, Das P, Banat IM, Banpurkar AG. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol. 2019;19:39.PubMedPubMedCentralCrossRef Satpute SK, Mone NS, Das P, Banat IM, Banpurkar AG. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol. 2019;19:39.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Gómez NC, Ramiro JM, Quecan BX, de Melo Franco BD. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of listeria monocytogenes, salmonella typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol. 2016;7:863.PubMedPubMedCentralCrossRef Gómez NC, Ramiro JM, Quecan BX, de Melo Franco BD. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of listeria monocytogenes, salmonella typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol. 2016;7:863.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Tahmourespour A, Kasra-Kermanshahi R, Salehi R. Lactobacillus rhamnosus biosurfactant inhibits biofilm formation and gene expression of caries-inducing Streptococcus mutans. Dent Res J (Isfahan). 2019;16:87–94.CrossRef Tahmourespour A, Kasra-Kermanshahi R, Salehi R. Lactobacillus rhamnosus biosurfactant inhibits biofilm formation and gene expression of caries-inducing Streptococcus mutans. Dent Res J (Isfahan). 2019;16:87–94.CrossRef
104.
Zurück zum Zitat Ceresa C, Tessarolo F, Maniglio D, Caola I, Nollo G, Rinaldi M, Fracchia L. Inhibition of Candida albicans biofilm by lipopeptide AC7 coated medical-grade silicone in combination with farnesol. AIMS Bioeng. 2018;5:192–208.CrossRef Ceresa C, Tessarolo F, Maniglio D, Caola I, Nollo G, Rinaldi M, Fracchia L. Inhibition of Candida albicans biofilm by lipopeptide AC7 coated medical-grade silicone in combination with farnesol. AIMS Bioeng. 2018;5:192–208.CrossRef
105.
Zurück zum Zitat Goncalves Mdos S, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A, Badel S, Bernardi T, Michaud P, Forestier C. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One. 2014;9:e99995.PubMedCrossRef Goncalves Mdos S, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A, Badel S, Bernardi T, Michaud P, Forestier C. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One. 2014;9:e99995.PubMedCrossRef
106.
Zurück zum Zitat Muszanska AK, Nejadnik MR, Chen Y, van den Heuvel ER, Busscher HJ, van der Mei HC, Norde W. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. Antimicrob Agents Chemother. 2012;56:4961–4.PubMedPubMedCentralCrossRef Muszanska AK, Nejadnik MR, Chen Y, van den Heuvel ER, Busscher HJ, van der Mei HC, Norde W. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics. Antimicrob Agents Chemother. 2012;56:4961–4.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Treter J, Bonatto F, Krug C, Soares GV, Baumvol IJR, Macedo AJ. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion. Appl Surf Sci. 2014;303:147–54.CrossRef Treter J, Bonatto F, Krug C, Soares GV, Baumvol IJR, Macedo AJ. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion. Appl Surf Sci. 2014;303:147–54.CrossRef
108.
Zurück zum Zitat Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7:2015–28.PubMedCrossRef Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7:2015–28.PubMedCrossRef
109.
Zurück zum Zitat Triandafillu K, Balazs DJ, Aronsson BO, Descouts P, Tu Quoc P, van Delden C, Mathieu HJ, Harms H. Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials. 2003;24:1507–18.PubMedCrossRef Triandafillu K, Balazs DJ, Aronsson BO, Descouts P, Tu Quoc P, van Delden C, Mathieu HJ, Harms H. Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials. 2003;24:1507–18.PubMedCrossRef
110.
Zurück zum Zitat Taheran L, Zarrini G, Khorram S, Zakerhamidi MS. Plasma surface modification as a new approach to protect urinary catheter against Escherichia coli biofilm formation. Iran J Microbiol. 2016;8:257–62.PubMedPubMedCentral Taheran L, Zarrini G, Khorram S, Zakerhamidi MS. Plasma surface modification as a new approach to protect urinary catheter against Escherichia coli biofilm formation. Iran J Microbiol. 2016;8:257–62.PubMedPubMedCentral
111.
Zurück zum Zitat Yang Y, Guo J, Zhou X, Liu Z, Wang C, Wang K, Zhang J, Wang Z. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: an in vitro study. Dent Mater J. 2018;37:157–66.PubMedCrossRef Yang Y, Guo J, Zhou X, Liu Z, Wang C, Wang K, Zhang J, Wang Z. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: an in vitro study. Dent Mater J. 2018;37:157–66.PubMedCrossRef
112.
Zurück zum Zitat Cusumano CK, Hultgren SJ. Bacterial adhesion—a source of alternate antibiotic targets. IDrugs. 2009;12:699–705.PubMed Cusumano CK, Hultgren SJ. Bacterial adhesion—a source of alternate antibiotic targets. IDrugs. 2009;12:699–705.PubMed
113.
Zurück zum Zitat Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial adhesion of Streptococcus suis to host cells and its inhibition by carbohydrate ligands. Biology (Basel). 2013;2:918–35. Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial adhesion of Streptococcus suis to host cells and its inhibition by carbohydrate ligands. Biology (Basel). 2013;2:918–35.
114.
Zurück zum Zitat Haataja S, Verma P, Fu O, Papageorgiou AC, Pöysti S, Pieters RJ, Nilsson UJ, Finne J. Rationally designed chemically modified glycodendrimer inhibits streptococcus suis adhesin sadp at picomolar concentrations. Chemistry. 2018;24:1905–12.PubMedCrossRef Haataja S, Verma P, Fu O, Papageorgiou AC, Pöysti S, Pieters RJ, Nilsson UJ, Finne J. Rationally designed chemically modified glycodendrimer inhibits streptococcus suis adhesin sadp at picomolar concentrations. Chemistry. 2018;24:1905–12.PubMedCrossRef
115.
Zurück zum Zitat Gustke H, Kleene R, Loers G, Nehmann N, Jaehne M, Bartels KM, Jaeger KE, Schachner M, Schumacher U. Inhibition of the bacterial lectins of Pseudomonas aeruginosa with monosaccharides and peptides. Eur J Clin Microbiol Infect Dis. 2012;31:207–15.PubMedCrossRef Gustke H, Kleene R, Loers G, Nehmann N, Jaehne M, Bartels KM, Jaeger KE, Schachner M, Schumacher U. Inhibition of the bacterial lectins of Pseudomonas aeruginosa with monosaccharides and peptides. Eur J Clin Microbiol Infect Dis. 2012;31:207–15.PubMedCrossRef
116.
Zurück zum Zitat Rachmaninov O, Zinger-Yosovich KD, Gilboa-Garber N. Preventing Pseudomonas aeruginosa and Chromobacterium violaceum infections by anti-adhesion-active components of edible seeds. Nutr J. 2012;11:10.PubMedPubMedCentralCrossRef Rachmaninov O, Zinger-Yosovich KD, Gilboa-Garber N. Preventing Pseudomonas aeruginosa and Chromobacterium violaceum infections by anti-adhesion-active components of edible seeds. Nutr J. 2012;11:10.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Kim HS, Cha E, Kim Y, Jeon YH, Olson BH, Byun Y, Park HD. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci Rep. 2016;6:25318.PubMedPubMedCentralCrossRef Kim HS, Cha E, Kim Y, Jeon YH, Olson BH, Byun Y, Park HD. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci Rep. 2016;6:25318.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW. Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem. 2012;55:3945–59.PubMedPubMedCentralCrossRef Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW. Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem. 2012;55:3945–59.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Khanal M, Larsonneur F, Raks V, Barras A, Baumann JS, Martin FA, Boukherroub R, Ghigo JM, Ortiz Mellet C, Zaitsev V, Garcia Fernandez JM, Beloin C, Siriwardena A, Szunerits S. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale. 2015;7:2325–35.PubMedCrossRef Khanal M, Larsonneur F, Raks V, Barras A, Baumann JS, Martin FA, Boukherroub R, Ghigo JM, Ortiz Mellet C, Zaitsev V, Garcia Fernandez JM, Beloin C, Siriwardena A, Szunerits S. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale. 2015;7:2325–35.PubMedCrossRef
120.
Zurück zum Zitat Gupta D, Sarkar S, Sharma M, Thapa BR, Chakraborti A. Inhibition of enteroaggregative Escherichia coli cell adhesion in-vitro by designed peptides. Microb Pathog. 2016;98:23–31.PubMedCrossRef Gupta D, Sarkar S, Sharma M, Thapa BR, Chakraborti A. Inhibition of enteroaggregative Escherichia coli cell adhesion in-vitro by designed peptides. Microb Pathog. 2016;98:23–31.PubMedCrossRef
121.
Zurück zum Zitat Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 2014;9:887–900.PubMedCrossRef Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 2014;9:887–900.PubMedCrossRef
122.
Zurück zum Zitat Chorell E, Pinkner JS, Bengtsson C, Edvinsson S, Cusumano CK, Rosenbaum E, Johansson LB, Hultgren SJ, Almqvist F. Design and synthesis of fluorescent pilicides and curlicides: bioactive tools to study bacterial virulence mechanisms. Chemistry. 2012;18:4522–32.PubMedPubMedCentralCrossRef Chorell E, Pinkner JS, Bengtsson C, Edvinsson S, Cusumano CK, Rosenbaum E, Johansson LB, Hultgren SJ, Almqvist F. Design and synthesis of fluorescent pilicides and curlicides: bioactive tools to study bacterial virulence mechanisms. Chemistry. 2012;18:4522–32.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 2013;13:131.PubMedPubMedCentralCrossRef Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 2013;13:131.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Chorell E, Pinkner JS, Phan G, Edvinsson S, Buelens F, Remaut H, Waksman G, Hultgren SJ, Almqvist F. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J Med Chem. 2010;53:5690–5.PubMedPubMedCentralCrossRef Chorell E, Pinkner JS, Phan G, Edvinsson S, Buelens F, Remaut H, Waksman G, Hultgren SJ, Almqvist F. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J Med Chem. 2010;53:5690–5.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Jaiswal SK, Sharma NK, Bharti SK, Krishnan S, Kumar A, Prakash O, Kumar P, Kumar A, Gupta AK. Phytochemicals as uropathognic Escherichia coli FimH antagonist: in vitro and in silico approach. Curr Mol Med. 2018;18:640–53.PubMedCrossRef Jaiswal SK, Sharma NK, Bharti SK, Krishnan S, Kumar A, Prakash O, Kumar P, Kumar A, Gupta AK. Phytochemicals as uropathognic Escherichia coli FimH antagonist: in vitro and in silico approach. Curr Mol Med. 2018;18:640–53.PubMedCrossRef
126.
Zurück zum Zitat Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol. 2009;5:913–9.PubMedPubMedCentralCrossRef Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol. 2009;5:913–9.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, Deng L. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis. 2015;73:ftv034.PubMedCrossRef Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, Deng L. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis. 2015;73:ftv034.PubMedCrossRef
128.
Zurück zum Zitat Lijuan C, Xing Y, Minxi W, Wenkai L, Le D. Development of an aptamer-ampicillin conjugate for treating biofilms. Biochem Biophys Res Commun. 2017;483:847–54.PubMedCrossRef Lijuan C, Xing Y, Minxi W, Wenkai L, Le D. Development of an aptamer-ampicillin conjugate for treating biofilms. Biochem Biophys Res Commun. 2017;483:847–54.PubMedCrossRef
129.
Zurück zum Zitat Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46.PubMedCrossRef Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46.PubMedCrossRef
131.
Zurück zum Zitat Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from acinetobacter baumannii. J Bacteriol. 2008;190:3386–92.PubMedPubMedCentralCrossRef Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from acinetobacter baumannii. J Bacteriol. 2008;190:3386–92.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Balestrino D, Haagensen JA, Rich C, Forestier C. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol. 2005;187:2870–80.PubMedPubMedCentralCrossRef Balestrino D, Haagensen JA, Rich C, Forestier C. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol. 2005;187:2870–80.PubMedPubMedCentralCrossRef
133.
134.
Zurück zum Zitat Galante J, Ho AC, Tingey S, Charalambous BM. Quorum sensing and biofilms in the pathogen Streptococcus pneumoniae. Curr Pharm Des. 2015;21:25–30.PubMedCrossRef Galante J, Ho AC, Tingey S, Charalambous BM. Quorum sensing and biofilms in the pathogen Streptococcus pneumoniae. Curr Pharm Des. 2015;21:25–30.PubMedCrossRef
135.
Zurück zum Zitat Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21:5–11.PubMedCrossRef Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21:5–11.PubMedCrossRef
136.
Zurück zum Zitat Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med. 2010;12:e11.PubMedCrossRef Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med. 2010;12:e11.PubMedCrossRef
137.
Zurück zum Zitat Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol. 2005;71:5208–18.PubMedPubMedCentralCrossRef Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol. 2005;71:5208–18.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol. 2002;4:18–28.PubMedCrossRef Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol. 2002;4:18–28.PubMedCrossRef
139.
Zurück zum Zitat Zhao L, Xue T, Shang F, Sun H, Sun B. Staphylococcus aureus AI2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun. 2010;78:3506–15.PubMedPubMedCentralCrossRef Zhao L, Xue T, Shang F, Sun H, Sun B. Staphylococcus aureus AI2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun. 2010;78:3506–15.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Novick RP, Geisinger E. Quorum sensing in staphylococci. Ann Rev Genetics. 2008;42:541–64.CrossRef Novick RP, Geisinger E. Quorum sensing in staphylococci. Ann Rev Genetics. 2008;42:541–64.CrossRef
141.
Zurück zum Zitat Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol. 2009;73:1020–31.PubMedPubMedCentralCrossRef Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol. 2009;73:1020–31.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Bearson BL, Bearson SM. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog. 2008;44:271–8.PubMedCrossRef Bearson BL, Bearson SM. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog. 2008;44:271–8.PubMedCrossRef
143.
Zurück zum Zitat Curtis MM, Russell R, Moreira CG, Adebesin AM, Wang C, Williams NS, Taussig R, Stewart D, Zimmern P, Lu B, Prasad RN, Zhu C, Rasko DA, Huntley JF, Falck JR, Sperandio V. QseC inhibitors as an antivirulence approach for Gram-negative pathogens. MBio. 2014;5:e02165.PubMedPubMedCentralCrossRef Curtis MM, Russell R, Moreira CG, Adebesin AM, Wang C, Williams NS, Taussig R, Stewart D, Zimmern P, Lu B, Prasad RN, Zhu C, Rasko DA, Huntley JF, Falck JR, Sperandio V. QseC inhibitors as an antivirulence approach for Gram-negative pathogens. MBio. 2014;5:e02165.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Yadav MK, Park SW, Chae SW, Song JJ. Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae Biofilm Growth. Biomed Res Int. 2014;2014:156987.PubMedPubMedCentral Yadav MK, Park SW, Chae SW, Song JJ. Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae Biofilm Growth. Biomed Res Int. 2014;2014:156987.PubMedPubMedCentral
145.
Zurück zum Zitat Almohaywi B, Yu TT, Iskander G, Chan DSH, Ho KKK, Rice S, Black DS, Griffith R, Kumar N. Dihydropyrrolones as bacterial quorum sensing inhibitors. Bioorg Med Chem Lett. 2019;29:1054–9.PubMedCrossRef Almohaywi B, Yu TT, Iskander G, Chan DSH, Ho KKK, Rice S, Black DS, Griffith R, Kumar N. Dihydropyrrolones as bacterial quorum sensing inhibitors. Bioorg Med Chem Lett. 2019;29:1054–9.PubMedCrossRef
146.
Zurück zum Zitat Ciulla M, Di Stefano A, Marinelli L, Cacciatore I, Di Biase G. RNAIII inhibiting peptide (RIP) and derivatives as potential tools for the treatment of S. aureus biofilm infections. Curr Top Med Chem. 2018;18:2068–79.PubMedCrossRef Ciulla M, Di Stefano A, Marinelli L, Cacciatore I, Di Biase G. RNAIII inhibiting peptide (RIP) and derivatives as potential tools for the treatment of S. aureus biofilm infections. Curr Top Med Chem. 2018;18:2068–79.PubMedCrossRef
147.
Zurück zum Zitat Shen G, Rajan R, Zhu J, Bell CE, Pei D. Design and synthesis of substrate and intermediate analogue inhibitors of S-ribosylhomocysteinase. J Med Chem. 2006;49:3003–11.PubMedCrossRef Shen G, Rajan R, Zhu J, Bell CE, Pei D. Design and synthesis of substrate and intermediate analogue inhibitors of S-ribosylhomocysteinase. J Med Chem. 2006;49:3003–11.PubMedCrossRef
148.
Zurück zum Zitat Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL. Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol. 2009;5:251–7.PubMedPubMedCentralCrossRef Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL. Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol. 2009;5:251–7.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Rehman ZU, Leiknes T. Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol. 2018;9:1354.PubMedPubMedCentralCrossRef Rehman ZU, Leiknes T. Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol. 2018;9:1354.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb Pathog. 2018;121:190–7.PubMedCrossRef Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb Pathog. 2018;121:190–7.PubMedCrossRef
151.
Zurück zum Zitat Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol. 2018;10:1429788.PubMedPubMedCentralCrossRef Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol. 2018;10:1429788.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Vattem DA, Mihalik K, Crixell SH, McLean RJC. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 2007;78:302–10.PubMedCrossRef Vattem DA, Mihalik K, Crixell SH, McLean RJC. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 2007;78:302–10.PubMedCrossRef
153.
Zurück zum Zitat Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol. 2006;296:149–61.PubMedCrossRef Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol. 2006;296:149–61.PubMedCrossRef
154.
Zurück zum Zitat Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One. 2013;8:e53441.PubMedPubMedCentralCrossRef Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One. 2013;8:e53441.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Quave CL, Lyles JT, Kavanaugh JS, Nelson K, Parlet CP, Crosby HA, Heilmann KP, Horswill AR. Castanea sativa (European chestnut) leaf extracts rich in ursene and oleanene derivatives block Staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One. 2015;10:e0136486.PubMedPubMedCentralCrossRef Quave CL, Lyles JT, Kavanaugh JS, Nelson K, Parlet CP, Crosby HA, Heilmann KP, Horswill AR. Castanea sativa (European chestnut) leaf extracts rich in ursene and oleanene derivatives block Staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One. 2015;10:e0136486.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Bhargava N, Singh SP, Sharma A, Sharma P, Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol. 2015;10:1953–68.PubMedCrossRef Bhargava N, Singh SP, Sharma A, Sharma P, Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol. 2015;10:1953–68.PubMedCrossRef
157.
Zurück zum Zitat Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–60.PubMedCrossRef Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–60.PubMedCrossRef
158.
Zurück zum Zitat Gopu V, Kothandapani S, Shetty PH. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog. 2015;79:61–9.PubMedCrossRef Gopu V, Kothandapani S, Shetty PH. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog. 2015;79:61–9.PubMedCrossRef
159.
Zurück zum Zitat Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V. Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One. 2015;10:e0135495.PubMedPubMedCentralCrossRef Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V. Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One. 2015;10:e0135495.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Zhou L, Zheng H, Tang Y, Yu W, Gong Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett. 2013;35:631–7.PubMedCrossRef Zhou L, Zheng H, Tang Y, Yu W, Gong Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett. 2013;35:631–7.PubMedCrossRef
161.
Zurück zum Zitat Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One. 2014;9:e93414.PubMedPubMedCentralCrossRef Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One. 2014;9:e93414.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Weiland-Bräuer N, Kisch MJ, Pinnow N, Liese A, Schmitz RA. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Front Microbiol. 2016;7:1098.PubMedPubMedCentralCrossRef Weiland-Bräuer N, Kisch MJ, Pinnow N, Liese A, Schmitz RA. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Front Microbiol. 2016;7:1098.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Lauderdale KJ, Malone CL, Boles BR, Morcuende J, Horswill AR. Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res. 2010;28:55–61.PubMed Lauderdale KJ, Malone CL, Boles BR, Morcuende J, Horswill AR. Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res. 2010;28:55–61.PubMed
164.
Zurück zum Zitat Simonetti O, Cirioni O, Ghiselli R, Goteri G, Scalise A, Orlando F, Silvestri C, Riva A, Saba V, Madanahally KD, Offidani A, Balaban N, Scalise G. Giacometti. RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52:2205–11.PubMedPubMedCentralCrossRef Simonetti O, Cirioni O, Ghiselli R, Goteri G, Scalise A, Orlando F, Silvestri C, Riva A, Saba V, Madanahally KD, Offidani A, Balaban N, Scalise G. Giacometti. RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52:2205–11.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, Kitao T, Righi V, Milot S, Tzika A, Rahme L. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10:e1004321.PubMedPubMedCentralCrossRef Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, Kitao T, Righi V, Milot S, Tzika A, Rahme L. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10:e1004321.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Pan J, Ren D. Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat. 2009;19:1581–601.PubMedCrossRef Pan J, Ren D. Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat. 2009;19:1581–601.PubMedCrossRef
170.
Zurück zum Zitat Ramirez T, Shrestha A, Kishen A. Inflammatory potential of monospecies biofilm matrix components. Int Endod J. 2019;52:1020–7.PubMedCrossRef Ramirez T, Shrestha A, Kishen A. Inflammatory potential of monospecies biofilm matrix components. Int Endod J. 2019;52:1020–7.PubMedCrossRef
172.
Zurück zum Zitat Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol. 2005;349:475–86.PubMedCrossRef Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol. 2005;349:475–86.PubMedCrossRef
173.
Zurück zum Zitat Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51:2733–40.PubMedPubMedCentralCrossRef Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51:2733–40.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Papi M, Maiorana A, Bugli F, Torelli R, Posteraro B, Maulucci G, De Spirito M, Sanguinetti M. Detection of biofilm-grown Aspergillus fumigatus by means of atomic force spectroscopy: ultrastructural effects of alginate lyase. Microsc Microanal. 2012;18:1088–94.PubMedCrossRef Papi M, Maiorana A, Bugli F, Torelli R, Posteraro B, Maulucci G, De Spirito M, Sanguinetti M. Detection of biofilm-grown Aspergillus fumigatus by means of atomic force spectroscopy: ultrastructural effects of alginate lyase. Microsc Microanal. 2012;18:1088–94.PubMedCrossRef
175.
Zurück zum Zitat Cho H, Huang X, Lan Piao Y, Eun Kim D, Yeon Lee S, Jeong Yoon E, Hee Park S, Lee K, Ho Jang C, Zhan CG. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation. Proteins. 2016;84:1875–87.PubMedCrossRef Cho H, Huang X, Lan Piao Y, Eun Kim D, Yeon Lee S, Jeong Yoon E, Hee Park S, Lee K, Ho Jang C, Zhan CG. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation. Proteins. 2016;84:1875–87.PubMedCrossRef
176.
Zurück zum Zitat Kalpana BJ, Aarthy S, Pandian SK. Antibiofilm activity of α-amylase from Bacillus subtilis s8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778–94.PubMedCrossRef Kalpana BJ, Aarthy S, Pandian SK. Antibiofilm activity of α-amylase from Bacillus subtilis s8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778–94.PubMedCrossRef
177.
Zurück zum Zitat Craigen B, Dashiff A, Kadouri DE. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5:21–31.PubMedPubMedCentralCrossRef Craigen B, Dashiff A, Kadouri DE. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5:21–31.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Chen KJ, Lee CK. Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication. Int J Biol Macromol. 2018;118:419–26.PubMedCrossRef Chen KJ, Lee CK. Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication. Int J Biol Macromol. 2018;118:419–26.PubMedCrossRef
179.
Zurück zum Zitat Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol. 2014;68:635–41.PubMedCrossRef Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol. 2014;68:635–41.PubMedCrossRef
180.
Zurück zum Zitat Torelli R, Cacaci M, Papi M, Paroni Sterbini F, Martini C, Posteraro B, Palmieri V, De Spirito M, Sanguinetti M, Bugli F. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids Surf B Biointerfaces. 2017;158:349–55.PubMedCrossRef Torelli R, Cacaci M, Papi M, Paroni Sterbini F, Martini C, Posteraro B, Palmieri V, De Spirito M, Sanguinetti M, Bugli F. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids Surf B Biointerfaces. 2017;158:349–55.PubMedCrossRef
181.
Zurück zum Zitat Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In vitro antimicrobial efficacy of tobramycin against Staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: a preliminary investigation. Microb Drug Resist. 2017;23:384–90.PubMedCrossRef Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In vitro antimicrobial efficacy of tobramycin against Staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: a preliminary investigation. Microb Drug Resist. 2017;23:384–90.PubMedCrossRef
182.
Zurück zum Zitat Germoni LA, Bremer PJ, Lamont IL. The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms. J Appl Microbiol. 2016;121:126–35.PubMedCrossRef Germoni LA, Bremer PJ, Lamont IL. The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms. J Appl Microbiol. 2016;121:126–35.PubMedCrossRef
183.
Zurück zum Zitat Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl Mater Interfaces. 2015;7:27066–77.PubMedCrossRef Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl Mater Interfaces. 2015;7:27066–77.PubMedCrossRef
184.
Zurück zum Zitat Kaplan JB, Mlynek KD, Hettiarachchi H, Alamneh YA, Biggemann L, Zurawski DV, Black CC, Bane CE, Kim RK, Granick MS. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One. 2018;13:e0205526.PubMedPubMedCentralCrossRef Kaplan JB, Mlynek KD, Hettiarachchi H, Alamneh YA, Biggemann L, Zurawski DV, Black CC, Bane CE, Kim RK, Granick MS. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One. 2018;13:e0205526.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Zhu L, Poosarla VG, Song S, Wood TL, Miller DS, Yin B, Wood TK. Glycoside hydrolase DisH from Desulfovibrio vulgaris degrades the N-acetylgalactosamine component of diverse biofilms. Environ Microbiol. 2018;20:2026–37.PubMedCrossRef Zhu L, Poosarla VG, Song S, Wood TL, Miller DS, Yin B, Wood TK. Glycoside hydrolase DisH from Desulfovibrio vulgaris degrades the N-acetylgalactosamine component of diverse biofilms. Environ Microbiol. 2018;20:2026–37.PubMedCrossRef
186.
Zurück zum Zitat Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, Gravelat FN, Ostapska H, Baistrocchi SR, Cerone RP, Filler EE, Parsek MR, Filler SG, Howell PL, Sheppard DC. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proc Natl Acad Sci USA. 2017;114:7124–9.PubMedCrossRefPubMedCentral Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, Gravelat FN, Ostapska H, Baistrocchi SR, Cerone RP, Filler EE, Parsek MR, Filler SG, Howell PL, Sheppard DC. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proc Natl Acad Sci USA. 2017;114:7124–9.PubMedCrossRefPubMedCentral
187.
Zurück zum Zitat Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, Leeuwen WB, Jabalameli F. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS One. 2016;11:e0164622.PubMedPubMedCentralCrossRef Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, Leeuwen WB, Jabalameli F. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS One. 2016;11:e0164622.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep. 2013;5:778–86.PubMedCrossRef Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep. 2013;5:778–86.PubMedCrossRef
189.
Zurück zum Zitat Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, Mizunoe Y. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep. 2018;8:2254.PubMedPubMedCentralCrossRef Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, Mizunoe Y. Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep. 2018;8:2254.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Ye J, Shao C, Zhang X, Guo X, Gao P, Cen Y, Ma S, Liu Y. Effects of DNase I coating of titanium on bacteria adhesion and biofilm formation. Mater Sci Eng C Mater Biol Appl. 2017;78:738–47.PubMedCrossRef Ye J, Shao C, Zhang X, Guo X, Gao P, Cen Y, Ma S, Liu Y. Effects of DNase I coating of titanium on bacteria adhesion and biofilm formation. Mater Sci Eng C Mater Biol Appl. 2017;78:738–47.PubMedCrossRef
191.
Zurück zum Zitat Tetz VV, Tetz GV. Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol. 2010;29:399–405.PubMedCrossRef Tetz VV, Tetz GV. Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol. 2010;29:399–405.PubMedCrossRef
192.
Zurück zum Zitat Tan Y, Ma S, Leonhard M, Moser D, Haselmann GM, Wang J, Eder D, Schneider-Stickler B. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr Polym. 2018;200:35–42.PubMedCrossRef Tan Y, Ma S, Leonhard M, Moser D, Haselmann GM, Wang J, Eder D, Schneider-Stickler B. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydr Polym. 2018;200:35–42.PubMedCrossRef
193.
Zurück zum Zitat Belfield K, Bayston R, Hajduk N, Levell G, Birchall JP, Daniel M. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72:2531–8.PubMedCrossRef Belfield K, Bayston R, Hajduk N, Levell G, Birchall JP, Daniel M. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72:2531–8.PubMedCrossRef
194.
Zurück zum Zitat Cavaliere R, Ball JL, Turnbull L, Whitchurch CB. The biofilm matrix destabilizers, EDTA and DNaseI: enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiol Open. 2014;3:557–67.CrossRef Cavaliere R, Ball JL, Turnbull L, Whitchurch CB. The biofilm matrix destabilizers, EDTA and DNaseI: enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin. Microbiol Open. 2014;3:557–67.CrossRef
195.
Zurück zum Zitat Southern KW, Clancy JP, Ranganathan S. Aerosolized agents for airway clearance in cystic fibrosis. Pediatr Pulmonol. 2019;54:858–64.PubMedCrossRef Southern KW, Clancy JP, Ranganathan S. Aerosolized agents for airway clearance in cystic fibrosis. Pediatr Pulmonol. 2019;54:858–64.PubMedCrossRef
196.
Zurück zum Zitat Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem Int Ed Engl. 2016;55:10732–6.PubMedCrossRef Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem Int Ed Engl. 2016;55:10732–6.PubMedCrossRef
198.
Zurück zum Zitat Shields RC, Mokhtar N, Ford M, Hall MJ, Burgess JG, ElBadawey MR, Jakubovics NS. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS One. 2013;8:e55339.PubMedPubMedCentralCrossRef Shields RC, Mokhtar N, Ford M, Hall MJ, Burgess JG, ElBadawey MR, Jakubovics NS. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS One. 2013;8:e55339.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Shakir A, Elbadawey MR, Shields RC, Jakubovics NS, Burgess JG. Removal of biofilms from tracheoesophageal speech valves using a novel marine microbial deoxyribonuclease. Otolaryngol Head Neck Surg. 2012;147:509–14.PubMedCrossRef Shakir A, Elbadawey MR, Shields RC, Jakubovics NS, Burgess JG. Removal of biofilms from tracheoesophageal speech valves using a novel marine microbial deoxyribonuclease. Otolaryngol Head Neck Surg. 2012;147:509–14.PubMedCrossRef
200.
Zurück zum Zitat Liu J, Sun L, Liu W, Guo L, Liu Z, Wei X, Ling J. A nuclease from Streptococcus mutans facilitates biofilm dispersal and escape from killing by neutrophil extracellular traps. Front Cell Infect Microbiol. 2017;7:97.PubMedPubMedCentral Liu J, Sun L, Liu W, Guo L, Liu Z, Wei X, Ling J. A nuclease from Streptococcus mutans facilitates biofilm dispersal and escape from killing by neutrophil extracellular traps. Front Cell Infect Microbiol. 2017;7:97.PubMedPubMedCentral
201.
Zurück zum Zitat Tan A, Li WS, Verderosa AD, Blakeway LV, D Mubaiwa T, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep. 2019;9:2579. Tan A, Li WS, Verderosa AD, Blakeway LV, D Mubaiwa T, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep. 2019;9:2579.
202.
Zurück zum Zitat Lasa I, Penades JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol. 2006;157:99–107.PubMedCrossRef Lasa I, Penades JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol. 2006;157:99–107.PubMedCrossRef
203.
Zurück zum Zitat Niazi SA, Clark D, Do T, Gilbert SC, Foschi F, Mannocci F, Beighton D. The effectiveness of enzymic irrigation in removing a nutrient-410 stressed endodontic multispecies biofilm. Int Endod J. 2014;47:756–68.PubMedCrossRef Niazi SA, Clark D, Do T, Gilbert SC, Foschi F, Mannocci F, Beighton D. The effectiveness of enzymic irrigation in removing a nutrient-410 stressed endodontic multispecies biofilm. Int Endod J. 2014;47:756–68.PubMedCrossRef
204.
Zurück zum Zitat Shukla SK, Rao TS. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res. 2017;146:S1–8.PubMedPubMedCentral Shukla SK, Rao TS. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res. 2017;146:S1–8.PubMedPubMedCentral
205.
Zurück zum Zitat Nguyen UT, Burrows LL. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol. 2014;187:26–32.PubMedCrossRef Nguyen UT, Burrows LL. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol. 2014;187:26–32.PubMedCrossRef
206.
Zurück zum Zitat Ali Mohammed MM, Nerland AH, Al-Haroni M, Bakken V. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K. J Oral Microbiol. 2013;5.CrossRef Ali Mohammed MM, Nerland AH, Al-Haroni M, Bakken V. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K. J Oral Microbiol. 2013;5.CrossRef
208.
Zurück zum Zitat Mugita N, Nambu T, Takahashi K, Wang PL, Komasa Y. Proteases, actinidin, papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro. Arch Oral Biol. 2017;82:233–40.PubMedCrossRef Mugita N, Nambu T, Takahashi K, Wang PL, Komasa Y. Proteases, actinidin, papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro. Arch Oral Biol. 2017;82:233–40.PubMedCrossRef
209.
Zurück zum Zitat Nohno K, Yamaga T, Kaneko N, Miyazaki H. Tablets containing a cysteine protease, actinidine, reduce oral malodor: a crossover study. J Breath Res. 2012;6:017107.PubMedCrossRef Nohno K, Yamaga T, Kaneko N, Miyazaki H. Tablets containing a cysteine protease, actinidine, reduce oral malodor: a crossover study. J Breath Res. 2012;6:017107.PubMedCrossRef
210.
211.
Zurück zum Zitat Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen. 2014;3:897–909.PubMedPubMedCentralCrossRef Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen. 2014;3:897–909.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, Potempa J, Schmidtchen A. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7:8689.PubMedPubMedCentralCrossRef Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, Potempa J, Schmidtchen A. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7:8689.PubMedPubMedCentralCrossRef
213.
214.
Zurück zum Zitat Petrova OE, Schurr JR, Schurr MJ, Sauer K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol. 2012;86(4):819–35.PubMedPubMedCentralCrossRef Petrova OE, Schurr JR, Schurr MJ, Sauer K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol. 2012;86(4):819–35.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Sutherland IW. EPS: a complex mixture. In: Hans-Curt Flemming, Dr Thomas R. Neu, Dr Jost Wingender, editors. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). IWA Publishing, 2016. Pp. 15-24. Sutherland IW. EPS: a complex mixture. In: Hans-Curt Flemming, Dr Thomas R. Neu, Dr Jost Wingender, editors. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). IWA Publishing, 2016. Pp. 15-24.
216.
Zurück zum Zitat Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep. 2019;9:3763.PubMedPubMedCentralCrossRef Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep. 2019;9:3763.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Percival SL, Mayer D, Kirsner RS, Schultz G, Weir D, Roy S, Alavi A, Romanelli M. Surfactants: role in biofilm management and cellular behaviour. Int Wound J. 2019;16:753–60.PubMedCrossRefPubMedCentral Percival SL, Mayer D, Kirsner RS, Schultz G, Weir D, Roy S, Alavi A, Romanelli M. Surfactants: role in biofilm management and cellular behaviour. Int Wound J. 2019;16:753–60.PubMedCrossRefPubMedCentral
218.
Zurück zum Zitat Simões M, Pereira MO, Vieira MJ. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res. 2005;39:478–86.PubMedCrossRef Simões M, Pereira MO, Vieira MJ. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res. 2005;39:478–86.PubMedCrossRef
219.
Zurück zum Zitat Chen X, Stewart PS. Biofilm removal caused by chemical treatments. Water Res. 2000;34:4229–33.CrossRef Chen X, Stewart PS. Biofilm removal caused by chemical treatments. Water Res. 2000;34:4229–33.CrossRef
220.
Zurück zum Zitat Brandl MT, Huynh S. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis. Appl Environ Microbiol. 2014;80:5037–42.PubMedPubMedCentralCrossRef Brandl MT, Huynh S. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis. Appl Environ Microbiol. 2014;80:5037–42.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Azeredo L, Pacheco AP, Lopes I, Oliveira R, Vieira MJ. Monitoring cell detachment by surfactants in a parallel plate flow chamber. Water Sci Technol. 2003;47:77–82.PubMedCrossRef Azeredo L, Pacheco AP, Lopes I, Oliveira R, Vieira MJ. Monitoring cell detachment by surfactants in a parallel plate flow chamber. Water Sci Technol. 2003;47:77–82.PubMedCrossRef
222.
Zurück zum Zitat Yang Q, Larose C, Della Porta AC, Schultz GS, Gibson DJ. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model. Int Wound J. 2017;14:408–13.PubMedCrossRef Yang Q, Larose C, Della Porta AC, Schultz GS, Gibson DJ. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model. Int Wound J. 2017;14:408–13.PubMedCrossRef
223.
Zurück zum Zitat Zölß C, Cech JD. Efficacy of a new multifunctional surfactant-based biomaterial dressing with 1% silver sulphadiazine in chronic wounds. Int Wound J. 2016;13:738–43.PubMedCrossRef Zölß C, Cech JD. Efficacy of a new multifunctional surfactant-based biomaterial dressing with 1% silver sulphadiazine in chronic wounds. Int Wound J. 2016;13:738–43.PubMedCrossRef
224.
Zurück zum Zitat Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389–97.CrossRefPubMed Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389–97.CrossRefPubMed
225.
Zurück zum Zitat Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ. Characterisation of Pseudomonas rhamnolipids. Biochim Biophys Acta. 1990;1045:189–93.PubMedCrossRef Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ. Characterisation of Pseudomonas rhamnolipids. Biochim Biophys Acta. 1990;1045:189–93.PubMedCrossRef
226.
Zurück zum Zitat Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003;18:1027–36.CrossRef Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003;18:1027–36.CrossRef
227.
Zurück zum Zitat Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol. 2016;120:868–76.PubMedCrossRef Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol. 2016;120:868–76.PubMedCrossRef
228.
Zurück zum Zitat Wood TL, Gong T, Zhu L, Miller J, Miller DS, Yin B, Wood TK. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiomes. 2018;4:22.PubMedPubMedCentralCrossRef Wood TL, Gong T, Zhu L, Miller J, Miller DS, Yin B, Wood TK. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiomes. 2018;4:22.PubMedPubMedCentralCrossRef
229.
Zurück zum Zitat Bhattacharjee A, Nusca TD, Hochbaum AI. Rhamnolipids mediate an interspecies biofilm dispersal signaling pathway. ACS Chem Biol. 2016;11:3068–76.PubMedCrossRef Bhattacharjee A, Nusca TD, Hochbaum AI. Rhamnolipids mediate an interspecies biofilm dispersal signaling pathway. ACS Chem Biol. 2016;11:3068–76.PubMedCrossRef
230.
231.
Zurück zum Zitat Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front Microbiol. 2017;8:2454.PubMedPubMedCentralCrossRef Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front Microbiol. 2017;8:2454.PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016;100:5773–9.PubMedPubMedCentralCrossRef Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016;100:5773–9.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiol Lett. 2016;363:fnv224. Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiol Lett. 2016;363:fnv224.
234.
Zurück zum Zitat Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015;32:720–6. Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015;32:720–6.
235.
Zurück zum Zitat Mireles JR 2nd, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183:5848–54.PubMedPubMedCentralCrossRef Mireles JR 2nd, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183:5848–54.PubMedPubMedCentralCrossRef
236.
237.
Zurück zum Zitat Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325:1552–5.PubMedPubMedCentralCrossRef Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325:1552–5.PubMedPubMedCentralCrossRef
238.
Zurück zum Zitat Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I. Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol. 2016;7:2055.PubMedPubMedCentralCrossRef Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I. Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol. 2016;7:2055.PubMedPubMedCentralCrossRef
239.
Zurück zum Zitat Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N. Application of d-amino acids as biofilm dispersing agent in dental unit waterlines. Int J Dent. 2018;2018:9413925.PubMedPubMedCentralCrossRef Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N. Application of d-amino acids as biofilm dispersing agent in dental unit waterlines. Int J Dent. 2018;2018:9413925.PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Brandenburg KS, Rodriguez KJ, McAnulty JF, Murphy CJ, Abbott NL, Schurr MJ, Czuprynski CJ. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:1921–5.PubMedPubMedCentralCrossRef Brandenburg KS, Rodriguez KJ, McAnulty JF, Murphy CJ, Abbott NL, Schurr MJ, Czuprynski CJ. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:1921–5.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One. 2015;10:e0121835.PubMedPubMedCentralCrossRef Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One. 2015;10:e0121835.PubMedPubMedCentralCrossRef
242.
243.
Zurück zum Zitat Barraud N, Kelso MJ, Rice SA, Kjelleberg S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 2015;21:31–42.PubMedCrossRef Barraud N, Kelso MJ, Rice SA, Kjelleberg S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 2015;21:31–42.PubMedCrossRef
244.
Zurück zum Zitat Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009;191:7333–42.PubMedPubMedCentralCrossRef Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009;191:7333–42.PubMedPubMedCentralCrossRef
245.
Zurück zum Zitat Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188:7344–53.PubMedPubMedCentralCrossRef Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188:7344–53.PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, Fernandez BO, Barraud N, Bruce KD, Jefferies J, Kelso M, Kjelleberg S, Rice SA, Rogers GB, Pink S, Smith C, Sukhtankar PS, Salib R, Legg J, Carroll M, Daniels T, Feelisch M, Stoodley P, Clarke SC, Connett G, Faust SN, Webb JS. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther. 2017;25:2104–16.PubMedPubMedCentralCrossRef Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, Fernandez BO, Barraud N, Bruce KD, Jefferies J, Kelso M, Kjelleberg S, Rice SA, Rogers GB, Pink S, Smith C, Sukhtankar PS, Salib R, Legg J, Carroll M, Daniels T, Feelisch M, Stoodley P, Clarke SC, Connett G, Faust SN, Webb JS. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther. 2017;25:2104–16.PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. Monitoring of diguanylate cyclase activity and of cyclic-di- GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol. 2010;85:1095–104.PubMedCrossRef Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. Monitoring of diguanylate cyclase activity and of cyclic-di- GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol. 2010;85:1095–104.PubMedCrossRef
248.
Zurück zum Zitat Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191:1393–403.PubMedCrossRef Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191:1393–403.PubMedCrossRef
249.
Zurück zum Zitat Marques CN, Davies DG, Sauer K. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals (Basel). 2015;8:816–35.PubMedPubMedCentralCrossRef Marques CN, Davies DG, Sauer K. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals (Basel). 2015;8:816–35.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Jennings JA, Courtney HS, Haggard WO. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin Orthop Relat Res. 2012;470:2663–70.PubMedPubMedCentralCrossRef Jennings JA, Courtney HS, Haggard WO. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin Orthop Relat Res. 2012;470:2663–70.PubMedPubMedCentralCrossRef
251.
Zurück zum Zitat Rahmani-Badi A, Sepehr S, Mohammadi P, Soudi MR, Babaie-Naiej H, Fallahi H. A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms. J Med Microbiol. 2014;63:1509–16.PubMedCrossRef Rahmani-Badi A, Sepehr S, Mohammadi P, Soudi MR, Babaie-Naiej H, Fallahi H. A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms. J Med Microbiol. 2014;63:1509–16.PubMedCrossRef
252.
Zurück zum Zitat Rahmani-Badi A, Sepehr S, Babaie-Naiej H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque. Arch Oral Biol. 2015;60:1655–61.PubMedCrossRef Rahmani-Badi A, Sepehr S, Babaie-Naiej H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque. Arch Oral Biol. 2015;60:1655–61.PubMedCrossRef
253.
Zurück zum Zitat Marques CN, Morozov A, Planzos P, Zelaya HM. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol. 2014;80:6976–91.PubMedPubMedCentralCrossRef Marques CN, Morozov A, Planzos P, Zelaya HM. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol. 2014;80:6976–91.PubMedPubMedCentralCrossRef
254.
Zurück zum Zitat Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA. 2003;100:10995–1000.PubMedCrossRefPubMedCentral Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA. 2003;100:10995–1000.PubMedCrossRefPubMedCentral
255.
Zurück zum Zitat Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82.PubMedPubMedCentralCrossRef Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76:4176–82.PubMedPubMedCentralCrossRef
256.
Zurück zum Zitat Aka ST. Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens. J Microbiol Infect Dis. 2015;5:15–20.CrossRef Aka ST. Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens. J Microbiol Infect Dis. 2015;5:15–20.CrossRef
257.
Zurück zum Zitat de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10:e1004152.PubMedPubMedCentralCrossRef de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10:e1004152.PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother. 2014;58:5363–71.PubMedPubMedCentralCrossRef Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother. 2014;58:5363–71.PubMedPubMedCentralCrossRef
259.
Zurück zum Zitat de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock REW. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22:196–205.PubMedPubMedCentralCrossRef de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock REW. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22:196–205.PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat Ribeiro SM, de la Fuente-Núñez C, Baquir B, Faria-Junior C, Franco OL, Hancock RE. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrob Agents Chemother. 2015;59:3906–12.PubMedPubMedCentralCrossRef Ribeiro SM, de la Fuente-Núñez C, Baquir B, Faria-Junior C, Franco OL, Hancock RE. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrob Agents Chemother. 2015;59:3906–12.PubMedPubMedCentralCrossRef
261.
Zurück zum Zitat Batoni G, Casu M, Giuliani A, Luca V, Maisetta G, Mangoni ML, Manzo G, Pintus M, Pirri G, Rinaldi AC, et al. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids. 2016;48:887–900.PubMedCrossRef Batoni G, Casu M, Giuliani A, Luca V, Maisetta G, Mangoni ML, Manzo G, Pintus M, Pirri G, Rinaldi AC, et al. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids. 2016;48:887–900.PubMedCrossRef
262.
Zurück zum Zitat Mishra B, Golla RM, Lau K, Lushnikova T, Wang G. Anti-Staphylococcal biofilm effects of human cathelicidin peptides. ACS Med Chem Lett. 2016;7:117–21.PubMedCrossRef Mishra B, Golla RM, Lau K, Lushnikova T, Wang G. Anti-Staphylococcal biofilm effects of human cathelicidin peptides. ACS Med Chem Lett. 2016;7:117–21.PubMedCrossRef
263.
Zurück zum Zitat Anunthawan T, de la Fuente-Nunez C, Hancock REW, Klaynongsruang S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta. 2015;1848:1352–8.PubMedCrossRef Anunthawan T, de la Fuente-Nunez C, Hancock REW, Klaynongsruang S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta. 2015;1848:1352–8.PubMedCrossRef
264.
Zurück zum Zitat Bionda N, Fleeman RM, de la Fuente-Nunez C, Rodriguez MC, Reffuveille F, Shaw LN, Pastar I, Davis SC, Hancock REW, Cudic P. Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem. 2016;108:354–63.PubMedCrossRef Bionda N, Fleeman RM, de la Fuente-Nunez C, Rodriguez MC, Reffuveille F, Shaw LN, Pastar I, Davis SC, Hancock REW, Cudic P. Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem. 2016;108:354–63.PubMedCrossRef
265.
Zurück zum Zitat De Brucker K, Delattin N, Robijns S, Steenackers H, Verstraeten N, Landuyt B, Luyten W, Schoofs L, Dovgan B, Frohlich M, et al. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother. 2014;58:5395–404.PubMedPubMedCentralCrossRef De Brucker K, Delattin N, Robijns S, Steenackers H, Verstraeten N, Landuyt B, Luyten W, Schoofs L, Dovgan B, Frohlich M, et al. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother. 2014;58:5395–404.PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10:e1004152.PubMedPubMedCentralCrossRef de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014;10:e1004152.PubMedPubMedCentralCrossRef
267.
Zurück zum Zitat de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock REW. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22:196–205.PubMedPubMedCentralCrossRef de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G, Coenye T, Hancock REW. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22:196–205.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Moryl M, Spętana M, Dziubek K, Paraszkiewicz K, Różalska S, Płaza GA, Różalski A. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol. 2015;62:725–32.PubMedCrossRef Moryl M, Spętana M, Dziubek K, Paraszkiewicz K, Różalska S, Płaza GA, Różalski A. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol. 2015;62:725–32.PubMedCrossRef
269.
Zurück zum Zitat Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. Bacteriophages and biofilms. Antibiotics (Basel). 2014;3:270–84.PubMedCentralCrossRef Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. Bacteriophages and biofilms. Antibiotics (Basel). 2014;3:270–84.PubMedCentralCrossRef
270.
Zurück zum Zitat Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald PJ. Activity of bacteriophages in removing biofilms of pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol. 2017;7:418.PubMedPubMedCentralCrossRef Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald PJ. Activity of bacteriophages in removing biofilms of pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol. 2017;7:418.PubMedPubMedCentralCrossRef
271.
Zurück zum Zitat Lehman SM, Donlan RM. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 2015;59:1127–37.PubMedPubMedCentralCrossRef Lehman SM, Donlan RM. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 2015;59:1127–37.PubMedPubMedCentralCrossRef
272.
Zurück zum Zitat Holguín AV, Rangel G, Clavijo V, Prada C, Mantilla M, Gomez MC, Kutter E, Taylor C, Fineran PC, Barrios AF, Vives MJ. Phage ΦPan70, a putative temperate phage, controls Pseudomonas aeruginosa in planktonic, biofilm and burn mouse model assays. Viruses. 2015;7:4602–23.PubMedPubMedCentralCrossRef Holguín AV, Rangel G, Clavijo V, Prada C, Mantilla M, Gomez MC, Kutter E, Taylor C, Fineran PC, Barrios AF, Vives MJ. Phage ΦPan70, a putative temperate phage, controls Pseudomonas aeruginosa in planktonic, biofilm and burn mouse model assays. Viruses. 2015;7:4602–23.PubMedPubMedCentralCrossRef
273.
Zurück zum Zitat Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. 2018;62:e02573-17.PubMedPubMedCentralCrossRef Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. 2018;62:e02573-17.PubMedPubMedCentralCrossRef
274.
Zurück zum Zitat Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, Zurawski DV, Teneza-Mora NC, Biswas B, Hall ER. Personalized therapeutic cocktail of wild environmental phages rescues mice from acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 2016;60:5806–16.PubMedPubMedCentralCrossRef Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, Zurawski DV, Teneza-Mora NC, Biswas B, Hall ER. Personalized therapeutic cocktail of wild environmental phages rescues mice from acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 2016;60:5806–16.PubMedPubMedCentralCrossRef
275.
Zurück zum Zitat Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 2018;11:18.PubMedCentralCrossRef Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 2018;11:18.PubMedCentralCrossRef
276.
Zurück zum Zitat Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013;4:e00438-13.PubMedPubMedCentralCrossRef Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013;4:e00438-13.PubMedPubMedCentralCrossRef
277.
Zurück zum Zitat Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. 2014;30:17–28.PubMedCrossRef Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. 2014;30:17–28.PubMedCrossRef
278.
Zurück zum Zitat Rumbo C, Vallejo JA, Cabral MP, Martínez-Guitián M, Pérez A, Beceiro A, Bou G. Assessment of antivirulence activity of several d-amino acids against acinetobacter baumannii and Pseudomonas aeruginosa. J Antimicrob Chemother. 2016;71:3473–81.PubMedCrossRef Rumbo C, Vallejo JA, Cabral MP, Martínez-Guitián M, Pérez A, Beceiro A, Bou G. Assessment of antivirulence activity of several d-amino acids against acinetobacter baumannii and Pseudomonas aeruginosa. J Antimicrob Chemother. 2016;71:3473–81.PubMedCrossRef
279.
Zurück zum Zitat Han D, Matsumaru K, Rettori D, Kaplowitz N. Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol. 2004;67:439–51.PubMedCrossRef Han D, Matsumaru K, Rettori D, Kaplowitz N. Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol. 2004;67:439–51.PubMedCrossRef
280.
Zurück zum Zitat Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med. 2019;14:11.PubMedPubMedCentralCrossRef Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med. 2019;14:11.PubMedPubMedCentralCrossRef
281.
Zurück zum Zitat Tyldesley HC, Salisbury AM, Chen R, Mullin M and Percival SL. Surfactants and their role in biofilm management in chronic wounds. Wounds Int 2019;10(1). Tyldesley HC, Salisbury AM, Chen R, Mullin M and Percival SL. Surfactants and their role in biofilm management in chronic wounds. Wounds Int 2019;10(1).
282.
Zurück zum Zitat Totsika M. Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability. Future Med Chem. 2017;9:267–9.PubMedCrossRef Totsika M. Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability. Future Med Chem. 2017;9:267–9.PubMedCrossRef
283.
Zurück zum Zitat García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T, Maeda T, Quezada H, Wood TK. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis. 2013;68:8–11.PubMedCrossRef García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T, Maeda T, Quezada H, Wood TK. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis. 2013;68:8–11.PubMedCrossRef
284.
Zurück zum Zitat García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA, González-Valdez A, Soberón-Chávez G, Coria-Jiménez R, Martínez-Vázquez M, Alcaraz LD, Maeda T, Wood TK. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathog Dis. 2015;73:ftv040.PubMedCrossRef García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA, González-Valdez A, Soberón-Chávez G, Coria-Jiménez R, Martínez-Vázquez M, Alcaraz LD, Maeda T, Wood TK. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathog Dis. 2015;73:ftv040.PubMedCrossRef
285.
Zurück zum Zitat Travier L, Rendueles O, Ferrieres L, Herry JM, Ghigo JM. Escherichia coli resistance to nonbiocidal antibiofilm polysaccharides is rare and mediated by multiple mutations leading to surface physicochemical modifications. Antimicrob Agents Chemother. 2013;57:3960–8.PubMedPubMedCentralCrossRef Travier L, Rendueles O, Ferrieres L, Herry JM, Ghigo JM. Escherichia coli resistance to nonbiocidal antibiofilm polysaccharides is rare and mediated by multiple mutations leading to surface physicochemical modifications. Antimicrob Agents Chemother. 2013;57:3960–8.PubMedPubMedCentralCrossRef
Metadaten
Titel
Novel Treatment Strategies for Biofilm-Based Infections
verfasst von
Claudia Vuotto
Gianfranco Donelli
Publikationsdatum
01.10.2019
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 15/2019
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-019-01184-z

Weitere Artikel der Ausgabe 15/2019

Drugs 15/2019 Zur Ausgabe