Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 1/2014

01.03.2014

Nutrient Transport in the Mammary Gland: Calcium, Trace Minerals and Water Soluble Vitamins

verfasst von: Nicolas Montalbetti, Marianela G. Dalghi, Christiane Albrecht, Matthias A. Hediger

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.
Literatur
1.
Zurück zum Zitat Fromter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235(53):9–13.PubMed Fromter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235(53):9–13.PubMed
2.
Zurück zum Zitat Itoh M, Bissell MJ. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8(4):449–62.PubMedCentralPubMed Itoh M, Bissell MJ. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8(4):449–62.PubMedCentralPubMed
3.
Zurück zum Zitat Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia. 1998;3(3):233–46.PubMed Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia. 1998;3(3):233–46.PubMed
4.
Zurück zum Zitat McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.PubMed McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.PubMed
5.
Zurück zum Zitat Neville MC et al. Studies in human lactation—milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr. 1991;54(1):81–92.PubMed Neville MC et al. Studies in human lactation—milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr. 1991;54(1):81–92.PubMed
6.
7.
Zurück zum Zitat Neville MC, Peaker M. Calcium fluxes in mouse mammary tissue in vitro: intracellular and extracellular calcium pools. J Physiol. 1982;323:497–517.PubMedCentralPubMed Neville MC, Peaker M. Calcium fluxes in mouse mammary tissue in vitro: intracellular and extracellular calcium pools. J Physiol. 1982;323:497–517.PubMedCentralPubMed
8.
Zurück zum Zitat Shennan DB, Peaker M. Transport of milk constituents by the mammary gland. Physiol Rev. 2000;80(3):925–51.PubMed Shennan DB, Peaker M. Transport of milk constituents by the mammary gland. Physiol Rev. 2000;80(3):925–51.PubMed
9.
Zurück zum Zitat Gao B et al. Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000;275(16):12237–42.PubMedCentralPubMed Gao B et al. Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000;275(16):12237–42.PubMedCentralPubMed
10.
Zurück zum Zitat Bertolesi GE et al. The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol. 2002;62(2):210–9.PubMed Bertolesi GE et al. The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol. 2002;62(2):210–9.PubMed
11.
Zurück zum Zitat Baldi C, Vazquez G, Boland R. Capacitative calcium influx in human epithelial breast cancer and non-tumorigenic cells occurs through Ca2+ entry pathways with different permeabilities to divalent cations. J Cell Biochem. 2003;88(6):1265–72.PubMed Baldi C, Vazquez G, Boland R. Capacitative calcium influx in human epithelial breast cancer and non-tumorigenic cells occurs through Ca2+ entry pathways with different permeabilities to divalent cations. J Cell Biochem. 2003;88(6):1265–72.PubMed
12.
Zurück zum Zitat Hoenderop JG et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 1999;274(13):8375–8.PubMed Hoenderop JG et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 1999;274(13):8375–8.PubMed
13.
Zurück zum Zitat Peng JB et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–46.PubMed Peng JB et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–46.PubMed
14.
Zurück zum Zitat Hoenderop JG et al. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol. 2001;537(Pt 3):747–61.PubMedCentralPubMed Hoenderop JG et al. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol. 2001;537(Pt 3):747–61.PubMedCentralPubMed
15.
Zurück zum Zitat Loffing J et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol. 2001;281(6):F1021–7.PubMed Loffing J et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol. 2001;281(6):F1021–7.PubMed
16.
Zurück zum Zitat Zhuang L et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest. 2002;82(12):1755–64.PubMed Zhuang L et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest. 2002;82(12):1755–64.PubMed
17.
Zurück zum Zitat Sudlow AW, Burgoyne RD. A hypo-osmotically induced increase in intracellular Ca2+ in lactating mouse mammary epithelial cells involving Ca2+ influx. Pflugers Arch. 1997;433(5):609–16.PubMed Sudlow AW, Burgoyne RD. A hypo-osmotically induced increase in intracellular Ca2+ in lactating mouse mammary epithelial cells involving Ca2+ influx. Pflugers Arch. 1997;433(5):609–16.PubMed
18.
Zurück zum Zitat Enomoto K et al. Mechanically induced electrical responses in murine mammary epithelial cells in primary culture. FEBS Lett. 1987;223(1):82–6.PubMed Enomoto K et al. Mechanically induced electrical responses in murine mammary epithelial cells in primary culture. FEBS Lett. 1987;223(1):82–6.PubMed
19.
Zurück zum Zitat Enomoto K et al. Mechanically induced electrical and intracellular calcium responses in normal and cancerous mammary cells. Cell Calcium. 1992;13(8):501–11.PubMed Enomoto K et al. Mechanically induced electrical and intracellular calcium responses in normal and cancerous mammary cells. Cell Calcium. 1992;13(8):501–11.PubMed
20.
Zurück zum Zitat Enomoto K et al. Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate. Cell Biochem Funct. 1993;11(1):55–62.PubMed Enomoto K et al. Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate. Cell Biochem Funct. 1993;11(1):55–62.PubMed
21.
Zurück zum Zitat Flezar M, Heisler S. P2-purinergic receptors in human breast tumor cells: coupling of intracellular calcium signaling to anion secretion. J Pharmacol Exp Ther. 1993;265(3):1499–510.PubMed Flezar M, Heisler S. P2-purinergic receptors in human breast tumor cells: coupling of intracellular calcium signaling to anion secretion. J Pharmacol Exp Ther. 1993;265(3):1499–510.PubMed
22.
Zurück zum Zitat VanHouten JN, Neville MC, Wysolmerski JJ. The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform 2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology. 2007;148(12):5943–54.PubMed VanHouten JN, Neville MC, Wysolmerski JJ. The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform 2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology. 2007;148(12):5943–54.PubMed
23.
Zurück zum Zitat Buxton IL, Yokdang N, Matz RM. Purinergic mechanisms in breast cancer support intravasation, extravasation and angiogenesis. Cancer Lett. 2010;291(2):131–41.PubMedCentralPubMed Buxton IL, Yokdang N, Matz RM. Purinergic mechanisms in breast cancer support intravasation, extravasation and angiogenesis. Cancer Lett. 2010;291(2):131–41.PubMedCentralPubMed
24.
Zurück zum Zitat Neville MC et al. Calcium partitioning in human and bovine milk. J Dairy Sci. 1994;77(7):1964–75.PubMed Neville MC et al. Calcium partitioning in human and bovine milk. J Dairy Sci. 1994;77(7):1964–75.PubMed
25.
Zurück zum Zitat Van Baelen K et al. The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta. 2004;1742(1–3):103–12.PubMed Van Baelen K et al. The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta. 2004;1742(1–3):103–12.PubMed
26.
Zurück zum Zitat Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32(5–6):279–305.PubMed Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32(5–6):279–305.PubMed
27.
Zurück zum Zitat Wootton LL et al. The expression, activity and localisation of the secretory pathway Ca2+−ATPase (SPCA1) in different mammalian tissues. Biochim Biophys Acta. 2004;1664(2):189–97.PubMed Wootton LL et al. The expression, activity and localisation of the secretory pathway Ca2+−ATPase (SPCA1) in different mammalian tissues. Biochim Biophys Acta. 2004;1664(2):189–97.PubMed
28.
Zurück zum Zitat Vanoevelen J et al. The secretory pathway Ca2+/Mn2+−ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem. 2005;280(24):22800–8.PubMed Vanoevelen J et al. The secretory pathway Ca2+/Mn2+−ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem. 2005;280(24):22800–8.PubMed
29.
Zurück zum Zitat Hu Z et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet. 2000;24(1):61–5.PubMed Hu Z et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet. 2000;24(1):61–5.PubMed
30.
Zurück zum Zitat Faddy HM et al. Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem Biophys Res Commun. 2008;369(3):977–81.PubMedCentralPubMed Faddy HM et al. Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem Biophys Res Commun. 2008;369(3):977–81.PubMedCentralPubMed
31.
Zurück zum Zitat Reinhardt TA et al. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol. 2000;279(5):C1595–602.PubMed Reinhardt TA et al. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol. 2000;279(5):C1595–602.PubMed
32.
Zurück zum Zitat Duncan JS, Burgoyne RD. Characterization of the effects of Ca2+ depletion on the synthesis, phosphorylation and secretion of caseins in lactating mammary epithelial cells. Biochem J. 1996;317(Pt 2):487–93.PubMedCentralPubMed Duncan JS, Burgoyne RD. Characterization of the effects of Ca2+ depletion on the synthesis, phosphorylation and secretion of caseins in lactating mammary epithelial cells. Biochem J. 1996;317(Pt 2):487–93.PubMedCentralPubMed
33.
Zurück zum Zitat Ginger MR, Grigor MR. Comparative aspects of milk caseins. Comp Biochem Physiol B Biochem Mol Biol. 1999;124(2):133–45.PubMed Ginger MR, Grigor MR. Comparative aspects of milk caseins. Comp Biochem Physiol B Biochem Mol Biol. 1999;124(2):133–45.PubMed
34.
Zurück zum Zitat Oda K. Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans-Golgi network. Possible involvement of Ca(2+)-dependent Golgi endoproteases. J Biol Chem. 1992;267(24):17465–71.PubMed Oda K. Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans-Golgi network. Possible involvement of Ca(2+)-dependent Golgi endoproteases. J Biol Chem. 1992;267(24):17465–71.PubMed
35.
Zurück zum Zitat Taylor RS et al. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell. 1997;8(10):1911–31.PubMedCentralPubMed Taylor RS et al. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell. 1997;8(10):1911–31.PubMedCentralPubMed
36.
Zurück zum Zitat Reinhardt TA et al. Null mutation in the gene encoding plasma membrane Ca2+−ATPase isoform 2 impairs calcium transport into milk. J Biol Chem. 2004;279(41):42369–73.PubMed Reinhardt TA et al. Null mutation in the gene encoding plasma membrane Ca2+−ATPase isoform 2 impairs calcium transport into milk. J Biol Chem. 2004;279(41):42369–73.PubMed
37.
Zurück zum Zitat James P et al. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 1988;263(6):2905–10.PubMed James P et al. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 1988;263(6):2905–10.PubMed
38.
Zurück zum Zitat Reinhardt TA, Horst RL. Ca2+−ATPases and their expression in the mammary gland of pregnant and lactating rats. Am J Physiol. 1999;276(4 Pt 1):C796–802.PubMed Reinhardt TA, Horst RL. Ca2+−ATPases and their expression in the mammary gland of pregnant and lactating rats. Am J Physiol. 1999;276(4 Pt 1):C796–802.PubMed
39.
Zurück zum Zitat Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001;81(1):21–50.PubMed Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001;81(1):21–50.PubMed
40.
Zurück zum Zitat Jackisch C et al. Delayed micromolar elevation in intracellular calcium precedes induction of apoptosis in thapsigargin-treated breast cancer cells. Clin Cancer Res. 2000;6(7):2844–50.PubMed Jackisch C et al. Delayed micromolar elevation in intracellular calcium precedes induction of apoptosis in thapsigargin-treated breast cancer cells. Clin Cancer Res. 2000;6(7):2844–50.PubMed
41.
Zurück zum Zitat Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.PubMed Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.PubMed
42.
Zurück zum Zitat Carafoli E et al. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36(2):107–260.PubMed Carafoli E et al. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36(2):107–260.PubMed
43.
Zurück zum Zitat Michalak M, Mariani P, Opas M. Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum. Biochem Cell Biol. 1998;76(5):779–85.PubMed Michalak M, Mariani P, Opas M. Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum. Biochem Cell Biol. 1998;76(5):779–85.PubMed
44.
Zurück zum Zitat Lin P et al. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol. 1998;141(7):1515–27.PubMedCentralPubMed Lin P et al. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol. 1998;141(7):1515–27.PubMedCentralPubMed
45.
Zurück zum Zitat Lin P et al. Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol. 1999;145(2):279–89.PubMedCentralPubMed Lin P et al. Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol. 1999;145(2):279–89.PubMedCentralPubMed
46.
Zurück zum Zitat Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther. 2008;7(2):271–9.PubMed Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther. 2008;7(2):271–9.PubMed
47.
Zurück zum Zitat Lee WJ et al. Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines. Cell Signal. 2002;14(12):1015–22.PubMed Lee WJ et al. Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines. Cell Signal. 2002;14(12):1015–22.PubMed
48.
Zurück zum Zitat Dhennin-Duthille I et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28(5):813–22.PubMed Dhennin-Duthille I et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28(5):813–22.PubMed
49.
Zurück zum Zitat Li M et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A. 1997;94(7):3425–30.PubMedCentralPubMed Li M et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A. 1997;94(7):3425–30.PubMedCentralPubMed
50.
Zurück zum Zitat VanHouten J et al. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci U S A. 2010;107(25):11405–10.PubMedCentralPubMed VanHouten J et al. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci U S A. 2010;107(25):11405–10.PubMedCentralPubMed
51.
Zurück zum Zitat Peters AA et al. Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor-negative breast cancer. Mol Cancer Ther. 2012;11(10):2158–68.PubMed Peters AA et al. Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor-negative breast cancer. Mol Cancer Ther. 2012;11(10):2158–68.PubMed
52.
Zurück zum Zitat Lonnerdal B. Effects of maternal dietary intake on human milk composition. J Nutr. 1986;116(4):499–513.PubMed Lonnerdal B. Effects of maternal dietary intake on human milk composition. J Nutr. 1986;116(4):499–513.PubMed
53.
Zurück zum Zitat Siimes MA, Vuori E, Kuitunen P. Breast milk iron–a declining concentration during the course of lactation. Acta Paediatr Scand. 1979;68(1):29–31.PubMed Siimes MA, Vuori E, Kuitunen P. Breast milk iron–a declining concentration during the course of lactation. Acta Paediatr Scand. 1979;68(1):29–31.PubMed
54.
Zurück zum Zitat Vaughan LA, Weber CW, Kemberling SR. Longitudinal changes in the mineral content of human milk. Am J Clin Nutr. 1979;32(11):2301–6.PubMed Vaughan LA, Weber CW, Kemberling SR. Longitudinal changes in the mineral content of human milk. Am J Clin Nutr. 1979;32(11):2301–6.PubMed
55.
Zurück zum Zitat Keen CL et al. Developmental changes in composition of rat milk: trace elements, minerals, protein, carbohydrate and fat. J Nutr. 1981;111(2):226–36.PubMed Keen CL et al. Developmental changes in composition of rat milk: trace elements, minerals, protein, carbohydrate and fat. J Nutr. 1981;111(2):226–36.PubMed
56.
Zurück zum Zitat Lonnerdal B. Copper nutrition during infancy and childhood. Am J Clin Nutr. 1998;67(5 Suppl):1046S–53S.PubMed Lonnerdal B. Copper nutrition during infancy and childhood. Am J Clin Nutr. 1998;67(5 Suppl):1046S–53S.PubMed
57.
Zurück zum Zitat Krebs NF et al. The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. Am J Clin Nutr. 1985;41(3):560–70.PubMed Krebs NF et al. The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. Am J Clin Nutr. 1985;41(3):560–70.PubMed
58.
Zurück zum Zitat Domellof M et al. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. 2004;79(1):111–5.PubMed Domellof M et al. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. 2004;79(1):111–5.PubMed
59.
Zurück zum Zitat Hannan MA et al. Maternal milk concentration of zinc, iron, selenium, and iodine and its relationship to dietary intakes. Biol Trace Elem Res. 2009;127(1):6–15.PubMed Hannan MA et al. Maternal milk concentration of zinc, iron, selenium, and iodine and its relationship to dietary intakes. Biol Trace Elem Res. 2009;127(1):6–15.PubMed
60.
Zurück zum Zitat Vuori E et al. The effects of the dietary intakes of copper, iron, manganese, and zinc on the trace element content of human milk. Am J Clin Nutr. 1980;33(2):227–31.PubMed Vuori E et al. The effects of the dietary intakes of copper, iron, manganese, and zinc on the trace element content of human milk. Am J Clin Nutr. 1980;33(2):227–31.PubMed
61.
Zurück zum Zitat Griffin IJ, Abrams SA. Iron and breastfeeding. Pediatr Clin North Am. 2001;48(2):401–13.PubMed Griffin IJ, Abrams SA. Iron and breastfeeding. Pediatr Clin North Am. 2001;48(2):401–13.PubMed
62.
Zurück zum Zitat Dallman PR. Progress in the prevention of iron deficiency in infants. Acta Paediatr Scand Suppl. 1990;365:28–37.PubMed Dallman PR. Progress in the prevention of iron deficiency in infants. Acta Paediatr Scand Suppl. 1990;365:28–37.PubMed
63.
Zurück zum Zitat Casey C, SAa.ZP. Handbook of milk composition. Academic Press;1995 Casey C, SAa.ZP. Handbook of milk composition. Academic Press;1995
64.
Zurück zum Zitat Ohgami RS et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37(11):1264–9.PubMedCentralPubMed Ohgami RS et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37(11):1264–9.PubMedCentralPubMed
65.
Zurück zum Zitat Knutson MD. Steap proteins: implications for iron and copper metabolism. Nutr Rev. 2007;65(7):335–40.PubMed Knutson MD. Steap proteins: implications for iron and copper metabolism. Nutr Rev. 2007;65(7):335–40.PubMed
66.
Zurück zum Zitat Lambe T et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood. 2009;113(8):1805–8.PubMedCentralPubMed Lambe T et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood. 2009;113(8):1805–8.PubMedCentralPubMed
67.
Zurück zum Zitat Fleming MD et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998;95(3):1148–53.PubMedCentralPubMed Fleming MD et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998;95(3):1148–53.PubMedCentralPubMed
68.
Zurück zum Zitat Touret N et al. Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J Biol Chem. 2003;278(28):25548–57.PubMed Touret N et al. Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J Biol Chem. 2003;278(28):25548–57.PubMed
69.
Zurück zum Zitat Canonne-Hergaux F et al. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood. 2001;98(13):3823–30.PubMed Canonne-Hergaux F et al. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood. 2001;98(13):3823–30.PubMed
70.
Zurück zum Zitat Gruenheid S et al. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med. 1999;189(5):831–41.PubMedCentralPubMed Gruenheid S et al. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med. 1999;189(5):831–41.PubMedCentralPubMed
71.
Zurück zum Zitat Gunshin H et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8.PubMed Gunshin H et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8.PubMed
72.
Zurück zum Zitat Nevo Y, Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 2006;1763(7):609–20.PubMed Nevo Y, Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 2006;1763(7):609–20.PubMed
73.
Zurück zum Zitat Zhao N et al. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem. 2010;285(42):32141–50.PubMedCentralPubMed Zhao N et al. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem. 2010;285(42):32141–50.PubMedCentralPubMed
74.
Zurück zum Zitat Pinilla-Tenas JJ et al. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 2011;301(4):C862–71.PubMedCentralPubMed Pinilla-Tenas JJ et al. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 2011;301(4):C862–71.PubMedCentralPubMed
75.
Zurück zum Zitat Liuzzi JP et al. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612–7.PubMedCentralPubMed Liuzzi JP et al. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612–7.PubMedCentralPubMed
76.
Zurück zum Zitat Dong XP et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature. 2008;455(7215):992–6.PubMed Dong XP et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature. 2008;455(7215):992–6.PubMed
77.
Zurück zum Zitat Lopin KV et al. Fe(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe(2)(+) influx. Mol Pharmacol. 2012;82(6):1194–204.PubMedCentralPubMed Lopin KV et al. Fe(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe(2)(+) influx. Mol Pharmacol. 2012;82(6):1194–204.PubMedCentralPubMed
78.
Zurück zum Zitat Kumfu S et al. T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur J Haematol. 2011;86(2):156–66.PubMed Kumfu S et al. T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur J Haematol. 2011;86(2):156–66.PubMed
79.
Zurück zum Zitat Loh TT. Iron in the lactating mammary gland of the rat. Proc Soc Exp Biol Med. 1970;134(4):1070–2.PubMed Loh TT. Iron in the lactating mammary gland of the rat. Proc Soc Exp Biol Med. 1970;134(4):1070–2.PubMed
80.
Zurück zum Zitat Loh TT, Kaldor I. Studies on the transfer of plasma iron to milk in the lactating rat. Aust J Exp Biol Med Sci. 1976;54(6):587–92.PubMed Loh TT, Kaldor I. Studies on the transfer of plasma iron to milk in the lactating rat. Aust J Exp Biol Med Sci. 1976;54(6):587–92.PubMed
81.
Zurück zum Zitat Zhang P et al. The effect of serum iron concentration on iron secretion into mouse milk. J Physiol. 2000;522(Pt 3):479–91.PubMedCentralPubMed Zhang P et al. The effect of serum iron concentration on iron secretion into mouse milk. J Physiol. 2000;522(Pt 3):479–91.PubMedCentralPubMed
82.
Zurück zum Zitat Moutafchiev DA, Shisheva AC, Sirakov LM. Binding of transferrin-iron to the plasma membrane of a lactating rabbit mammary gland cell. Int J Biochem. 1983;15(5):755–8.PubMed Moutafchiev DA, Shisheva AC, Sirakov LM. Binding of transferrin-iron to the plasma membrane of a lactating rabbit mammary gland cell. Int J Biochem. 1983;15(5):755–8.PubMed
83.
Zurück zum Zitat Sigman M, Lonnerdal B. Characterization of transferrin receptors on plasma membranes of lactating rat mammary tissue. J Nutr Biochem. 1990;1(5):239–43.PubMed Sigman M, Lonnerdal B. Characterization of transferrin receptors on plasma membranes of lactating rat mammary tissue. J Nutr Biochem. 1990;1(5):239–43.PubMed
84.
Zurück zum Zitat Grigor MR, Wilde CJ, Flint DJ. Transferrin receptor activity in rat mammary epithelial cells. Biochem Int. 1988;17(4):747–54.PubMed Grigor MR, Wilde CJ, Flint DJ. Transferrin receptor activity in rat mammary epithelial cells. Biochem Int. 1988;17(4):747–54.PubMed
85.
Zurück zum Zitat Schulman HM et al. Transferrin receptor and ferritin levels during murine mammary gland development. Biochim Biophys Acta. 1989;1010(1):1–6.PubMed Schulman HM et al. Transferrin receptor and ferritin levels during murine mammary gland development. Biochim Biophys Acta. 1989;1010(1):1–6.PubMed
86.
Zurück zum Zitat Sigman M, Lonnerdal B. Relationship of milk iron and the changing concentration of mammary tissue transferrin receptors during the course of lactation. J Nutr Biochem. 1990;1(11):572–6.PubMed Sigman M, Lonnerdal B. Relationship of milk iron and the changing concentration of mammary tissue transferrin receptors during the course of lactation. J Nutr Biochem. 1990;1(11):572–6.PubMed
87.
Zurück zum Zitat Sigman M, Lonnerdal B. Response of rat mammary gland transferrin receptors to maternal dietary iron during pregnancy and lactation. Am J Clin Nutr. 1990;52(3):446–50.PubMed Sigman M, Lonnerdal B. Response of rat mammary gland transferrin receptors to maternal dietary iron during pregnancy and lactation. Am J Clin Nutr. 1990;52(3):446–50.PubMed
88.
Zurück zum Zitat Leong WI, Lonnerdal B. Iron transporters in rat mammary gland: effects of different stages of lactation and maternal iron status. Am J Clin Nutr. 2005;81(2):445–53.PubMed Leong WI, Lonnerdal B. Iron transporters in rat mammary gland: effects of different stages of lactation and maternal iron status. Am J Clin Nutr. 2005;81(2):445–53.PubMed
89.
Zurück zum Zitat Gilchrist SE, Alcorn J. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam Clin Pharmacol. 2010;24(2):205–14.PubMed Gilchrist SE, Alcorn J. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam Clin Pharmacol. 2010;24(2):205–14.PubMed
90.
Zurück zum Zitat Hubert N, Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A. 2002;99(19):12345–50.PubMedCentralPubMed Hubert N, Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A. 2002;99(19):12345–50.PubMedCentralPubMed
91.
Zurück zum Zitat Montalbetti N et al. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34(2–3):270–87.PubMed Montalbetti N et al. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34(2–3):270–87.PubMed
92.
Zurück zum Zitat Kelleher SL, Lonnerdal B. Low vitamin a intake affects milk iron level and iron transporters in rat mammary gland and liver. J Nutr. 2005;135(1):27–32.PubMed Kelleher SL, Lonnerdal B. Low vitamin a intake affects milk iron level and iron transporters in rat mammary gland and liver. J Nutr. 2005;135(1):27–32.PubMed
93.
Zurück zum Zitat Agrawal RM, Tripathi AM, Agarwal KN. Cord blood haemoglobin, iron and ferritin status in maternal anaemia. Acta Paediatr Scand. 1983;72(4):545–8.PubMed Agrawal RM, Tripathi AM, Agarwal KN. Cord blood haemoglobin, iron and ferritin status in maternal anaemia. Acta Paediatr Scand. 1983;72(4):545–8.PubMed
94.
Zurück zum Zitat Sisson TR, Lund CJ. The influence of maternal iron deficiency on the newborn. Am J Clin Nutr. 1958;6(4):376–85.PubMed Sisson TR, Lund CJ. The influence of maternal iron deficiency on the newborn. Am J Clin Nutr. 1958;6(4):376–85.PubMed
95.
Zurück zum Zitat Umbreit JN et al. Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats. Biochemistry. 1996;35(20):6460–9.PubMed Umbreit JN et al. Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats. Biochemistry. 1996;35(20):6460–9.PubMed
96.
97.
Zurück zum Zitat Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275(26):19906–12.PubMed Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275(26):19906–12.PubMed
98.
Zurück zum Zitat Donovan A et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.PubMed Donovan A et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.PubMed
99.
Zurück zum Zitat McKie AT et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5(2):299–309.PubMed McKie AT et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5(2):299–309.PubMed
100.
Zurück zum Zitat Pinnix ZK et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2(43):43ra56.PubMedCentralPubMed Pinnix ZK et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2(43):43ra56.PubMedCentralPubMed
101.
Zurück zum Zitat Ward PP et al. Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol. 2003;23(1):178–85.PubMedCentralPubMed Ward PP et al. Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol. 2003;23(1):178–85.PubMedCentralPubMed
102.
Zurück zum Zitat Delaby C et al. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood. 2005;106(12):3979–84.PubMed Delaby C et al. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood. 2005;106(12):3979–84.PubMed
103.
Zurück zum Zitat Canonne-Hergaux F et al. Comparative studies of duodenal and macrophage ferroportin proteins. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G156–63.PubMed Canonne-Hergaux F et al. Comparative studies of duodenal and macrophage ferroportin proteins. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G156–63.PubMed
104.
Zurück zum Zitat Lymboussaki A et al. The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol. 2003;39(5):710–5.PubMed Lymboussaki A et al. The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol. 2003;39(5):710–5.PubMed
105.
Zurück zum Zitat Knutson MD et al. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003;102(12):4191–7.PubMed Knutson MD et al. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003;102(12):4191–7.PubMed
106.
Zurück zum Zitat Yang F et al. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem. 2002;277(42):39786–91.PubMed Yang F et al. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem. 2002;277(42):39786–91.PubMed
107.
Zurück zum Zitat Zoller H et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 2001;120(6):1412–9.PubMed Zoller H et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 2001;120(6):1412–9.PubMed
108.
Zurück zum Zitat Frazer DM et al. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology. 2002;123(3):835–44.PubMed Frazer DM et al. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology. 2002;123(3):835–44.PubMed
109.
Zurück zum Zitat Gambling L et al. Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro. Biochem J. 2001;356(Pt 3):883–9.PubMedCentralPubMed Gambling L et al. Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro. Biochem J. 2001;356(Pt 3):883–9.PubMedCentralPubMed
110.
Zurück zum Zitat Zhang DL et al. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9(5):461–73.PubMedCentralPubMed Zhang DL et al. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9(5):461–73.PubMedCentralPubMed
111.
Zurück zum Zitat Cianetti L et al. Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation. Haematologica. 2005;90(12):1595–606.PubMed Cianetti L et al. Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation. Haematologica. 2005;90(12):1595–606.PubMed
112.
Zurück zum Zitat Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G199–203.PubMed Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G199–203.PubMed
113.
Zurück zum Zitat Nemeth E et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMed Nemeth E et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMed
114.
Zurück zum Zitat Aydin S et al. Concentrations of preptin, salusins and hepcidins in plasma and milk of lactating women with or without gestational diabetes mellitus. Peptides. 2013;49:123–30.PubMed Aydin S et al. Concentrations of preptin, salusins and hepcidins in plasma and milk of lactating women with or without gestational diabetes mellitus. Peptides. 2013;49:123–30.PubMed
115.
Zurück zum Zitat De Domenico I et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–31.PubMedCentralPubMed De Domenico I et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–31.PubMedCentralPubMed
116.
Zurück zum Zitat Harris ZL et al. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A. 1999;96(19):10812–7.PubMedCentralPubMed Harris ZL et al. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A. 1999;96(19):10812–7.PubMedCentralPubMed
117.
Zurück zum Zitat Xu X et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci. 2004;1012:299–305.PubMed Xu X et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci. 2004;1012:299–305.PubMed
118.
Zurück zum Zitat Anderson GJ et al. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis. 2002;29(3):367–75.PubMed Anderson GJ et al. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis. 2002;29(3):367–75.PubMed
119.
Zurück zum Zitat Petrak J, Vyoral D. Hephaestin–a ferroxidase of cellular iron export. Int J Biochem Cell Biol. 2005;37(6):1173–8.PubMed Petrak J, Vyoral D. Hephaestin–a ferroxidase of cellular iron export. Int J Biochem Cell Biol. 2005;37(6):1173–8.PubMed
120.
Zurück zum Zitat Vulpe CD et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21(2):195–9.PubMed Vulpe CD et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21(2):195–9.PubMed
121.
Zurück zum Zitat Jaeger JL, Shimizu N, Gitlin JD. Tissue-specific ceruloplasmin gene expression in the mammary gland. Biochem J. 1991;280(Pt 3):671–7.PubMedCentralPubMed Jaeger JL, Shimizu N, Gitlin JD. Tissue-specific ceruloplasmin gene expression in the mammary gland. Biochem J. 1991;280(Pt 3):671–7.PubMedCentralPubMed
122.
Zurück zum Zitat Donley SA et al. Copper transport to mammary gland and milk during lactation in rats. Am J Physiol Endocrinol Metab. 2002;283(4):E667–75.PubMed Donley SA et al. Copper transport to mammary gland and milk during lactation in rats. Am J Physiol Endocrinol Metab. 2002;283(4):E667–75.PubMed
123.
Zurück zum Zitat Cerveza PJ et al. Milk ceruloplasmin and its expression by mammary gland and liver in pigs. Arch Biochem Biophys. 2000;373(2):451–61.PubMed Cerveza PJ et al. Milk ceruloplasmin and its expression by mammary gland and liver in pigs. Arch Biochem Biophys. 2000;373(2):451–61.PubMed
124.
Zurück zum Zitat Chen H et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140(10):1728–35.PubMedCentralPubMed Chen H et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140(10):1728–35.PubMedCentralPubMed
125.
Zurück zum Zitat Emery T. Iron oxidation by casein. Biochem Biophys Res Commun. 1992;182(3):1047–52.PubMed Emery T. Iron oxidation by casein. Biochem Biophys Res Commun. 1992;182(3):1047–52.PubMed
126.
Zurück zum Zitat Lonnerdal B. Trace element transport in the mammary gland. Annu Rev Nutr. 2007;27:165–77.PubMed Lonnerdal B. Trace element transport in the mammary gland. Annu Rev Nutr. 2007;27:165–77.PubMed
127.
Zurück zum Zitat Ashkenazi A et al. The syndrome of neonatal copper deficiency. Pediatrics. 1973;52(4):525–33.PubMed Ashkenazi A et al. The syndrome of neonatal copper deficiency. Pediatrics. 1973;52(4):525–33.PubMed
128.
Zurück zum Zitat Cordano A. Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr. 1998;67(5 Suppl):1012S–6S.PubMed Cordano A. Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr. 1998;67(5 Suppl):1012S–6S.PubMed
129.
Zurück zum Zitat Rauch H. Toxic milk, a new mutation affecting cooper metabolism in the mouse. J Hered. 1983;74(3):141–4.PubMed Rauch H. Toxic milk, a new mutation affecting cooper metabolism in the mouse. J Hered. 1983;74(3):141–4.PubMed
130.
Zurück zum Zitat Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001;98(12):6842–7.PubMedCentralPubMed Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001;98(12):6842–7.PubMedCentralPubMed
131.
Zurück zum Zitat De Feo CJ et al. Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci U S A. 2009;106(11):4237–42.PubMedCentralPubMed De Feo CJ et al. Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci U S A. 2009;106(11):4237–42.PubMedCentralPubMed
132.
Zurück zum Zitat Aller SG, Unger VM. Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A. 2006;103(10):3627–32.PubMedCentralPubMed Aller SG, Unger VM. Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A. 2006;103(10):3627–32.PubMedCentralPubMed
133.
Zurück zum Zitat Lee J et al. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002;277(6):4380–7.PubMed Lee J et al. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002;277(6):4380–7.PubMed
134.
Zurück zum Zitat Puig S et al. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem. 2002;277(29):26021–30.PubMed Puig S et al. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem. 2002;277(29):26021–30.PubMed
135.
Zurück zum Zitat Kelleher SL, Lonnerdal B. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1181–91.PubMed Kelleher SL, Lonnerdal B. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1181–91.PubMed
136.
Zurück zum Zitat Kelleher SL, Lonnerdal B. Marginal maternal Zn intake in rats alters mammary gland Cu transporter levels and milk Cu concentration and affects neonatal Cu metabolism. J Nutr. 2003;133(7):2141–8.PubMed Kelleher SL, Lonnerdal B. Marginal maternal Zn intake in rats alters mammary gland Cu transporter levels and milk Cu concentration and affects neonatal Cu metabolism. J Nutr. 2003;133(7):2141–8.PubMed
137.
Zurück zum Zitat Maryon EB, Molloy SA, Kaplan JH. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol. 2013;304(8):C768–79.PubMed Maryon EB, Molloy SA, Kaplan JH. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol. 2013;304(8):C768–79.PubMed
138.
Zurück zum Zitat Harris ED. Cellular copper transport and metabolism. Annu Rev Nutr. 2000;20:291–310.PubMed Harris ED. Cellular copper transport and metabolism. Annu Rev Nutr. 2000;20:291–310.PubMed
139.
Zurück zum Zitat Lutsenko S et al. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87(3):1011–46.PubMed Lutsenko S et al. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87(3):1011–46.PubMed
140.
Zurück zum Zitat Ackland ML et al. Expression of menkes copper-transporting ATPase, MNK, in the lactating human breast: possible role in copper transport into milk. J Histochem Cytochem. 1999;47(12):1553–62.PubMed Ackland ML et al. Expression of menkes copper-transporting ATPase, MNK, in the lactating human breast: possible role in copper transport into milk. J Histochem Cytochem. 1999;47(12):1553–62.PubMed
141.
Zurück zum Zitat Michalczyk AA et al. Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochem J. 2000;352(Pt 2):565–71.PubMedCentralPubMed Michalczyk AA et al. Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochem J. 2000;352(Pt 2):565–71.PubMedCentralPubMed
142.
Zurück zum Zitat Buiakova OI et al. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet. 1999;8(9):1665–71.PubMed Buiakova OI et al. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet. 1999;8(9):1665–71.PubMed
143.
Zurück zum Zitat Llanos RM et al. Copper transport during lactation in transgenic mice expressing the human ATP7A protein. Biochem Biophys Res Commun. 2008;372(4):613–7.PubMedCentralPubMed Llanos RM et al. Copper transport during lactation in transgenic mice expressing the human ATP7A protein. Biochem Biophys Res Commun. 2008;372(4):613–7.PubMedCentralPubMed
144.
Zurück zum Zitat La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463(2):149–67.PubMed La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463(2):149–67.PubMed
145.
Zurück zum Zitat Council NR. Nutrition during lactation. Washington, DC: The National Academies Press; 1991. Council NR. Nutrition during lactation. Washington, DC: The National Academies Press; 1991.
146.
Zurück zum Zitat Endo M et al. Vitamin contents in rat milk and effects of dietary vitamin intakes of dams on the vitamin contents in their milk. J Nutr Sci Vitaminol (Tokyo). 2011;57(3):203–8. Endo M et al. Vitamin contents in rat milk and effects of dietary vitamin intakes of dams on the vitamin contents in their milk. J Nutr Sci Vitaminol (Tokyo). 2011;57(3):203–8.
147.
Zurück zum Zitat Hediger MA et al. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. 2013;34(2–3):95–107.PubMedCentralPubMed Hediger MA et al. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. 2013;34(2–3):95–107.PubMedCentralPubMed
148.
Zurück zum Zitat van Herwaarden AE et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53.PubMedCentralPubMed van Herwaarden AE et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53.PubMedCentralPubMed
149.
Zurück zum Zitat Jonker JW et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11(2):127–9.PubMed Jonker JW et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11(2):127–9.PubMed
150.
Zurück zum Zitat Yonezawa A, Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34(2–3):693–701.PubMed Yonezawa A, Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34(2–3):693–701.PubMed
151.
Zurück zum Zitat Subramanian VS et al. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G100–9.PubMedCentralPubMed Subramanian VS et al. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G100–9.PubMedCentralPubMed
152.
Zurück zum Zitat Subramanian VS et al. Differential expression of human riboflavin transporters −1, −2, and −3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta. 2011;1808(12):3016–21.PubMedCentralPubMed Subramanian VS et al. Differential expression of human riboflavin transporters −1, −2, and −3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. Biochim Biophys Acta. 2011;1808(12):3016–21.PubMedCentralPubMed
153.
Zurück zum Zitat Adkins Y, Lonnerdal B. High affinity binding of the transcobalamin II-cobalamin complex and mRNA expression of haptocorrin by human mammary epithelial cells. Biochim Biophys Acta. 2001;1528(1):43–8.PubMed Adkins Y, Lonnerdal B. High affinity binding of the transcobalamin II-cobalamin complex and mRNA expression of haptocorrin by human mammary epithelial cells. Biochim Biophys Acta. 2001;1528(1):43–8.PubMed
154.
Zurück zum Zitat Sandberg DP, Begley JA, Hall CA. The content, binding, and forms of vitamin B12 in milk. Am J Clin Nutr. 1981;34(9):1717–24.PubMed Sandberg DP, Begley JA, Hall CA. The content, binding, and forms of vitamin B12 in milk. Am J Clin Nutr. 1981;34(9):1717–24.PubMed
155.
Zurück zum Zitat Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34(2–3):373–85.PubMed Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34(2–3):373–85.PubMed
156.
Zurück zum Zitat Boulware MJ et al. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem J. 2003;376(Pt 1):43–8.PubMedCentralPubMed Boulware MJ et al. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem J. 2003;376(Pt 1):43–8.PubMedCentralPubMed
157.
Zurück zum Zitat Neufeld EJ et al. Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol Dis. 2001;27(1):135–8.PubMed Neufeld EJ et al. Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol Dis. 2001;27(1):135–8.PubMed
158.
Zurück zum Zitat Sweet R, Paul A, Zastre J. Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line. Cancer Biol Ther. 2010;10(11):1101–11.PubMed Sweet R, Paul A, Zastre J. Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line. Cancer Biol Ther. 2010;10(11):1101–11.PubMed
159.
Zurück zum Zitat de Carvalho FD, Quick M. Surprising substrate versatility in SLC5A6: Na+−coupled I- transport by the human Na+/multivitamin transporter (hSMVT). J Biol Chem. 2011;286(1):131–7.PubMedCentralPubMed de Carvalho FD, Quick M. Surprising substrate versatility in SLC5A6: Na+−coupled I- transport by the human Na+/multivitamin transporter (hSMVT). J Biol Chem. 2011;286(1):131–7.PubMedCentralPubMed
160.
Zurück zum Zitat Wang H et al. Human placental Na+−dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J Biol Chem. 1999;274(21):14875–83.PubMed Wang H et al. Human placental Na+−dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J Biol Chem. 1999;274(21):14875–83.PubMed
161.
Zurück zum Zitat Gopal E et al. Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract. Pharm Res. 2007;24(3):575–84.PubMed Gopal E et al. Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract. Pharm Res. 2007;24(3):575–84.PubMed
162.
Zurück zum Zitat Coady MJ et al. Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1. Biophys J. 2007;93(7):2325–31.PubMedCentralPubMed Coady MJ et al. Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1. Biophys J. 2007;93(7):2325–31.PubMedCentralPubMed
163.
Zurück zum Zitat Miyauchi S et al. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. J Biol Chem. 2004;279(14):13293–6.PubMed Miyauchi S et al. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. J Biol Chem. 2004;279(14):13293–6.PubMed
164.
Zurück zum Zitat Biondi C et al. Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/SVneo: effect of steroids, flavonoids and NSAIDs. Mol Hum Reprod. 2007;13(1):77–83.PubMed Biondi C et al. Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/SVneo: effect of steroids, flavonoids and NSAIDs. Mol Hum Reprod. 2007;13(1):77–83.PubMed
165.
Zurück zum Zitat Corpe CP et al. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+−dependent vitamin C transporter but not glucose transporter pathways. J Biol Chem. 2005;280(7):5211–20.PubMed Corpe CP et al. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+−dependent vitamin C transporter but not glucose transporter pathways. J Biol Chem. 2005;280(7):5211–20.PubMed
166.
Zurück zum Zitat Mackenzie B, Illing AC, Hediger MA. Transport model of the human Na+−coupled L-ascorbic acid (vitamin C) transporter SVCT1. Am J Physiol Cell Physiol. 2008;294(2):C451–9.PubMed Mackenzie B, Illing AC, Hediger MA. Transport model of the human Na+−coupled L-ascorbic acid (vitamin C) transporter SVCT1. Am J Physiol Cell Physiol. 2008;294(2):C451–9.PubMed
167.
Zurück zum Zitat Tsukaguchi H et al. A family of mammalian Na+−dependent L-ascorbic acid transporters. Nature. 1999;399(6731):70–5.PubMed Tsukaguchi H et al. A family of mammalian Na+−dependent L-ascorbic acid transporters. Nature. 1999;399(6731):70–5.PubMed
168.
Zurück zum Zitat Zhao R et al. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201.PubMed Zhao R et al. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201.PubMed
169.
Zurück zum Zitat Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56.PubMed Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56.PubMed
170.
Zurück zum Zitat Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.PubMed Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.PubMed
171.
Zurück zum Zitat Ifergan I, Assaraf YG. Molecular mechanisms of adaptation to folate deficiency. Vitam Horm. 2008;79:99–143.PubMed Ifergan I, Assaraf YG. Molecular mechanisms of adaptation to folate deficiency. Vitam Horm. 2008;79:99–143.PubMed
172.
Zurück zum Zitat Sorensen MT et al. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J Dairy Sci. 2006;89(12):4632–9.PubMed Sorensen MT et al. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J Dairy Sci. 2006;89(12):4632–9.PubMed
173.
Zurück zum Zitat Mani O et al. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J Dairy Sci. 2009;92(8):3744–56.PubMed Mani O et al. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J Dairy Sci. 2009;92(8):3744–56.PubMed
174.
Zurück zum Zitat Picciano MF. Handbook of milk composition. San Diego: Academic; 1995. Picciano MF. Handbook of milk composition. San Diego: Academic; 1995.
Metadaten
Titel
Nutrient Transport in the Mammary Gland: Calcium, Trace Minerals and Water Soluble Vitamins
verfasst von
Nicolas Montalbetti
Marianela G. Dalghi
Christiane Albrecht
Matthias A. Hediger
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 1/2014
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-014-9317-9

Weitere Artikel der Ausgabe 1/2014

Journal of Mammary Gland Biology and Neoplasia 1/2014 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.