Skip to main content
Erschienen in: European Journal of Epidemiology 11/2022

12.11.2022 | COMMENTARY

On the evolution of concepts of causal and preventive interdependence in epidemiology in the late 20th century

verfasst von: Neil Pearce, Sander Greenland

Erschienen in: European Journal of Epidemiology | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Abstract

The 1970s and 1980s saw the appearance of many papers on the topics of synergy, antagonism, and similar concepts of causal interactions and interdependence of effects, with a special emphasis on distinguishing these concepts from that of statistical interaction – the need for a product term in a model. As an example, Miettinen defined “synergism” as “the existence of instances in which both risk factors are needed for the effect”, whereas “antagonism” is where “at least one [factor] can block the solo effect of the other”. In response, Greenland and Poole constructed a systematic analysis of 16 possible individual response patterns in a deterministic causal model for two binary exposure variables, and showed how these patterns can be mapped onto nine types of sufficient causes, which in turn can be simplified into four intuitive categories. Although these and other papers recognized that epidemiology cannot directly study biological mechanisms underlying interaction, they showed how it can usefully study causal and preventive interdependence – which, despite its mechanistic agnosticism, has important implications for clinical decision making as well as for public health.
Literatur
1.
Zurück zum Zitat Rothman KJ, Greenland S, Walker AM. Concepts of interaction. Am J Epidemiol. 1980;112(4):467–70.CrossRef Rothman KJ, Greenland S, Walker AM. Concepts of interaction. Am J Epidemiol. 1980;112(4):467–70.CrossRef
2.
Zurück zum Zitat Saracci R. Interaction and synergism. Am J Epidemiol. 1980;112(4):465–6.CrossRef Saracci R. Interaction and synergism. Am J Epidemiol. 1980;112(4):465–6.CrossRef
3.
Zurück zum Zitat Blot WJ, Day NE. Synergism and interaction: are they equivalent? Am J Epidemiol. 1979;110(1):99–100.CrossRef Blot WJ, Day NE. Synergism and interaction: are they equivalent? Am J Epidemiol. 1979;110(1):99–100.CrossRef
4.
Zurück zum Zitat Kupper LL, Hogan MD. Interaction in epidemiologic studies. Am J Epidemiol. 1978;108(6):447–53.CrossRef Kupper LL, Hogan MD. Interaction in epidemiologic studies. Am J Epidemiol. 1978;108(6):447–53.CrossRef
5.
Zurück zum Zitat Rothman KJ. Synergy and antagonism in cause-effect relationships. Am J Epidemiol. 1974;99(6):385–8.CrossRef Rothman KJ. Synergy and antagonism in cause-effect relationships. Am J Epidemiol. 1974;99(6):385–8.CrossRef
6.
Zurück zum Zitat Rothman KJ. The estimation of synergy or antagonism. Am J Epidemiol. 1976;103(5):506–11.CrossRef Rothman KJ. The estimation of synergy or antagonism. Am J Epidemiol. 1976;103(5):506–11.CrossRef
7.
Zurück zum Zitat Walter SD, Holford TR. Additive, multiplicative, and other models for disease risks. Am J Epidemiol. 1978;108(5):341–6.CrossRef Walter SD, Holford TR. Additive, multiplicative, and other models for disease risks. Am J Epidemiol. 1978;108(5):341–6.CrossRef
8.
Zurück zum Zitat Corraini P, Olsen M, Pedersen L, Dekkers OM, Vandenbroucke JP. Effect modification, interaction and mediation: an overview of theoretical insights for clinical investigators. Clin Epidemiol. 2017;9:331–8.CrossRef Corraini P, Olsen M, Pedersen L, Dekkers OM, Vandenbroucke JP. Effect modification, interaction and mediation: an overview of theoretical insights for clinical investigators. Clin Epidemiol. 2017;9:331–8.CrossRef
9.
Zurück zum Zitat Pearce N. Analytical implications of epidemiological concepts of interaction. Int J Epidemiol. 1989;18(4):976–80.CrossRef Pearce N. Analytical implications of epidemiological concepts of interaction. Int J Epidemiol. 1989;18(4):976–80.CrossRef
10.
Zurück zum Zitat Siemiatycki J, Thomas DC. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol. 1981;10(4):383–7.CrossRef Siemiatycki J, Thomas DC. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol. 1981;10(4):383–7.CrossRef
11.
Zurück zum Zitat Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8(1):1–12.CrossRef Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8(1):1–12.CrossRef
12.
Zurück zum Zitat Lawlor DA. Biological interaction: time to drop the term? Epidemiology. 2011;22(2):148–50.CrossRef Lawlor DA. Biological interaction: time to drop the term? Epidemiology. 2011;22(2):148–50.CrossRef
13.
Zurück zum Zitat Thompson WD. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol. 1991;44(3):221–32.CrossRef Thompson WD. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol. 1991;44(3):221–32.CrossRef
14.
Zurück zum Zitat Miettinen OS. Causal and preventive interdependence. Elementary principles. Scand J Work Environ Health. 1982;8(3):159–68.CrossRef Miettinen OS. Causal and preventive interdependence. Elementary principles. Scand J Work Environ Health. 1982;8(3):159–68.CrossRef
15.
Zurück zum Zitat Greenland S, Robins J, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef Greenland S, Robins J, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef
16.
Zurück zum Zitat Pearce N, Vandenbroucke JP. Educational note: types of causes. Int J Epidemiol. 2020;49(2):676–85.CrossRef Pearce N, Vandenbroucke JP. Educational note: types of causes. Int J Epidemiol. 2020;49(2):676–85.CrossRef
17.
Zurück zum Zitat Hume D. An Enquiry Concerning Human Understanding. Oxford: Oxford University Press; 2007. Hume D. An Enquiry Concerning Human Understanding. Oxford: Oxford University Press; 2007.
18.
Zurück zum Zitat Greenland S, Poole C. Invariants and noninvariants in the concept of interdependent effects. Scand J Work Environ Health. 1988;14(2):125–9.CrossRef Greenland S, Poole C. Invariants and noninvariants in the concept of interdependent effects. Scand J Work Environ Health. 1988;14(2):125–9.CrossRef
19.
Zurück zum Zitat Rothman KJ, Causes. Am J, Epidemiol. 1976. 104(6): p. 587–92. Rothman KJ, Causes. Am J, Epidemiol. 1976. 104(6): p. 587–92.
20.
Zurück zum Zitat VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology. 2009;20(1):6–13.CrossRef VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology. 2009;20(1):6–13.CrossRef
21.
Zurück zum Zitat Al-Chalabi A, Calvo A, Chio A, Colville S, Ellis CM, Hardiman O, Heverin M, Howard RS, Huisman MHB, Keren N, Leigh PN, Mazzini L, Mora G, Orrell RW, Rooney J, Scott KM, Scotton WJ, Seelen M, Shaw CE, Sidle KS, Swingler R, Tsuda M, Veldink JH, Visser AE, van den Berg LH, Pearce N. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 2014;13(11):1108–13.CrossRef Al-Chalabi A, Calvo A, Chio A, Colville S, Ellis CM, Hardiman O, Heverin M, Howard RS, Huisman MHB, Keren N, Leigh PN, Mazzini L, Mora G, Orrell RW, Rooney J, Scott KM, Scotton WJ, Seelen M, Shaw CE, Sidle KS, Swingler R, Tsuda M, Veldink JH, Visser AE, van den Berg LH, Pearce N. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 2014;13(11):1108–13.CrossRef
22.
Zurück zum Zitat Pearce N, Moirano G, Maule M, Kogevinas M, Rodo X, Lawlor DA, Vandenbroucke J, Vandenbroucke-Grauls C, Polack FP, Custovic A. Does death from Covid-19 arise from a multi-step process? Eur J Epidemiol. 2021;36(1):1–9.CrossRef Pearce N, Moirano G, Maule M, Kogevinas M, Rodo X, Lawlor DA, Vandenbroucke J, Vandenbroucke-Grauls C, Polack FP, Custovic A. Does death from Covid-19 arise from a multi-step process? Eur J Epidemiol. 2021;36(1):1–9.CrossRef
23.
Zurück zum Zitat Moolgavkar SH. Model for human carcinogenesis: action of environmental agents. Environ Health Perspect. 1983;50:285–91.CrossRef Moolgavkar SH. Model for human carcinogenesis: action of environmental agents. Environ Health Perspect. 1983;50:285–91.CrossRef
24.
Zurück zum Zitat Wahrendorf J, Brown CC. Bootstrapping a basic inequality in the analysis of joint action of two drugs. Biometrics. 1980;36(4):653–7.CrossRef Wahrendorf J, Brown CC. Bootstrapping a basic inequality in the analysis of joint action of two drugs. Biometrics. 1980;36(4):653–7.CrossRef
25.
Zurück zum Zitat Greenland S, Rothman KJ, Lash TL, Concepts of interaction, in Ch. 5 in Modern Epidemiology, 3rd ed. 2008, Lippincott: Philadelphia. Greenland S, Rothman KJ, Lash TL, Concepts of interaction, in Ch. 5 in Modern Epidemiology, 3rd ed. 2008, Lippincott: Philadelphia.
26.
Zurück zum Zitat Splawa-Neyman J. On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. Stat Sci. 1990;5:465–80.CrossRef Splawa-Neyman J. On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. Stat Sci. 1990;5:465–80.CrossRef
27.
Zurück zum Zitat Ashford JR, Cobby JM. A system of models for the action of drugs applied singly or jointly to biological organisms. Biometrics. 1974;30(1):11–31.CrossRef Ashford JR, Cobby JM. A system of models for the action of drugs applied singly or jointly to biological organisms. Biometrics. 1974;30(1):11–31.CrossRef
28.
Zurück zum Zitat Weinberg CR. Applicability of the simple independent action model to epidemiologic studies involving two factors and a dichotomous outcome. Am J Epidemiol. 1986;123(1):162–73.CrossRef Weinberg CR. Applicability of the simple independent action model to epidemiologic studies involving two factors and a dichotomous outcome. Am J Epidemiol. 1986;123(1):162–73.CrossRef
29.
Zurück zum Zitat Koopman JS. Interaction between discrete causes. Am J Epidemiol. 1981;113(6):716–24.CrossRef Koopman JS. Interaction between discrete causes. Am J Epidemiol. 1981;113(6):716–24.CrossRef
30.
Zurück zum Zitat Hamilton MA. Choosing the parameter for a 2 x 2 table or a 2 x 2 x 2 table analysis. Am J Epidemiol. 1979;109(3):362–75.CrossRef Hamilton MA. Choosing the parameter for a 2 x 2 table or a 2 x 2 x 2 table analysis. Am J Epidemiol. 1979;109(3):362–75.CrossRef
31.
Zurück zum Zitat Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2020. Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC; 2020.
32.
Zurück zum Zitat VanderWeele T. Explanation in causal inference. New York: Oxford University Press; 2015. VanderWeele T. Explanation in causal inference. New York: Oxford University Press; 2015.
33.
Zurück zum Zitat Robins J, Greenland S. The probability of causation under a stochastic model for individual risk. Biometrics, 1989. 45(4): p. 1125-38; Erratum: 1991, 48, 824. Robins J, Greenland S. The probability of causation under a stochastic model for individual risk. Biometrics, 1989. 45(4): p. 1125-38; Erratum: 1991, 48, 824.
34.
Zurück zum Zitat VanderWeele TJ, Knol MJ. Remarks on antagonism. Am J Epidemiol. 2011;173(10):1140–7.CrossRef VanderWeele TJ, Knol MJ. Remarks on antagonism. Am J Epidemiol. 2011;173(10):1140–7.CrossRef
35.
Zurück zum Zitat VanderWeele TJ, Robins JM. The identification of synergism in the sufficient-component-cause framework. Epidemiology. 2007;18(3):329–39.CrossRef VanderWeele TJ, Robins JM. The identification of synergism in the sufficient-component-cause framework. Epidemiology. 2007;18(3):329–39.CrossRef
36.
Zurück zum Zitat VanderWeele TJ, Robins JM. Empirical and counterfactual conditions for sufficient cause interactions. Biometrika. 2008;95:49–61.CrossRef VanderWeele TJ, Robins JM. Empirical and counterfactual conditions for sufficient cause interactions. Biometrika. 2008;95:49–61.CrossRef
37.
Zurück zum Zitat Vanderweele TJ, Robins JM. Stochastic counterfactuals and stochastic sufficient causes. Stat Sin. 2012;22(1):379–92.CrossRef Vanderweele TJ, Robins JM. Stochastic counterfactuals and stochastic sufficient causes. Stat Sin. 2012;22(1):379–92.CrossRef
38.
Zurück zum Zitat Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med. 1983;2(2):243–51.CrossRef Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med. 1983;2(2):243–51.CrossRef
39.
Zurück zum Zitat Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761–8.CrossRef Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761–8.CrossRef
Metadaten
Titel
On the evolution of concepts of causal and preventive interdependence in epidemiology in the late 20th century
verfasst von
Neil Pearce
Sander Greenland
Publikationsdatum
12.11.2022
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 11/2022
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-022-00931-z

Weitere Artikel der Ausgabe 11/2022

European Journal of Epidemiology 11/2022 Zur Ausgabe