Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2016

11.07.2015

Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension

verfasst von: Qiu-Yue Yi, Jie Qi, Xiao-Jing Yu, Hong-Bao Li, Yan Zhang, Qing Su, Tao Shi, Dong-Mei Zhang, Jing Guo, Zhi-Peng Feng, Mo-Lin Wang, Guo-Qing Zhu, Jin-Jun Liu, Xiao-Lian Shi, Yu-Ming Kang

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Oxidative stress plays an important role in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG) is the main polyphenol present in green tea and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that EGCG attenuates oxidative stress in the paraventricular nucleus of hypothalamus (PVN), thereby decreasing the blood pressure and sympathetic activity in renovascular hypertensive rats. After renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K-1C) method, the rats received bilateral PVN infusion of EGCG (20 μg/h) or vehicle via osmotic minipump for 4 weeks. Our results were shown as follows: (1) Hypertension induced by 2K-1C was associated with the production of reactive oxygen species in the PVN; (2) chronic infusion of EGCG in the PVN decreased stress-related NAD(P)H oxidase subunit gp91phox and NOX-4 and increased the activity of antioxidant enzymes (SOD-1), also balanced the content of cytokines (IL-1β, IL-6, IL-10 and MCP-1) in the PVN, and attenuated the level of norepinephrine in plasma of 2K-1C rats. Our findings provide strong evidence that PVN infusion of EGCG inhibited renovascular hypertension progression through its potent anti-oxidative and anti-inflammatory activity in the PVN.
Literatur
1.
Zurück zum Zitat Alderman, M. H., & Ogihara, T. (2007). Global challenge for overcoming high blood pressure: Fukuoka Statement, 19 October 2006. Journal of Hypertension, 25, 727.CrossRefPubMed Alderman, M. H., & Ogihara, T. (2007). Global challenge for overcoming high blood pressure: Fukuoka Statement, 19 October 2006. Journal of Hypertension, 25, 727.CrossRefPubMed
2.
Zurück zum Zitat Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367, 1747–1757.CrossRefPubMed Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367, 1747–1757.CrossRefPubMed
3.
Zurück zum Zitat Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet, 365, 217–223.CrossRefPubMed Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet, 365, 217–223.CrossRefPubMed
4.
Zurück zum Zitat Behradmanesh, S., & Nasri, H. (2013). Association of serum calcium with level of blood pressure in type 2 diabetic patients. Journal of Nephropathology, 2, 254–257.PubMedPubMedCentral Behradmanesh, S., & Nasri, H. (2013). Association of serum calcium with level of blood pressure in type 2 diabetic patients. Journal of Nephropathology, 2, 254–257.PubMedPubMedCentral
5.
Zurück zum Zitat Lenfant, C., Chobanian, A. V., Jones, D. W., & Roccella, E. J. (2003). Seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7): Resetting the hypertension sails. Hypertension, 41, 1178–1179.CrossRefPubMed Lenfant, C., Chobanian, A. V., Jones, D. W., & Roccella, E. J. (2003). Seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7): Resetting the hypertension sails. Hypertension, 41, 1178–1179.CrossRefPubMed
6.
Zurück zum Zitat Mittal, B. V., & Singh, A. K. (2010). Hypertension in the developing world: Challenges and opportunities. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 55, 590–598.CrossRef Mittal, B. V., & Singh, A. K. (2010). Hypertension in the developing world: Challenges and opportunities. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 55, 590–598.CrossRef
7.
Zurück zum Zitat Savoia, C., Burger, D., Nishigaki, N., Montezano, A., & Touyz, R. M. (2011). Angiotensin II and the vascular phenotype in hypertension. Expert Reviews in Molecular Medicine, 13, e11.CrossRefPubMed Savoia, C., Burger, D., Nishigaki, N., Montezano, A., & Touyz, R. M. (2011). Angiotensin II and the vascular phenotype in hypertension. Expert Reviews in Molecular Medicine, 13, e11.CrossRefPubMed
8.
Zurück zum Zitat Belmonte, S. L., & Blaxall, B. C. (2011). G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 109, 309–319.CrossRefPubMedPubMedCentral Belmonte, S. L., & Blaxall, B. C. (2011). G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 109, 309–319.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zubcevic, J., Waki, H., Raizada, M. K., & Paton, J. F. (2011). Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension, 57, 1026–1033.CrossRefPubMedPubMedCentral Zubcevic, J., Waki, H., Raizada, M. K., & Paton, J. F. (2011). Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension, 57, 1026–1033.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Muller, D. N., Kvakan, H., & Luft, F. C. (2011). Immune-related effects in hypertension and target-organ damage. Current Opinion in Nephrology and Hypertension, 20, 113–117.CrossRefPubMed Muller, D. N., Kvakan, H., & Luft, F. C. (2011). Immune-related effects in hypertension and target-organ damage. Current Opinion in Nephrology and Hypertension, 20, 113–117.CrossRefPubMed
11.
Zurück zum Zitat Touyz, R. M. (2005). Molecular and cellular mechanisms in vascular injury in hypertension: Role of angiotensin II. Current Opinion in Nephrology and Hypertension, 14, 125–131.CrossRefPubMed Touyz, R. M. (2005). Molecular and cellular mechanisms in vascular injury in hypertension: Role of angiotensin II. Current Opinion in Nephrology and Hypertension, 14, 125–131.CrossRefPubMed
12.
Zurück zum Zitat Baylis, C. (2012). Nitric oxide synthase derangements and hypertension in kidney disease. Current Opinion in Nephrology and Hypertension, 21, 1–6.CrossRefPubMedPubMedCentral Baylis, C. (2012). Nitric oxide synthase derangements and hypertension in kidney disease. Current Opinion in Nephrology and Hypertension, 21, 1–6.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rodrigo, R., Gonzalez, J., & Paoletto, F. (2011). The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 431–440.CrossRef Rodrigo, R., Gonzalez, J., & Paoletto, F. (2011). The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 431–440.CrossRef
14.
Zurück zum Zitat Wilcox, C. S. (2005). Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R913–R935.CrossRefPubMed Wilcox, C. S. (2005). Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R913–R935.CrossRefPubMed
15.
Zurück zum Zitat Vaziri, N. D. (2004). Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Current Opinion in Nephrology and Hypertension, 13, 93–99.CrossRefPubMed Vaziri, N. D. (2004). Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Current Opinion in Nephrology and Hypertension, 13, 93–99.CrossRefPubMed
16.
Zurück zum Zitat Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension, 44, 248–252.CrossRefPubMed Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension, 44, 248–252.CrossRefPubMed
17.
Zurück zum Zitat Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.CrossRefPubMed Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.CrossRefPubMed
18.
Zurück zum Zitat Kakihana, T., Nagata, K., & Sitia, R. (2012). Peroxides and peroxidases in the endoplasmic reticulum: Integrating redox homeostasis and oxidative folding. Antioxidants and Redox Signaling, 16, 763–771.CrossRefPubMed Kakihana, T., Nagata, K., & Sitia, R. (2012). Peroxides and peroxidases in the endoplasmic reticulum: Integrating redox homeostasis and oxidative folding. Antioxidants and Redox Signaling, 16, 763–771.CrossRefPubMed
19.
Zurück zum Zitat Laurindo, F. R., Pescatore, L. A., & Fernandes Dde, C. (2012). Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine, 52, 1954–1969.CrossRefPubMed Laurindo, F. R., Pescatore, L. A., & Fernandes Dde, C. (2012). Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine, 52, 1954–1969.CrossRefPubMed
20.
Zurück zum Zitat Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. The Biochemical Journal, 441, 523–540.CrossRefPubMed Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. The Biochemical Journal, 441, 523–540.CrossRefPubMed
21.
Zurück zum Zitat Touyz, R. M., Briones, A. M., Sedeek, M., Burger, D., & Montezano, A. C. (2011). NOX isoforms and reactive oxygen species in vascular health. Molecular Interventions, 11, 27–35.CrossRefPubMed Touyz, R. M., Briones, A. M., Sedeek, M., Burger, D., & Montezano, A. C. (2011). NOX isoforms and reactive oxygen species in vascular health. Molecular Interventions, 11, 27–35.CrossRefPubMed
22.
Zurück zum Zitat Vaziri, N. D., & Rodriguez-Iturbe, B. (2006). Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nature Clinical Practice Nephrology, 2, 582–593.CrossRefPubMed Vaziri, N. D., & Rodriguez-Iturbe, B. (2006). Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nature Clinical Practice Nephrology, 2, 582–593.CrossRefPubMed
23.
Zurück zum Zitat Touyz, R. M., & Schiffrin, E. L. (2004). Reactive oxygen species in vascular biology: Implications in hypertension. Histochemistry and Cell Biology, 122, 339–352.CrossRefPubMed Touyz, R. M., & Schiffrin, E. L. (2004). Reactive oxygen species in vascular biology: Implications in hypertension. Histochemistry and Cell Biology, 122, 339–352.CrossRefPubMed
24.
Zurück zum Zitat Touyz, R. M., & Briones, A. M. (2011). Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 5–14.CrossRef Touyz, R. M., & Briones, A. M. (2011). Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 5–14.CrossRef
25.
Zurück zum Zitat Chen, D. D., Dong, Y. G., Yuan, H., & Chen, A. F. (2012). Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension, 59, 1037–1043.CrossRefPubMed Chen, D. D., Dong, Y. G., Yuan, H., & Chen, A. F. (2012). Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension, 59, 1037–1043.CrossRefPubMed
26.
Zurück zum Zitat Huang, B. S., Zheng, H., Tan, J., Patel, K. P., & Leenen, F. H. (2011). Regulation of hypothalamic renin–angiotensin system and oxidative stress by aldosterone. Experimental Physiology, 96, 1028–1038.CrossRefPubMedPubMedCentral Huang, B. S., Zheng, H., Tan, J., Patel, K. P., & Leenen, F. H. (2011). Regulation of hypothalamic renin–angiotensin system and oxidative stress by aldosterone. Experimental Physiology, 96, 1028–1038.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Schupp, N., Kolkhof, P., Queisser, N., Gartner, S., Schmid, U., Kretschmer, A., et al. (2011). Mineralocorticoid receptor-mediated DNA damage in kidneys of DOCA-salt hypertensive rats. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25, 968–978.CrossRef Schupp, N., Kolkhof, P., Queisser, N., Gartner, S., Schmid, U., Kretschmer, A., et al. (2011). Mineralocorticoid receptor-mediated DNA damage in kidneys of DOCA-salt hypertensive rats. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25, 968–978.CrossRef
28.
Zurück zum Zitat Kimura, M., Umegaki, K., Kasuya, Y., Sugisawa, A., & Higuchi, M. (2002). The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. European Journal of Clinical Nutrition, 56, 1186–1193.CrossRefPubMed Kimura, M., Umegaki, K., Kasuya, Y., Sugisawa, A., & Higuchi, M. (2002). The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. European Journal of Clinical Nutrition, 56, 1186–1193.CrossRefPubMed
29.
Zurück zum Zitat Frei, B., & Higdon, J. V. (2003). Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. The Journal of Nutrition, 133, 3275S–3284S.PubMed Frei, B., & Higdon, J. V. (2003). Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. The Journal of Nutrition, 133, 3275S–3284S.PubMed
30.
Zurück zum Zitat Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43, 89–143.CrossRefPubMed Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43, 89–143.CrossRefPubMed
31.
Zurück zum Zitat Thomas, R., & Kim, M. H. (2005). Epigallocatechin gallate inhibits HIF-1α degradation in prostate cancer cells. Biochemical and Biophysical Research Communications, 334, 543–548.CrossRefPubMed Thomas, R., & Kim, M. H. (2005). Epigallocatechin gallate inhibits HIF-1α degradation in prostate cancer cells. Biochemical and Biophysical Research Communications, 334, 543–548.CrossRefPubMed
32.
Zurück zum Zitat Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78, 2073–2080.CrossRefPubMed Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78, 2073–2080.CrossRefPubMed
33.
Zurück zum Zitat Nakachi, K., Matsuyama, S., Miyake, S., Suganuma, M., & Imai, K. (2000). Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. BioFactors, 13, 49–54.CrossRefPubMed Nakachi, K., Matsuyama, S., Miyake, S., Suganuma, M., & Imai, K. (2000). Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. BioFactors, 13, 49–54.CrossRefPubMed
34.
Zurück zum Zitat Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., et al. (1999). Antithrombotic activities of green tea catechins and (–)-epigallocatechin gallate. Thrombosis Research, 96, 229–237.CrossRefPubMed Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., et al. (1999). Antithrombotic activities of green tea catechins and (–)-epigallocatechin gallate. Thrombosis Research, 96, 229–237.CrossRefPubMed
35.
Zurück zum Zitat Townsend, P. A., Scarabelli, T. M., Pasini, E., Gitti, G., Menegazzi, M., Suzuki, H., et al. (2004). Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 1621–1623. Townsend, P. A., Scarabelli, T. M., Pasini, E., Gitti, G., Menegazzi, M., Suzuki, H., et al. (2004). Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 1621–1623.
36.
Zurück zum Zitat Lorenz, M., Wessler, S., Follmann, E., Michaelis, W., Dusterhoft, T., Baumann, G., et al. (2004). A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. The Journal of Biological Chemistry, 279, 6190–6195.CrossRefPubMed Lorenz, M., Wessler, S., Follmann, E., Michaelis, W., Dusterhoft, T., Baumann, G., et al. (2004). A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. The Journal of Biological Chemistry, 279, 6190–6195.CrossRefPubMed
37.
Zurück zum Zitat Baluchnejadmojarad, T., & Roghani, M. (2011). Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behavioural Brain Research, 224, 305–310.CrossRefPubMed Baluchnejadmojarad, T., & Roghani, M. (2011). Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behavioural Brain Research, 224, 305–310.CrossRefPubMed
38.
Zurück zum Zitat Baba, Y., Sonoda, J. I., Hayashi, S., Tosuji, N., Sonoda, S., Makisumi, K., et al. (2012). Reduction of oxidative stress in liver cancer patients by oral green tea polyphenol tablets during hepatic arterial infusion chemotherapy. Experimental and Therapeutic Medicine, 4, 452–458.PubMedPubMedCentral Baba, Y., Sonoda, J. I., Hayashi, S., Tosuji, N., Sonoda, S., Makisumi, K., et al. (2012). Reduction of oxidative stress in liver cancer patients by oral green tea polyphenol tablets during hepatic arterial infusion chemotherapy. Experimental and Therapeutic Medicine, 4, 452–458.PubMedPubMedCentral
39.
Zurück zum Zitat Kochi, T., Shimizu, M., Terakura, D., Baba, A., Ohno, T., Kubota, M., et al. (2014). Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions. Cancer Letters, 342, 60–69.CrossRefPubMed Kochi, T., Shimizu, M., Terakura, D., Baba, A., Ohno, T., Kubota, M., et al. (2014). Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions. Cancer Letters, 342, 60–69.CrossRefPubMed
40.
Zurück zum Zitat Wang, M. H., Chang, W. J., Soung, H. S., & Chang, K. C. (2012). (–)-Epigallocatechin-3-gallate decreases the impairment in learning and memory in spontaneous hypertension rats. Behavioural Pharmacology, 23, 771–780.CrossRefPubMed Wang, M. H., Chang, W. J., Soung, H. S., & Chang, K. C. (2012). (–)-Epigallocatechin-3-gallate decreases the impairment in learning and memory in spontaneous hypertension rats. Behavioural Pharmacology, 23, 771–780.CrossRefPubMed
41.
Zurück zum Zitat Hodgson, J. M., & Croft, K. D. (2010). Tea flavonoids and cardiovascular health. Molecular Aspects of Medicine, 31, 495–502.CrossRefPubMed Hodgson, J. M., & Croft, K. D. (2010). Tea flavonoids and cardiovascular health. Molecular Aspects of Medicine, 31, 495–502.CrossRefPubMed
42.
43.
Zurück zum Zitat Potenza, M. A., Marasciulo, F. L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., et al. (2007). EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology. Endocrinology and metabolism, 292, E1378–E1387.CrossRefPubMed Potenza, M. A., Marasciulo, F. L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., et al. (2007). EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology. Endocrinology and metabolism, 292, E1378–E1387.CrossRefPubMed
44.
Zurück zum Zitat Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.CrossRefPubMed Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.CrossRefPubMed
45.
Zurück zum Zitat Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension, 59, 113–121.CrossRefPubMed Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension, 59, 113–121.CrossRefPubMed
47.
Zurück zum Zitat Zimmerman, M. C., Lazartigues, E., Sharma, R. V., & Davisson, R. L. (2004). Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circulation Research, 95, 210–216.CrossRefPubMed Zimmerman, M. C., Lazartigues, E., Sharma, R. V., & Davisson, R. L. (2004). Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circulation Research, 95, 210–216.CrossRefPubMed
48.
Zurück zum Zitat Kang, Y. M., Chen, J. Y., Ouyang, W., Qiao, J. T., Reyes-Vazquez, C., & Dafny, N. (2004). Serotonin modulates hypothalamic neuronal activity. The International Journal of Neuroscience, 114, 299–319.CrossRefPubMed Kang, Y. M., Chen, J. Y., Ouyang, W., Qiao, J. T., Reyes-Vazquez, C., & Dafny, N. (2004). Serotonin modulates hypothalamic neuronal activity. The International Journal of Neuroscience, 114, 299–319.CrossRefPubMed
49.
Zurück zum Zitat Han, Y., Fan, Z. D., Yuan, N., Xie, G. Q., Gao, J., De, W., et al. (2011). Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. Journal of Applied Physiology, 110, 646–652.CrossRefPubMed Han, Y., Fan, Z. D., Yuan, N., Xie, G. Q., Gao, J., De, W., et al. (2011). Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. Journal of Applied Physiology, 110, 646–652.CrossRefPubMed
50.
Zurück zum Zitat Zhu, G. Q., Xu, Y., Zhou, L. M., Li, Y. H., Fan, L. M., Wang, W., et al. (2009). Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Experimental Physiology, 94, 785–794.CrossRefPubMed Zhu, G. Q., Xu, Y., Zhou, L. M., Li, Y. H., Fan, L. M., Wang, W., et al. (2009). Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Experimental Physiology, 94, 785–794.CrossRefPubMed
51.
Zurück zum Zitat Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.CrossRefPubMedPubMedCentral Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin–angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovascular Toxicology, 13, 48–54.CrossRefPubMed Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin–angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovascular Toxicology, 13, 48–54.CrossRefPubMed
53.
Zurück zum Zitat Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 279, 141–149.CrossRefPubMed Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 279, 141–149.CrossRefPubMed
54.
Zurück zum Zitat Gao, L., Wang, W., Li, Y. L., Schultz, H. D., Liu, D., Cornish, K. G., et al. (2005). Sympathoexcitation by central ANG II: Roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. American Journal of Physiology. Heart and circulatory Physiology, 288, H2271–H2279.CrossRefPubMed Gao, L., Wang, W., Li, Y. L., Schultz, H. D., Liu, D., Cornish, K. G., et al. (2005). Sympathoexcitation by central ANG II: Roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. American Journal of Physiology. Heart and circulatory Physiology, 288, H2271–H2279.CrossRefPubMed
55.
Zurück zum Zitat Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed
56.
Zurück zum Zitat Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.CrossRefPubMedPubMedCentral Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Coote, J. H. (2007). Landmarks in understanding the central nervous control of the cardiovascular system. Experimental Physiology, 92, 3–18.CrossRefPubMed Coote, J. H. (2007). Landmarks in understanding the central nervous control of the cardiovascular system. Experimental Physiology, 92, 3–18.CrossRefPubMed
58.
Zurück zum Zitat Joyner, M. J., Charkoudian, N., & Wallin, B. G. (2008). A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Experimental Physiology, 93, 715–724.CrossRefPubMedPubMedCentral Joyner, M. J., Charkoudian, N., & Wallin, B. G. (2008). A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Experimental Physiology, 93, 715–724.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Martinez-Maldonado, M. (1991). Pathophysiology of renovascular hypertension. Hypertension, 17, 707–719.CrossRefPubMed Martinez-Maldonado, M. (1991). Pathophysiology of renovascular hypertension. Hypertension, 17, 707–719.CrossRefPubMed
60.
Zurück zum Zitat Katholi, R. E., Whitlow, P. L., Winternitz, S. R., & Oparil, S. (1982). Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension, 4, 166–174.PubMed Katholi, R. E., Whitlow, P. L., Winternitz, S. R., & Oparil, S. (1982). Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension, 4, 166–174.PubMed
61.
Zurück zum Zitat Cohn, H. I., Harris, D. M., Pesant, S., Pfeiffer, M., Zhou, R. H., Koch, W. J., et al. (2008). Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances α1D-adrenergic receptor constriction. American Journal of Physiology. Heart and circulatory physiology, 295, H1695–H1704.CrossRefPubMedPubMedCentral Cohn, H. I., Harris, D. M., Pesant, S., Pfeiffer, M., Zhou, R. H., Koch, W. J., et al. (2008). Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances α1D-adrenergic receptor constriction. American Journal of Physiology. Heart and circulatory physiology, 295, H1695–H1704.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Campos, R. R., Oliveira-Sales, E. B., Nishi, E. E., Boim, M. A., Dolnikoff, M. S., & Bergamaschi, C. T. (2011). The role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology and Physiology, 38, 144–152.CrossRefPubMed Campos, R. R., Oliveira-Sales, E. B., Nishi, E. E., Boim, M. A., Dolnikoff, M. S., & Bergamaschi, C. T. (2011). The role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology and Physiology, 38, 144–152.CrossRefPubMed
63.
Zurück zum Zitat Chen, A. D., Zhang, S. J., Yuan, N., Xu, Y., De, W., Gao, X. Y., et al. (2011). Angiotensin AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Experimental Physiology, 96, 94–103.CrossRefPubMed Chen, A. D., Zhang, S. J., Yuan, N., Xu, Y., De, W., Gao, X. Y., et al. (2011). Angiotensin AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Experimental Physiology, 96, 94–103.CrossRefPubMed
64.
Zurück zum Zitat Maliszewska-Scislo, M., Chen, H., Augustyniak, R. A., Seth, D., & Rossi, N. F. (2008). Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295, R741–R750.CrossRefPubMedPubMedCentral Maliszewska-Scislo, M., Chen, H., Augustyniak, R. A., Seth, D., & Rossi, N. F. (2008). Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295, R741–R750.CrossRefPubMedPubMedCentral
65.
66.
Zurück zum Zitat Wu, K. L., Chan, S. H., & Chan, J. Y. (2012). Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. Journal of Neuroinflammation, 9, 212.CrossRefPubMedPubMedCentral Wu, K. L., Chan, S. H., & Chan, J. Y. (2012). Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. Journal of Neuroinflammation, 9, 212.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Zimmerman, M. C., Sharma, R. V., & Davisson, R. L. (2005). Superoxide mediates angiotensin II-induced influx of extracellular calcium in neural cells. Hypertension, 45, 717–723.CrossRefPubMed Zimmerman, M. C., Sharma, R. V., & Davisson, R. L. (2005). Superoxide mediates angiotensin II-induced influx of extracellular calcium in neural cells. Hypertension, 45, 717–723.CrossRefPubMed
68.
Zurück zum Zitat Shi, Z., Gan, X. B., Fan, Z. D., Zhang, F., Zhou, Y. B., Gao, X. Y., et al. (2011). Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiologica (Oxf), 203, 289–297.CrossRef Shi, Z., Gan, X. B., Fan, Z. D., Zhang, F., Zhou, Y. B., Gao, X. Y., et al. (2011). Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiologica (Oxf), 203, 289–297.CrossRef
69.
Zurück zum Zitat Taubert, D., Roesen, R., & Schomig, E. (2007). Effect of cocoa and tea intake on blood pressure: A meta-analysis. Archives of Internal Medicine, 167, 626–634.CrossRefPubMed Taubert, D., Roesen, R., & Schomig, E. (2007). Effect of cocoa and tea intake on blood pressure: A meta-analysis. Archives of Internal Medicine, 167, 626–634.CrossRefPubMed
70.
Zurück zum Zitat Liu, P. L., Liu, J. T., Kuo, H. F., Chong, I. W., & Hsieh, C. C. (2014). Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1beta via heme oxygenase-1. Mediators of Inflammation, 2014, 523684.PubMedPubMedCentral Liu, P. L., Liu, J. T., Kuo, H. F., Chong, I. W., & Hsieh, C. C. (2014). Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1beta via heme oxygenase-1. Mediators of Inflammation, 2014, 523684.PubMedPubMedCentral
71.
Zurück zum Zitat Steffen, Y., Gruber, C., Schewe, T., & Sies, H. (2008). Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Archives of Biochemistry and Biophysics, 469, 209–219.CrossRefPubMed Steffen, Y., Gruber, C., Schewe, T., & Sies, H. (2008). Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Archives of Biochemistry and Biophysics, 469, 209–219.CrossRefPubMed
72.
Zurück zum Zitat Rodrigo, R. (2012). Prevention of postoperative atrial fibrillation: Novel and safe strategy based on the modulation of the antioxidant system. Frontiers in Physiology, 3, 93.CrossRefPubMedPubMedCentral Rodrigo, R. (2012). Prevention of postoperative atrial fibrillation: Novel and safe strategy based on the modulation of the antioxidant system. Frontiers in Physiology, 3, 93.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Simic, D. V., Mimic-Oka, J., Pljesa-Ercegovac, M., Savic-Radojevic, A., Opacic, M., Matic, D., et al. (2006). Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension. Journal of Human Hypertension, 20, 149–155.CrossRefPubMed Simic, D. V., Mimic-Oka, J., Pljesa-Ercegovac, M., Savic-Radojevic, A., Opacic, M., Matic, D., et al. (2006). Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension. Journal of Human Hypertension, 20, 149–155.CrossRefPubMed
74.
Zurück zum Zitat Roghani, M., & Baluchnejadmojarad, T. (2009). Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms. Vascular Pharmacology, 51, 84–89.CrossRefPubMed Roghani, M., & Baluchnejadmojarad, T. (2009). Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms. Vascular Pharmacology, 51, 84–89.CrossRefPubMed
75.
Zurück zum Zitat Antonello, M., Montemurro, D., Bolognesi, M., Di Pascoli, M., Piva, A., Grego, F., et al. (2007). Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. American Journal of Hypertension, 20, 1321–1328.CrossRefPubMed Antonello, M., Montemurro, D., Bolognesi, M., Di Pascoli, M., Piva, A., Grego, F., et al. (2007). Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. American Journal of Hypertension, 20, 1321–1328.CrossRefPubMed
76.
Zurück zum Zitat Khalaf, A. A., Moselhy, W. A., & Abdel-Hamed, M. I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology, 33, 280–289.CrossRefPubMed Khalaf, A. A., Moselhy, W. A., & Abdel-Hamed, M. I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology, 33, 280–289.CrossRefPubMed
Metadaten
Titel
Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension
verfasst von
Qiu-Yue Yi
Jie Qi
Xiao-Jing Yu
Hong-Bao Li
Yan Zhang
Qing Su
Tao Shi
Dong-Mei Zhang
Jing Guo
Zhi-Peng Feng
Mo-Lin Wang
Guo-Qing Zhu
Jin-Jun Liu
Xiao-Lian Shi
Yu-Ming Kang
Publikationsdatum
11.07.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2016
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9335-x

Weitere Artikel der Ausgabe 3/2016

Cardiovascular Toxicology 3/2016 Zur Ausgabe