Skip to main content
Erschienen in: Calcified Tissue International 4/2005

01.10.2005 | Laboratory Investigations

Patterns and Localization of Gene Expression During Intramembranous Bone Regeneration in the Rat Femoral Marrow Ablation Model

verfasst von: Shinji Kuroda, Amarjit S. Virdi, Yang Dai, Susan Shott, Dale R. Sumner

Erschienen in: Calcified Tissue International | Ausgabe 4/2005

Einloggen, um Zugang zu erhalten

Abstract

Tissue formation and repair are dependent upon cascades of biological events, but the signals involved and the possible gene coexpression patterns during intramembranous bone repair are only poorly understood. We sought to place this mode of regeneration in context by profiling quantitative gene expression for a panel of 39 genes between days 1 and 14 following rat femoral marrow ablation. In situ hybridization was employed to localize a subset of genes. Additionally, principal components analysis was conducted to identify underlying factors suggestive of coexpression patterns. During inflammation (days 1–5), several genes, including cyclooxygenase-1 and -2, showed downregulation. Other proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, exhibited increasing levels around day 5. During repair (days 3–10), growth factors, receptors, and inhibitor genes for transforming growth factor- β; basic fibroblast growth factor; bone morphogenetic proteins 2, 4, and 7; vascular endothelial growth factor; and insulin-like growth factor-I were upregulated. In addition, the gene for core binding factor-α1 and markers of osteoblast function such as alkaline phosphatase, collagen type I, osteonectin, osteopontin, and osteocalcin had peak expression at day 5 or 7. The remodeling phase (days 10–14) was characterized by peaks for cytokines associated with osteoclastic activity including receptor activator of nuclear factor-κB, receptor activator of nuclear factor-κB ligand (RANKL), cathepsin K, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. In situ hybridization showed that the most common sites of increased signal were within osteoblastic cells on trabecular and endosteal surfaces. Principal components analysis identified eight underlying factors that together explained over 80% of the variance in the data.
Literatur
1.
Zurück zum Zitat Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182CrossRefPubMed Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182CrossRefPubMed
2.
Zurück zum Zitat Sumner DR (2003) Fixation of implants. In: Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TA (eds), The adult knee. Lippincott Williams & Wilkins, Philadelphia, pp 289–296 Sumner DR (2003) Fixation of implants. In: Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TA (eds), The adult knee. Lippincott Williams & Wilkins, Philadelphia, pp 289–296
3.
Zurück zum Zitat Amsel S, Maniatis A, Tavassoli M, Crosby WH (1969) The significance of intramedullary cancellous bone formation in the repair of bone marrow tissue. Anat Rec 164:101–112CrossRefPubMed Amsel S, Maniatis A, Tavassoli M, Crosby WH (1969) The significance of intramedullary cancellous bone formation in the repair of bone marrow tissue. Anat Rec 164:101–112CrossRefPubMed
4.
Zurück zum Zitat Patt HM, Maloney MA (1975) Bone marrow regeneration after local injury: a review. Exp Hemat 3:135–148PubMed Patt HM, Maloney MA (1975) Bone marrow regeneration after local injury: a review. Exp Hemat 3:135–148PubMed
5.
Zurück zum Zitat Liang CT, Barnes J, Seedor JG, Quartuccio HA, Bolander M, Jeffrey JJ, Rodan GA (1992) Impaired bone activity in aged rats: alterations at the cellular and molecular levels. Bone 13:435–441CrossRefPubMed Liang CT, Barnes J, Seedor JG, Quartuccio HA, Bolander M, Jeffrey JJ, Rodan GA (1992) Impaired bone activity in aged rats: alterations at the cellular and molecular levels. Bone 13:435–441CrossRefPubMed
6.
Zurück zum Zitat Suva LJ, Seedor JG, Endo N, Quartuccio HA, Thompson DD, Bab I, Rodan GA (1993) Pattern of gene expression following rat tibial marrow ablation. J Bone Miner Res 8:379–388PubMed Suva LJ, Seedor JG, Endo N, Quartuccio HA, Thompson DD, Bab I, Rodan GA (1993) Pattern of gene expression following rat tibial marrow ablation. J Bone Miner Res 8:379–388PubMed
7.
Zurück zum Zitat Bab IA (1995) Postablation bone marrow regeneration: an in vivo model to study differential regulation of bone formation and resorption. Bone 17:437S–441SPubMed Bab IA (1995) Postablation bone marrow regeneration: an in vivo model to study differential regulation of bone formation and resorption. Bone 17:437S–441SPubMed
8.
Zurück zum Zitat Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMed Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMed
9.
Zurück zum Zitat Hadjiargyrou M, Ahrens W, Rubin CT (2000) Temporal expression of the chondrogenic and angiogenic growth factor CYR61 during fracture repair. J Bone Miner Res 15:1014–1023PubMed Hadjiargyrou M, Ahrens W, Rubin CT (2000) Temporal expression of the chondrogenic and angiogenic growth factor CYR61 during fracture repair. J Bone Miner Res 15:1014–1023PubMed
10.
Zurück zum Zitat Hadjiargyrou M, Rightmire EP, Ando T, Lombardo FT (2001) The E11 osteoblastic lineage marker is differentially expressed during fracture healing. Bone 29:149–154CrossRefPubMed Hadjiargyrou M, Rightmire EP, Ando T, Lombardo FT (2001) The E11 osteoblastic lineage marker is differentially expressed during fracture healing. Bone 29:149–154CrossRefPubMed
11.
Zurück zum Zitat Tanaka H, Barnes J, Liang CT (1996) Effect of age on the expression of insulin-like growth factor-I, interleukin-6, and transforming growth factor-β mRNAs in rat femurs following marrow ablation. Bone 18:473–478CrossRefPubMed Tanaka H, Barnes J, Liang CT (1996) Effect of age on the expression of insulin-like growth factor-I, interleukin-6, and transforming growth factor-β mRNAs in rat femurs following marrow ablation. Bone 18:473–478CrossRefPubMed
12.
Zurück zum Zitat Kusec V, Virdi AS, Prince R, Triffitt JT (1998) Localization of estrogen receptor-alpha in human and rabbit skeletal tissues. J Clin Endocrinol Metab 83:2421–2428CrossRefPubMed Kusec V, Virdi AS, Prince R, Triffitt JT (1998) Localization of estrogen receptor-alpha in human and rabbit skeletal tissues. J Clin Endocrinol Metab 83:2421–2428CrossRefPubMed
13.
Zurück zum Zitat Oreffo RO, Kusec V, Virdi AS, Flanagan AM, Grano M, Zambonin-Zallone A, Triffitt JT (1999) Expression of estrogen receptor-alpha in cells of the osteoclastic lineage. Histochem Cell Biol 111:125–133CrossRefPubMed Oreffo RO, Kusec V, Virdi AS, Flanagan AM, Grano M, Zambonin-Zallone A, Triffitt JT (1999) Expression of estrogen receptor-alpha in cells of the osteoclastic lineage. Histochem Cell Biol 111:125–133CrossRefPubMed
14.
Zurück zum Zitat Jingushi S, Joyce ME, Bolander ME (1992) Genetic expression of extracellular matrix proteins correlates with histologic changes during fracture repair. J Bone Miner Res 7:1045–1055PubMed Jingushi S, Joyce ME, Bolander ME (1992) Genetic expression of extracellular matrix proteins correlates with histologic changes during fracture repair. J Bone Miner Res 7:1045–1055PubMed
15.
Zurück zum Zitat Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop 289:292–312PubMed Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop 289:292–312PubMed
16.
Zurück zum Zitat Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop S7–S21 Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop S7–S21
17.
Zurück zum Zitat Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18:1584–1592PubMed Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18:1584–1592PubMed
18.
Zurück zum Zitat Shimizu T, Mehdi R, Yoshimura Y, Yoshikawa H, Nomura S, Miyazono K, Takaoka K (1998) Sequential expression of bone morphogenetic protein, tumor necrosis factor, and their receptors in bone-forming reaction after mouse femoral marrow ablation. Bone 23:127–133CrossRefPubMed Shimizu T, Mehdi R, Yoshimura Y, Yoshikawa H, Nomura S, Miyazono K, Takaoka K (1998) Sequential expression of bone morphogenetic protein, tumor necrosis factor, and their receptors in bone-forming reaction after mouse femoral marrow ablation. Bone 23:127–133CrossRefPubMed
19.
Zurück zum Zitat Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, Einhorn TA (2001) Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs 169:285–294CrossRefPubMed Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, Einhorn TA (2001) Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs 169:285–294CrossRefPubMed
20.
Zurück zum Zitat Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 18:705–715PubMed Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 18:705–715PubMed
21.
Zurück zum Zitat Banerjee C, Javed A, Choi JY, Green J, Rosen V, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2001) Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142:4026–4039CrossRefPubMed Banerjee C, Javed A, Choi JY, Green J, Rosen V, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2001) Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142:4026–4039CrossRefPubMed
22.
Zurück zum Zitat Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21:393–411CrossRefPubMed Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21:393–411CrossRefPubMed
23.
Zurück zum Zitat Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535PubMed Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535PubMed
24.
Zurück zum Zitat Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66:1–8CrossRefPubMed Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66:1–8CrossRefPubMed
25.
Zurück zum Zitat Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMed Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMed
26.
Zurück zum Zitat Ferrara N, Leung DW, Cachianes G, Winer J, Henzel WJ (1991) Purification and cloning of vascular endothelial growth factor secreted by pituitary folliculostellate cells. Methods Enzymol 198:391–405PubMed Ferrara N, Leung DW, Cachianes G, Winer J, Henzel WJ (1991) Purification and cloning of vascular endothelial growth factor secreted by pituitary folliculostellate cells. Methods Enzymol 198:391–405PubMed
27.
Zurück zum Zitat Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 5:35–44PubMed Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 5:35–44PubMed
28.
Zurück zum Zitat Goad DL, Rubin J, Wang H, Tashjian AH Jr, Patterson C (1996) Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 137:2262–2268CrossRefPubMed Goad DL, Rubin J, Wang H, Tashjian AH Jr, Patterson C (1996) Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 137:2262–2268CrossRefPubMed
29.
Zurück zum Zitat Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Transforming growth factor-beta1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 277:C628–C637PubMed Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Transforming growth factor-beta1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 277:C628–C637PubMed
30.
Zurück zum Zitat Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477CrossRefPubMed Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477CrossRefPubMed
31.
Zurück zum Zitat Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759CrossRefPubMed Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759CrossRefPubMed
32.
Zurück zum Zitat Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8:95–114PubMed Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8:95–114PubMed
33.
Zurück zum Zitat Canalis E, Centrella M, McCarthy T (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81:1572–1577PubMed Canalis E, Centrella M, McCarthy T (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81:1572–1577PubMed
34.
35.
Zurück zum Zitat Chikazu D, Hakeda Y, Ogata N, Nemoto K, Itabashi A, Takato T, Kumegawa M, Nakamura K, Kawaguchi H (2000) Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem 275:31444–31450CrossRefPubMed Chikazu D, Hakeda Y, Ogata N, Nemoto K, Itabashi A, Takato T, Kumegawa M, Nakamura K, Kawaguchi H (2000) Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem 275:31444–31450CrossRefPubMed
36.
Zurück zum Zitat Kawaguchi H, Chikazu D, Nakamura K, Kumegawa M, Hakeda Y (2000) Direct and indirect actions of fibroblast growth factor 2 on osteoclastic bone resorption in cultures. J Bone Miner Res 15:466–473PubMed Kawaguchi H, Chikazu D, Nakamura K, Kumegawa M, Hakeda Y (2000) Direct and indirect actions of fibroblast growth factor 2 on osteoclastic bone resorption in cultures. J Bone Miner Res 15:466–473PubMed
37.
Zurück zum Zitat Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y (2000) Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473:161–164CrossRefPubMed Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y (2000) Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473:161–164CrossRefPubMed
38.
Zurück zum Zitat Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864CrossRefPubMed Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864CrossRefPubMed
39.
Zurück zum Zitat Lowik CW, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OL, Aarden LA, Papapoulos SE (1989) Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 162:1546–1552CrossRefPubMed Lowik CW, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OL, Aarden LA, Papapoulos SE (1989) Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 162:1546–1552CrossRefPubMed
40.
Zurück zum Zitat Roodman GD (1992) Interleukin-6: an osteotropic factor? J Bone Miner Res 7:475–478PubMed Roodman GD (1992) Interleukin-6: an osteotropic factor? J Bone Miner Res 7:475–478PubMed
41.
Zurück zum Zitat Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2001) Local and systemic expression of insulin-like growth factor-I (IGF-I) mRNAs in rat after bone marrow ablation. Biochem Biophys Res Commun 287:1157–1162CrossRefPubMed Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2001) Local and systemic expression of insulin-like growth factor-I (IGF-I) mRNAs in rat after bone marrow ablation. Biochem Biophys Res Commun 287:1157–1162CrossRefPubMed
42.
Zurück zum Zitat Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, Gittes GK, Longaker MT (2000) Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg 105:2028–2038PubMed Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, Gittes GK, Longaker MT (2000) Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg 105:2028–2038PubMed
43.
Zurück zum Zitat Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254PubMed Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254PubMed
44.
Zurück zum Zitat Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84CrossRefPubMed Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84CrossRefPubMed
45.
Zurück zum Zitat Nakajima A, Nakajima F, Shimizu S, Ogasawara A, Wanaka A, Moriya H, Einhorn TA, Yamazaki M (2001) Spatial and temporal gene expression for fibroblast growth factor type I receptor (FGFR1) during fracture healing in the rat. Bone 29:458–466CrossRefPubMed Nakajima A, Nakajima F, Shimizu S, Ogasawara A, Wanaka A, Moriya H, Einhorn TA, Yamazaki M (2001) Spatial and temporal gene expression for fibroblast growth factor type I receptor (FGFR1) during fracture healing in the rat. Bone 29:458–466CrossRefPubMed
46.
Zurück zum Zitat Nakajima F, Ogasawara A, Goto K, Moriya H, Ninomiya Y, Einhorn TA, Yamazaki M (2001) Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor. J Orthop Res 19:935–944CrossRefPubMed Nakajima F, Ogasawara A, Goto K, Moriya H, Ninomiya Y, Einhorn TA, Yamazaki M (2001) Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor. J Orthop Res 19:935–944CrossRefPubMed
47.
Zurück zum Zitat Ito H, Akiyama H, Shigeno C, Iyama K, Matsuoka H, Nakamura T (1999) Hedgehog signaling molecules in bone marrow cells at the initial stage of fracture repair. Biochem Biophys Res Commun 262:443–451CrossRefPubMed Ito H, Akiyama H, Shigeno C, Iyama K, Matsuoka H, Nakamura T (1999) Hedgehog signaling molecules in bone marrow cells at the initial stage of fracture repair. Biochem Biophys Res Commun 262:443–451CrossRefPubMed
48.
Zurück zum Zitat Mehrara BJ, Rowe NM, Steinbrech DS, Dudziak ME, Saadeh PB, McCarthy JG, Gittes GK, Longaker MT (1999) Rat mandibular distraction osteogenesis: II. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression. Plast Reconstr Surg 103:536–547PubMed Mehrara BJ, Rowe NM, Steinbrech DS, Dudziak ME, Saadeh PB, McCarthy JG, Gittes GK, Longaker MT (1999) Rat mandibular distraction osteogenesis: II. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression. Plast Reconstr Surg 103:536–547PubMed
49.
Zurück zum Zitat Sato M, Yasui N, Nakase T, Kawahata H, Sugimoto M, Hirota S, Kitamura Y, Nomura S, Ochi T (1998) Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res 13:1221–1237PubMed Sato M, Yasui N, Nakase T, Kawahata H, Sugimoto M, Hirota S, Kitamura Y, Nomura S, Ochi T (1998) Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res 13:1221–1237PubMed
50.
Zurück zum Zitat Nakase T, Nomura S, Yoshikawa H, Hashimoto J, Hirota S, Kitamura Y, Oikawa S, Ono K, Takaoka K (1994) Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res 9:651–659PubMed Nakase T, Nomura S, Yoshikawa H, Hashimoto J, Hirota S, Kitamura Y, Oikawa S, Ono K, Takaoka K (1994) Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res 9:651–659PubMed
51.
Zurück zum Zitat Ishidou Y, Kitajima I, Obama H, Maruyama I, Murata F, Imamura T, Yamada N, ten Dijke P, Miyazono K, Sakou T (1995) Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. J Bone Miner Res 10:1651–1659PubMed Ishidou Y, Kitajima I, Obama H, Maruyama I, Murata F, Imamura T, Yamada N, ten Dijke P, Miyazono K, Sakou T (1995) Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. J Bone Miner Res 10:1651–1659PubMed
52.
Zurück zum Zitat Tanaka H, Quarto R, Williams S, Barnes J, Liang CT (1994) In vivo and in vitro effects of insulin-like growth factor-I (IGF-I) on femoral mRNA expression in old rats. Bone 15:647–653CrossRefPubMed Tanaka H, Quarto R, Williams S, Barnes J, Liang CT (1994) In vivo and in vitro effects of insulin-like growth factor-I (IGF-I) on femoral mRNA expression in old rats. Bone 15:647–653CrossRefPubMed
53.
Zurück zum Zitat Liao H, Mutvei H, Hammarstrom L, Wurtz T, Li J (2002) Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. Biomaterials 23:2693-2701CrossRefPubMed Liao H, Mutvei H, Hammarstrom L, Wurtz T, Li J (2002) Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. Biomaterials 23:2693-2701CrossRefPubMed
54.
Zurück zum Zitat Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2002) Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats. J Endocrinol 174:63–70CrossRefPubMed Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2002) Effect of IGF-I and PDGF administered in vivo on the expression of osteoblast-related genes in old rats. J Endocrinol 174:63–70CrossRefPubMed
55.
Zurück zum Zitat Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2003) Effects of basic fibroblast growth factor on osteoblast-related gene expression in the process of medullary bone formation induced in rat femur. J Bone Miner Metab 21:74–79CrossRefPubMed Tanaka H, Wakisaka A, Ogasa H, Kawai S, Liang CT (2003) Effects of basic fibroblast growth factor on osteoblast-related gene expression in the process of medullary bone formation induced in rat femur. J Bone Miner Metab 21:74–79CrossRefPubMed
Metadaten
Titel
Patterns and Localization of Gene Expression During Intramembranous Bone Regeneration in the Rat Femoral Marrow Ablation Model
verfasst von
Shinji Kuroda
Amarjit S. Virdi
Yang Dai
Susan Shott
Dale R. Sumner
Publikationsdatum
01.10.2005
Erschienen in
Calcified Tissue International / Ausgabe 4/2005
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-004-0267-x

Weitere Artikel der Ausgabe 4/2005

Calcified Tissue International 4/2005 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.