Skip to main content
Erschienen in: Journal of Digital Imaging 2/2020

28.10.2019

Performance Comparison of Individual and Ensemble CNN Models for the Classification of Brain 18F-FDG-PET Scans

verfasst von: Tomomi Nobashi, Claudia Zacharias, Jason K. Ellis, Valentina Ferri, Mary Ellen Koran, Benjamin L. Franc, Andrei Iagaru, Guido A. Davidzon

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

The high-background glucose metabolism of normal gray matter on [18F]-fluoro-2-D-deoxyglucose (FDG) positron emission tomography (PET) of the brain results in a low signal-to-background ratio, potentially increasing the possibility of missing important findings in patients with intracranial malignancies. To explore the strategy of using a deep learning classifier to aid in distinguishing normal versus abnormal findings on PET brain images, this study evaluated the performance of a two-dimensional convolutional neural network (2D-CNN) to classify FDG PET brain scans as normal (N) or abnormal (A). Methods: Two hundred eighty-nine brain FDG-PET scans (N; n = 150, A; n = 139) resulting in a total of 68,260 images were included. Nine individual 2D-CNN models with three different window settings for axial, coronal, and sagittal axes were trained and validated. The performance of these individual and ensemble models was evaluated and compared using a test dataset. Odds ratio, Akaike’s information criterion (AIC), and area under curve (AUC) on receiver-operative-characteristic curve, accuracy, and standard deviation (SD) were calculated. Results: An optimal window setting to classify normal and abnormal scans was different for each axis of the individual models. An ensembled model using different axes with an optimized window setting (window-triad) showed better performance than ensembled models using the same axis and different windows settings (axis-triad). Increase in odds ratio and decrease in SD were observed in both axis-triad and window-triad models compared with individual models, whereas improvements of AUC and AIC were seen in window-triad models. An overall model averaging the probabilities of all individual models showed the best accuracy of 82.0%. Conclusions: Data ensemble using different window settings and axes was effective to improve 2D-CNN performance parameters for the classification of brain FDG-PET scans. If prospectively validated with a larger cohort of patients, similar models could provide decision support in a clinical setting.
Literatur
1.
Zurück zum Zitat Jadvar H, Colletti PM, Delgado-Bolton R et al.: Appropriate use criteria for 18F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 58:2026–2037, 2017CrossRef Jadvar H, Colletti PM, Delgado-Bolton R et al.: Appropriate use criteria for 18F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 58:2026–2037, 2017CrossRef
2.
Zurück zum Zitat Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D: Interpretive error in radiology. AJR Am J Roentgenol. 208:739–749, 2017CrossRef Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D: Interpretive error in radiology. AJR Am J Roentgenol. 208:739–749, 2017CrossRef
3.
Zurück zum Zitat Nishie A, Kakihara D, Nojo T et al.: Current radiologist workload and the shortages in Japan: How many full-time radiologists are required? Jpn J Radiol. 33:266–272, 2015CrossRef Nishie A, Kakihara D, Nojo T et al.: Current radiologist workload and the shortages in Japan: How many full-time radiologists are required? Jpn J Radiol. 33:266–272, 2015CrossRef
4.
Zurück zum Zitat Wong TZ, van der Westhuizen GJ, Coleman RE: Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am. 12:615–626, 2002CrossRef Wong TZ, van der Westhuizen GJ, Coleman RE: Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am. 12:615–626, 2002CrossRef
5.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE et al.: A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88, 2017CrossRef Litjens G, Kooi T, Bejnordi BE et al.: A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88, 2017CrossRef
6.
Zurück zum Zitat Yamashita R, Nishio M, Do RKG, Togashi K: Convolutional neural networks: An overview and application in radiology. Insights Imaging. 9:611–629, 2018CrossRef Yamashita R, Nishio M, Do RKG, Togashi K: Convolutional neural networks: An overview and application in radiology. Insights Imaging. 9:611–629, 2018CrossRef
7.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118, 2017CrossRef Esteva A, Kuprel B, Novoa RA et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118, 2017CrossRef
8.
Zurück zum Zitat Causey JL, Zhang J, Ma S et al.: Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep. 8:9286, 2018CrossRef Causey JL, Zhang J, Ma S et al.: Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep. 8:9286, 2018CrossRef
9.
Zurück zum Zitat Bernal J, Kushibar K, Asfaw DS et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artif Intell Med. 95:64–81, 2019CrossRef Bernal J, Kushibar K, Asfaw DS et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artif Intell Med. 95:64–81, 2019CrossRef
10.
Zurück zum Zitat Chen MC, Ball RL, Yang L et al.: Deep learning to classify radiology free-text reports. Radiology. 286:845–852, 2018CrossRef Chen MC, Ball RL, Yang L et al.: Deep learning to classify radiology free-text reports. Radiology. 286:845–852, 2018CrossRef
11.
Zurück zum Zitat Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S: Deep learning for staging liver fibrosis on CT: A pilot study. Eur Radiol. 28:4578–4585, 2018CrossRef Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S: Deep learning for staging liver fibrosis on CT: A pilot study. Eur Radiol. 28:4578–4585, 2018CrossRef
12.
Zurück zum Zitat Zhou Z, Zhao G, Kijowski R, Liu F: Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med. 80:2759–2770, 2018CrossRef Zhou Z, Zhao G, Kijowski R, Liu F: Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med. 80:2759–2770, 2018CrossRef
13.
Zurück zum Zitat Huo Y, Xu Z, Xiong Y et al.: 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage. 194:105–119, 2019CrossRef Huo Y, Xu Z, Xiong Y et al.: 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage. 194:105–119, 2019CrossRef
14.
Zurück zum Zitat Liu M, Cheng D, Yan W: Alzheimer’s disease neuroimaging initiative. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front. Neuroinformatics. 12:35, 2018CrossRef Liu M, Cheng D, Yan W: Alzheimer’s disease neuroimaging initiative. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front. Neuroinformatics. 12:35, 2018CrossRef
15.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. ArXiv e-prints arXiv:1512.03385, 2015 He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. ArXiv e-prints arXiv:1512.03385, 2015
16.
Zurück zum Zitat Michael SH, Rodney JH: How we read oncologic FDG PET/CT. Cancer Imaging. 16:35, 2016CrossRef Michael SH, Rodney JH: How we read oncologic FDG PET/CT. Cancer Imaging. 16:35, 2016CrossRef
17.
Zurück zum Zitat Krell MM, Su KK: Rotational data augmentation for electroencephalographic data. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2017:471–474, 2017 Krell MM, Su KK: Rotational data augmentation for electroencephalographic data. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2017:471–474, 2017
18.
Zurück zum Zitat Costa AC, Oliveira HCR, Catani JH, de Barros N, Melo CFE, Vieira MAC: Data augmentation for detection of architectural distortion in digital mammography using deep learning approach. ArXiv e-prints arXiv:1807.03167, 2018 Costa AC, Oliveira HCR, Catani JH, de Barros N, Melo CFE, Vieira MAC: Data augmentation for detection of architectural distortion in digital mammography using deep learning approach. ArXiv e-prints arXiv:1807.03167, 2018
19.
Zurück zum Zitat Lakhani P, Sundaram B: Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284:574–582, 2017CrossRef Lakhani P, Sundaram B: Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284:574–582, 2017CrossRef
21.
22.
Zurück zum Zitat Rajaraman S, Jaeger S, Antani SK: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ. 7:e6977, 2019CrossRef Rajaraman S, Jaeger S, Antani SK: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ. 7:e6977, 2019CrossRef
23.
Zurück zum Zitat Lyksborg M, Puonti O, Agn M, Larsen R: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen RR, Pedersen KS Eds. Image Analysis. New York: Springer International Publishing, 2015, pp. 201–211CrossRef Lyksborg M, Puonti O, Agn M, Larsen R: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen RR, Pedersen KS Eds. Image Analysis. New York: Springer International Publishing, 2015, pp. 201–211CrossRef
24.
Zurück zum Zitat Wei L, Yang Y, Nishikawa RM, Jiang Y: A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 24:371–380, 2005CrossRef Wei L, Yang Y, Nishikawa RM, Jiang Y: A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 24:371–380, 2005CrossRef
Metadaten
Titel
Performance Comparison of Individual and Ensemble CNN Models for the Classification of Brain 18F-FDG-PET Scans
verfasst von
Tomomi Nobashi
Claudia Zacharias
Jason K. Ellis
Valentina Ferri
Mary Ellen Koran
Benjamin L. Franc
Andrei Iagaru
Guido A. Davidzon
Publikationsdatum
28.10.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 2/2020
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-019-00289-x

Weitere Artikel der Ausgabe 2/2020

Journal of Digital Imaging 2/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.