Skip to main content
Erschienen in: Molecular Imaging and Biology 1/2019

Open Access 22.05.2018 | Research Article

Performance Evaluation of a Semi-automated Method for [18F]FDG Uptake in Abdominal Visceral Adipose Tissue

verfasst von: Stefanie A. de Boer, Daan S. Spoor, Riemer H. J. A. Slart, Douwe J. Mulder, Melanie Reijrink, Ronald J. H. Borra, Gerbrand M. Kramer, Otto S. Hoekstra, Ronald Boellaard, Marcel J. Greuter

Erschienen in: Molecular Imaging and Biology | Ausgabe 1/2019

Abstract

Purpose

Severity of abdominal obesity and possibly levels of metabolic activity of abdominal visceral adipose tissue (VAT) are associated with an increased risk for cardiovascular disease (CVD). In this context, the purpose of the current study was to evaluate the reproducibility and repeatability of a semi-automated method for assessment of the metabolic activity of VAT using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/x-ray computed tomography (CT).

Procedures

Ten patients with lung cancer who underwent two baseline whole-body [18F]FDG PET/low-dose (LD) CT scans within 1 week were included. Abdominal VAT was automatically segmented using CT between levels L1–L5. The initial CT-based segmentation was further optimized using PET data with a standardized uptake value (SUV) threshold approach (range 1.0–2.5) and morphological erosion (range 0–5 pixels). The [18F]FDG uptake in SUV that was measured by the automated method was compared with manual analysis. The reproducibility and repeatability were quantified using intraclass correlation coefficients (ICCs).

Results

The metabolic assessment of VAT on [18F]FDG PET/LDCT scans expressed as SUVmean, using an automated method showed high inter and intra observer (all ICCs > 0.99) and overall repeatability (ICC = 0.98). The manual method showed reproducible inter observer (all ICCs > 0.92), but less intra observer (ICC = 0.57) and less overall repeatability (ICC = 0.78) compared with the automated method.

Conclusions

Our proposed semi-automated method provided reproducible and repeatable quantitative analysis of [18F]FDG uptake in VAT. We expect this method to aid future research regarding the role of VAT in development of CVD.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11307-018-1211-1) contains supplementary material, which is available to authorized users.
Stefanie A. de Boer and Daan S. Spoor contributed equally to this work.

Introduction

Worldwide, the prevalence of overweight and obesity is on the rise, with more than 1.9 billion adults affected in 2016 [1]. Abdominal obesity is a major risk factor for cardiovascular disease (CVD) development and premature mortality [2, 3]. However, not all obese individuals are at high risk of CVD [4, 5]. Abdominal adipose tissue can be divided in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) [6]. Interestingly, VAT is related to an increased CVD risk, while SAT is not [2, 3, 6, 7]. VAT does not only provide storage of lipids but also functions as an endocrine organ with adipocytes secreting bioactive factors and pro-atherogenic cytokines (adipokines) [2, 8]. Consequently, measurement of VAT volume improves accuracy of CVD risk profiling [3, 9]. However, the link between abdominal obesity and CVD may also be influenced by metabolic activity of VAT in the individual patient, with inflammation caused by overproduction of adipokines [1014]. Therefore, it is likely that not only VAT volume but also the metabolic activity of VAT is linked to CVD risk [15] and may be useful for determining targets for treatment to reduce CV risk.
Imaging modalities such as magnetic resonance imaging (MRI) and X-ray computed tomography (CT) are both reliable methods for the assessment of abdominal adipose tissue volume [16] although both modalities are limited for the assessment of metabolic activity. Previous studies have assessed the metabolic activity of abdominal adipose tissue with 2-deoxy-2-[18F]fluoro-D-glucose ([[18F]FDG) positron emission tomography (PET) [1727]. Overall, there is a growing interest in quantifying VAT as a CV risk marker and as a readout for therapeutic approaches [22, 28, 29]. The most common method to measure metabolic VAT activity is by manually drawing regions of interest (ROIs). However, the mean standardized uptake values (SUVmean) in VAT measured by ROIs in different studies ranges from 0.22 to 0.88 [17, 26, 27] indicating a great variability with this manual method. Consequently, there is a considerable need for a robust (semi)automated method with good accuracy and repeatability for assessment of VAT [18F]FDG uptake on [18F]FDG -PET/CT scans. The objective of this study is to evaluate the reproducibility and repeatability of a semi-automated method for assessment VAT [18F]FDG uptake using a [18F]FDG PET/CT scan and compare its performance with commonly applied manual methods.

Materials and Methods

Prior to developing a semi-automated method for the metabolic assessment of VAT, a literature search was performed (details are described in Supplementary material). The purpose of this search was to systematically review published data on the [18F]FDG uptake reported values and methods in VAT.

Study Design

To assess the reproducibility and repeatability of the automated method, test-retest scans obtained from an existing study in patients with non-small cell lung cancer were used [30]. This study was approved by the institutional review board and was registered in the Dutch trial register (trialregister.nl, NTR3508). All procedures performed in this study were in accordance with the Ethical Standards of the institutional research committee and carried out according to the principles of the Declaration of Helsinki. Written informed consent for all subjects was obtained before study enrolment.

Patients

Per patient, two whole-body [18F]FDG PET/low-dose (LD) CT scans at 60 min uptake time were performed within 1 week. There were no significant differences in patient preparation and PET acquisition between the test and retest scan. In the current study, only scans obtained 60 min after [18F]FDG injection were included as is recommended by the European Association of Nuclear Medicine (EANM). In addition, the reproducibility and repeatability of VAT [18F]FDG uptake measurements was analyzed in 10 patients who had not received chemotherapy in the past 4 weeks and without known diabetes mellitus (60 % men, median age 61 years (IQR, 45–66), weight 75 kg (IQR, 67–77), median BMI 24.6 (IQR, 23.1–26.9), injected activity test scan 248 Mbq (IQR, 194–377), injected activity retest scan 238 Mbq (IQR, 192–392), test scan glucose 5.8 mmol/L (IQR, 5.5–6.1), retest scan glucose 5.9 mmol/L (IQR, 5.4–6.4).

PET/CT Imaging

All scans were performed on a Gemini TF PET/CT scanner (Philips Healthcare, Best, Netherlands). Low-dose CT scans were performed (120 keV; 50 mAs and pitch: 0.829). The PET acquisition procedures and reconstruction conform to the EANM recommendations [31]. Patients underwent a low-dose (LD) CT during tidal breathing for attenuation correction purposes, followed by a whole-body [18F]FDG PET/CT scan (skull vertex to mid-thigh) 60 min after [18F]FDG injection, using 2 min per bed position. Weight, height, plasma glucose levels, total injected activity, time of injection, residual activity, and scan start times were recorded.

Data Analysis

All measurements were performed using MATLAB software (version R2015b, The MathWorks, Inc., Natick, MA, USA). PET and LDCT data were loaded into MATLAB and PET data were realigned to match the LDCT. The quality of the image fusion was visually verified and approved for all data sets prior to the fat segmentation and analysis. In order to analyze the entire abdomen, all slices from vertebral levels L1 to L5 were manually selected. Two observers (SdB and MR, both trained PhD students) independently analyzed all PET/LDCT scans twice at different time points in order to test both inter and intra observer variability. Both observers were blinded to the prior analyses and results.
Adipose tissue was initially segmented by thresholding the CT images between − 174 and − 24 Hounsfield Units (HU) [18, 3235] (refer to the supplementary material for more details on fat segmentation). The abdominal muscular layer was used as a boundary to separate VAT and SAT. Because the abdominal muscular layer did not always totally separate the VAT and SAT on the LDCT, for instance at the linea alba, a line was manually drawn as a reference in all slices in order to separate VAT and SAT.
The metabolic activity was expressed as SUV of [18F]FDG [36]. High SUV inside VAT and SAT can be due to overspill of metabolic active organs such as kidneys and intestines. Therefore, the initial CT-based segmentation was further adapted using an SUV threshold and a morphological erosion in order to exclude spillover of signal from [18F]FDG avid structures. Because in previously studies SUVmean in VAT ranged from 0.22 to 0.89 [25, 27] and SUVmax from 0.53 to 1.21 [17, 26], the effect of using SUV thresholds ranging from 1.0 to 2.5 on VAT and SAT uptake assessments were analyzed. In addition, the effects of different erosions ranging from 0 to 5 pixels (pixel size of 1.17 × 1.17 mm2) on VAT and SAT uptake assessments were analyzed. The mean and median SUV generated with the automated method are referred to as ASUVmean and ASUVmedian. The ASUVmean in VAT and SAT were compared with SUVmean assessed with a manual ROI selection. For the manual method, all slices between L1 and L5, selected by the observers during the automated method, were used. This area was divided into 4 equally sized regions and ROIs were placed in the middle slice for every region. On each of these slices, 3 ROIs (diameter 10.5 mm) were placed in both VAT and SAT. Observers were instructed to place ROIs in homogeneous areas covering the surface of the ROI, avoid spillover effects and maximize the distance between ROIs. SUVmean across these slices were averaged and referred to as MSUVmean. Furthermore, the percentage of VAT volume depicted with CT that remained after thresholding and erosion was calculated. A schematic overview of the semi-automated method is shown in Fig. 1.

Criteria Optimal Settings for Automated Metabolic Assessment of VAT

According to an expert panel, the optimal threshold and erosion settings for the automated metabolic assessment of VAT had to fulfill the following criteria: (1) highly reproducible and repeatable (ICC > 0.80), (2) the VAT volume that remains for analysis should be as large as possible (at least 50 % of the CT-based segmented VAT) while ruling out spillover effects by visual inspection, (3) The change in ASUVmedian / ASUVmean VAT should be smaller than 0.01 which was not considered as a relevant difference.

Statistical Analysis

All analyses were performed using SPSS (Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp). For reproducibility analysis, only the measurements of the first (test) [18F]FDG-PET/LDCT scan performed were used as the second (retest) scan is related with the first scan and can therefore not been used as an independent measurement. For the repeatability analysis (test-retest), measurements of the same observer were used to exclude the intra-observer variability.
The influence of threshold and erosion on ASUVmean VAT was evaluated using a generalized estimating equations approach with an unstructured covariance matrix. ASUVmean VAT was used as the dependent variable in the model, erosion, and threshold were used as factors. An interaction between erosion and threshold was also added in the model. Effects were evaluated and compared with appropiate correction for pairwise comparisons. Effect of threshold and erosion on ASUVmedian VAT were analyzed similarly as ASUVmean VAT.
The automated measurement of metabolic activity (with the most optimal threshold and erosion settings) was compared to manually placed ROIs with a Wilcoxon signed-rank test. To explore whether the automated and manually measurement were correlated, a Spearman correlation coefficient (r) was calculated.
The inter and intra observers reproducibility and the repeatability were quantified using intraclass correlation coefficients (ICCs; based on absolute agreement). Bland-Altman plots [37] were used to evaluate the reproducibility and repeatability. The measurement error for the reproducibility and repeatability were calculated according to the formula of Bland and Altman [38]. The variation coefficients (%) were calculated as the measurement error divided by the mean of the measurements.

Results

Semi-automated Metabolic Assessment of VAT Threshold and Erosion

For every combination of threshold and erosion, the reproducibility (inter and intra observers) and repeatability for the ASUVmean VAT and ASUVmedian VAT are calculated. As a result of 16 thresholds and 6 sizes of erosion, each 3D plot represents 96 ICCs (Suppl. Fig. 2 in Electronic Supplementary Material (ESM)). Since the ICCs for ASUVmean VAT and ASUVmedian VAT were highly reproducible and repeatable for all combinations of threshold and erosion, both parameters could be used to report [18F]FDG uptake (see also Suppl. Fig. 3).
The influence of the threshold and erosion on ASUVmean VAT, ASUVmedian VAT, and percentage VAT volume remaining after threshold and erosion are shown in Fig. 2. In addition, see also supplemental Figs. 4 and 5 for an example of the influence of different threshold and erosion on the remaining abdominal adipose tissue analyzed. ASUVmean VAT and ASUVmedian VAT decreased significantly for every increase in erosion (all p < 0.001) and increased significantly for every 0.1 SUV increase in threshold (all p < 0.001). According to the earlier described criteria in this article (patients and methods), a SUV threshold of 1.9 and an erosion of 1 turned out to be the optimal setting for automated assessment of ASUVmean VAT and as such was used for further analysis. For ASUVmedian VAT a SUV threshold of ≥ 1.5 with an erosion of 1 or maximal 2 turned out to be optimal (see also Fig. 2). For further analysis, ASUVmedian VAT was defined as a SUV threshold of 1.5 and an erosion of 2.

Reproducibility and Repeatability PET/CT Data

The characteristics of the PET/CT data for observer 1 and 2 are shown in Table 1. The reproducibility inter and intra observers ICCs and the repeatability ICCs are shown in Table 2. The automated assessment of SUVmean and SUVmedian in VAT and SAT was significantly higher compared to manual ROIs (both p < 0.01). The MSUVmean VAT was correlated with ASUVmean VAT (r = 0.71, p = 0.02) and ASUVmedian VAT (r = 0.79, p < 0.01). The MSUVmean SAT was correlated with ASUVmean SAT (r = 0.79, p < 0.01) and ASUVmedian SAT (r = 0.86, p < 0.01). The ASUVmean VAT correlated with ASUVmedian VAT (r = 0.94, p < 0.01) and ASUVmean SAT correlated with ASUVmedian SAT (r = 0.88, p < 0.01).
Table 1
PET/CT data characteristics for both observers
PET/CT data characteristics
Observer 1
Observer 2
Distance L1–L5 (cm)
15.8 (15.0–16.1)
15.5 (15.0–16.5)
VAT volume (cm3)
2406 (1711–3869)
2344 (1646–3921)
SAT volume (cm3)
1986 (1700–3049)
2056 (1724–3135)
MSUVmean VAT
0.49 (0.44–0.59)
0.44 (0.38–0.49)
ASUVmean VAT
0.73 (0.67–0.81)
0.73 (0.67–0.82)
ASUVmedian VAT
0.59 (0.54–0.69)
0.60 (0.55–0.70)
MSUVmean SAT
0.32 (0.29–0.34)
0.30 (0.27–0.36)
ASUVmean SAT
0.37 (0.35–0.40)
0.37 (0.35–0.39)
ASUVmedian SAT
0.36 (0.31–0.37)
0.35 (0.30–0.36)
Data presented as median and interquartile distance. ASUVmean = automated generated with the method with setting SUV threshold 1.9, erosion 1. ASUVmedian = automated generated with the method with setting SUV threshold 1.5, erosion 2. MSUVmean = manually generated by drawing regions of interest
L lumbar vertebral body, SAT subcutaneous adipose tissue, SUV standardized uptake values, VAT visceral adipose tissue
Table 2
Intra class correlation coefficients of PET/LDCT data reproducibility and repeatability
 
Inter observer 1 reproducibility
Inter observer 2 reproducibility
Intra observers reproducibility
Repeatability
Distance L1–L5 (cm)
1.00
0.99 [0.97–0.99]*
0.97 [0.92–0.96]*
0.97 [0.89–0.99]*
VAT volume (cm3)
1.00 [0.99–1.00]*
1.00 [1.00–1.00]*
1.00 [0.99–1.00]*
1.00 [0.99–1.00]*
SAT volume (cm3)
1.00 [1.00–1.00]*
1.00 [1.00–1.00]*
1.00 [0.97–1.00]*
1.00 [0.98–1.00]*
MSUVmean VAT
0.92 [0.68–0.98]*
0.97 [0.89–0.99]*
0.57 [−0.29–0.82]
0.78 [0.20–0.94]
ASUVmean VAT
1.00 [1.00–1.00]*
1.00 [1.00–1.00]*
1.00 [0.94–1.00]*
0.98 [0.94–1.00]*
ASUVmedian VAT
1.00 [1.00–1.00]*
1.00
1.00 [0.98–1.00]*
0.99 [0.98–1.00]*
MSUVmean SAT
0.95 [0.80–0.90]*
0.91 [0.66–0.98]*
0.91 [0.64–0.98]*
0.79 [−0.01–0.95]
ASUVmean SAT
0.97 [0.88–0.99]*
1.00 [1.00–1.00]*
0.99 [0.96–1.00]*
0.70 [−0.23–0.93]
ASUVmedian SAT
1.00 [0.99–1.00]*
1.00
1.00 [0.99–1.00]*
0.98 [0.93–1.00]*
Data presented as intra class correlation coefficients and 95 % confidence interval. ASUVmean = automated generated with the method with setting SUV threshold 1.9, erosion 1. MSUVmean = manually generated by drawing regions of interest
L lumbar vertebral body, SAT subcutaneous adipose tissue, SUV standardized uptake values, VAT visceral adipose tissue
*P value < 0.001; P value < 0.05
Figure 3 shows the intra observers reproducibility for MSUVmean VAT and ASUVmean VAT and corresponding Bland-Altman plots. In addition, the intra observers mean MSUVmean VAT was 0.48, with a measurement error of 0.091 SUV and variation coefficient of 19.2 %. The mean ASUVmean VAT was 0.73 with a measurement error of 0.004 SUV and variation coefficient of 0.6 %. The mean ASUVmedian VAT was 0.60 with a measurement error of 0.003 SUV and variation coefficient of 0.5 %.
Figure 4 shows the repeatability, test-retest data, for MSUVmean VAT and ASUVmean VAT and corresponding Bland-Altman plots. The mean MSUVmean VAT was 0.55 with a measurement error of 0.069 SUV and variation coefficient of 12.6 %. The mean ASUVmean VAT was 0.73 with a measurement error of 0.019 SUV and variation coefficient of 2.5 %. The mean ASUVmedian VAT was 0.60 with a measurement error of 0.010 SUV and variation coefficient of 1.7 %.

Discussion

The present study assessed the reproducibility and repeatability for the metabolic assessment of VAT and SAT using [18F]FDG-PET/CT imaging using both manual and semi-automated segmentation. The automated metabolic assessment of VAT was highly reproducible and repeatable. Moreover, the ICCs concerning the automated metabolic assessment of VAT were superior to the manual method. The ICCs for automated and manually metabolic assessment of SAT were also highly reproducible. However, the repeatability of the automated metabolic assessment of SAT was lower than the manual method and lower than the automated metabolic assessment of VAT.
The present study investigated the repeatability of [18F]FDG uptake in VAT and SAT with a semi-automated segmentation which included a SUV threshold and erosion approach, with settings optimized for analysis of VAT. As expected, the SUVmean/median in VAT increased with higher SUV thresholds and decreased with larger erosions. However, the increase in SUVmean/median decreased with every 0.1 SUV increase in threshold. As a difference of < 0.01 SUV was not considered relevant, this was used as a criteria to assess the most optimal threshold. In addition, since SUV in VAT are almost normally distributed (Suppl Fig. 3), the ASUVmean as well as ASUVmedian are reliable parameters. As both parameters were highly reproducible and repeatable, we report both parameters. Overall, SUVmean is the most common parameter used to report [18F]FDG uptake in VAT [18, 20, 2325, 27, 29].
Another criterion for the optimal threshold and erosion was that at least 50 % of the CT-based segmented VAT should remain for SUV analysis. This was based on the assumption that not more than 50 % of the CT-based segmented VAT would be influenced by spillover effects. Based on the results of this study, we suggest that for automated assessment of the metabolic activity of VAT, a SUV threshold should optimally be 1.9 for ASUVmean or 1.5 for ASUVmedian and an erosion should be 1 pixel and maximal 2 pixels.
The method was not fully automated since two manual actions were needed; selection of the slices corresponding to vertebral levels L1 to L5 and drawing a line to close the abdominal muscular layer to separate VAT and SAT. However, these manual actions barely affect the outcomes as VAT and SAT volume measurements were highly reproducible and repeatable (all ICC > 0.97).
In order to improve CVD risk management associated with obesity, VAT is recognized as an important contributor. Clearly, VAT volume and metabolic activity are both linked to the CVD risk and have become targets of imaging modalities [3, 9, 15, 39]. Although, a note of caution is due here since the interaction of insulin resistance which is common in obesity, with [18F]FDG uptake in VAT is not fully understood. In addition, some studies showed a decreased [18F]FDG VAT uptake in obese subjects which suggest an inverse association with insulin resistance and CVD risk [18, 20]. However, with the availability of an automated method of VAT and SAT including the reproducibility and repeatability, this interaction can very well be taken into account for future studies.
Two other studies used an automated method, in which a VOI generated on CT was transferred to PET, to report [18F]FDG uptake in VAT [23, 27]. Interestingly, one of this studies showed that VAT [18F]FDG uptake was associated with the degree of intestinal uptake on PET/CT [27]. Those findings confirm the need for a threshold and erosion for the automated metabolic assessment of VAT to overcome overspill effects from surrounding organs.
The ASUVmean VAT/ ASUVmedian VAT was higher compared with MSUVmean VAT. This result may be explained by the fact that manual ROIs were placed in the low [18F]FDG uptake areas, in an attempt to avoid spillover, and therefore potentially suffer from selection bias. Furthermore, the current study showed that automated measurements of VAT were more accurate than manually drawn ROIs, as the reproducibly, especially intra observers, and the repeatability ICCs were much higher. A possible explanation for this might be that the uptake of [18F]FDG in VAT is not uniform. Therefore, the uptake in an ROI may be not representative for the effective mean uptake of [18F]FDG in the whole VAT region. However, it could be argued that in the current study the SUVmean is still influenced by spillover effects from other structures and may represent an overestimation of VAT activity. As the uptake of [18F]FDG in VAT is almost normal distributed, it seems likeable that SUVmean is a reliable parameter. Nevertheless, for a less normal distribution SUVmedian can be used. In addition, [18F]FDG uptake in VAT measured as SUVmedian is also higher than measured with ROIs (0.59 vs.0.49 respectively). It may be the case that ROIs are an underestimation of [18F]FDG in VAT. As the combined volume of all ROIs is approximately 0.1 % of the total VAT volume, it is unlikely that ROIs reliable represent the overall [18F]FDG uptake in VAT, let alone an adequate method for readout of therapeutic approaches. Moreover, the automated measurement variation coefficient of the reproducibility between observers (0.6 %/0.5 %) and the repeatability (2.5 %/1.7 %) was far less compared with manual ROIs (19.2 and 12.6 %, respectively).
Our study also has some limitations. First, this study included predominantly patients with a healthy BMI (< 25) and no obese patients (BMI > 30). Therefore, it is uncertain if the automated method is also equally accurate in obese subjects. Secondly, in the current study the settings were optimized for analysis of VAT. As a result, the repeatability of automated metabolic assessment of SAT was lower than VAT. Thirdly, the [18F]FDG uptake in VAT was not compared with levels of adipokines or macrophage infiltration. Therefore, the hypothesis that the inflammatory state measured by [18F]FDG uptake in VAT is correlated with macrophage infiltration or is positively associated with adipokine levels could not be investigated. Further studies, which take levels of adipokines and macrophage infiltration in adipocytes into account, will need to be performed. Finally, it is unclear if the optimal SUV threshold and level of erosion found in this research are also optimal for other vendors. This requires a sensitivity analysis, which was not achievable within the scope of current study.

Conclusion

In summary, we conclude that a (semi-)automated method is feasible and should be the preferred approach for metabolic assessment of VAT in PET/CT [18F]FDG data. Furthermore, the metabolic assessment of VAT may be useful for determining targets for treatment to reduce CV risk.

Acknowledgments

We wish to thank AM van Roon and LE Juárez Orozco for their statistical help. We also thank SR Goudeketting for her important technical contributions.

Compliance with Ethical Standards

This study was approved by the institutional review board and was registered in the Dutch trial register (trialregister.nl, NTR3508). All procedures performed in this study were in accordance with the Ethical Standards of the institutional research committee and carried out according to the principles of the Declaration of Helsinki. Written informed consent for all subjects was obtained before study enrolment.

Conflict of Interest

The authors declare that they have no conflict of interest.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Anhänge

Electronic Supplementary Material

Literatur
2.
3.
Zurück zum Zitat Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB, O'Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48CrossRefPubMed Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB, O'Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48CrossRefPubMed
4.
Zurück zum Zitat Messier V, Karelis AD, Prud'homme D, Primeau V, Brochu M, Rabasa-Lhoret R (2010) Identifying metabolically healthy but obese individuals in sedentary postmenopausal women. Obesity (Silver Spring) 18:911–917CrossRef Messier V, Karelis AD, Prud'homme D, Primeau V, Brochu M, Rabasa-Lhoret R (2010) Identifying metabolically healthy but obese individuals in sedentary postmenopausal women. Obesity (Silver Spring) 18:911–917CrossRef
5.
Zurück zum Zitat Wildman RP, Muntner P, Reynolds K, McGinn A, Rajpathak S, Wylie-Rosett J, Sowers MR (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med 168:1617–1624CrossRefPubMed Wildman RP, Muntner P, Reynolds K, McGinn A, Rajpathak S, Wylie-Rosett J, Sowers MR (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med 168:1617–1624CrossRefPubMed
6.
Zurück zum Zitat Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738CrossRefPubMed Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738CrossRefPubMed
7.
Zurück zum Zitat Lee JJ, Pedley A, Hoffmann U, Massaro JM, Fox CS (2016) Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J Am Coll Cardiol 68:1509–1521CrossRefPubMedPubMedCentral Lee JJ, Pedley A, Hoffmann U, Massaro JM, Fox CS (2016) Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J Am Coll Cardiol 68:1509–1521CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lau DC, Dhillon B, Yan H et al (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041CrossRefPubMed Lau DC, Dhillon B, Yan H et al (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041CrossRefPubMed
9.
Zurück zum Zitat Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, Fox CS (2013) Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging 6:762–771CrossRefPubMedPubMedCentral Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, Fox CS (2013) Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging 6:762–771CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Calabro P, Golia E, Maddaloni V et al (2009) Adipose tissue-mediated inflammation: the missing link between obesity and cardiovascular disease? Intern Emerg Med 4:25–34CrossRefPubMed Calabro P, Golia E, Maddaloni V et al (2009) Adipose tissue-mediated inflammation: the missing link between obesity and cardiovascular disease? Intern Emerg Med 4:25–34CrossRefPubMed
11.
Zurück zum Zitat Lee JJ, Pedley A, Hoffmann U, Massaro JM, Keaney JF Jr, Vasan RS, Fox CS (2016) Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and Adipokines: the Framingham Heart Study. J Am Heart Assoc 5:e002545PubMedPubMedCentral Lee JJ, Pedley A, Hoffmann U, Massaro JM, Keaney JF Jr, Vasan RS, Fox CS (2016) Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and Adipokines: the Framingham Heart Study. J Am Heart Assoc 5:e002545PubMedPubMedCentral
12.
Zurück zum Zitat Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, Joseph L, Gokce N (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659CrossRefPubMedPubMedCentral Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, Joseph L, Gokce N (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ohman MK, Shen Y, Obimba CI, Wright AP, Warnock M, Lawrence DA, Eitzman DT (2008) Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 117:798–805CrossRefPubMedPubMedCentral Ohman MK, Shen Y, Obimba CI, Wright AP, Warnock M, Lawrence DA, Eitzman DT (2008) Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 117:798–805CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefPubMedPubMedCentral Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Bucerius J, Mani V, Wong S, Moncrieff C, Izquierdo-Garcia D, Machac J, Fuster V, Farkouh ME, Rudd JHF, Fayad ZA (2014) Arterial and fat tissue inflammation are highly correlated: a prospective [18F]FDG PET/CT study. Eur J Nucl Med Mol Imaging 41:934–945CrossRefPubMedPubMedCentral Bucerius J, Mani V, Wong S, Moncrieff C, Izquierdo-Garcia D, Machac J, Fuster V, Farkouh ME, Rudd JHF, Fayad ZA (2014) Arterial and fat tissue inflammation are highly correlated: a prospective [18F]FDG PET/CT study. Eur J Nucl Med Mol Imaging 41:934–945CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Elkhawad M, Rudd JHF, Sarov-Blat L, Cai G, Wells R, Davies LC, Collier DJ, Marber MS, Choudhury RP, Fayad ZA, Tawakol A, Gleeson FV, Lepore JJ, Davis B, Willette RN, Wilkinson IB, Sprecher DL, Cheriyan J (2012) Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc Imaging 5:911–922CrossRefPubMed Elkhawad M, Rudd JHF, Sarov-Blat L, Cai G, Wells R, Davies LC, Collier DJ, Marber MS, Choudhury RP, Fayad ZA, Tawakol A, Gleeson FV, Lepore JJ, Davis B, Willette RN, Wilkinson IB, Sprecher DL, Cheriyan J (2012) Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc Imaging 5:911–922CrossRefPubMed
18.
Zurück zum Zitat Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, di Carli M, Libby P (2010) Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 3:843–851CrossRefPubMedPubMedCentral Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, di Carli M, Libby P (2010) Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 3:843–851CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Vanfleteren LEGW, Van Meerendonk AMG, Franssen FM et al (2014) A possible link between increased metabolic activity of fat tissue and aortic wall inflammation in subjects with COPD. A retrospective [18F]FDG-PET/CT pilot study. Respir Med 108:883–890CrossRefPubMed Vanfleteren LEGW, Van Meerendonk AMG, Franssen FM et al (2014) A possible link between increased metabolic activity of fat tissue and aortic wall inflammation in subjects with COPD. A retrospective [18F]FDG-PET/CT pilot study. Respir Med 108:883–890CrossRefPubMed
20.
Zurück zum Zitat Oliveira AL, Azevedo DC, Bredella MA, Stanley TL, Torriani M (2015) Visceral and subcutaneous adipose tissue FDG uptake by PET/CT in metabolically healthy obese subjects. Obesity 23:286–289CrossRefPubMed Oliveira AL, Azevedo DC, Bredella MA, Stanley TL, Torriani M (2015) Visceral and subcutaneous adipose tissue FDG uptake by PET/CT in metabolically healthy obese subjects. Obesity 23:286–289CrossRefPubMed
21.
Zurück zum Zitat Tahara N, Yamagishi S, Kodama N, Tahara A, Honda A, Nitta Y, Igata S, Matsui T, Takeuchi M, Kaida H, Kurata S, Abe T, Fukumoto Y (2015) Clinical and biochemical factors associated with area and metabolic activity in the visceral and subcutaneous adipose tissues by FDG-PET/CT. J Clin Endocrinol Metab 100:E739–E747CrossRefPubMed Tahara N, Yamagishi S, Kodama N, Tahara A, Honda A, Nitta Y, Igata S, Matsui T, Takeuchi M, Kaida H, Kurata S, Abe T, Fukumoto Y (2015) Clinical and biochemical factors associated with area and metabolic activity in the visceral and subcutaneous adipose tissues by FDG-PET/CT. J Clin Endocrinol Metab 100:E739–E747CrossRefPubMed
22.
Zurück zum Zitat Bucerius J, Vijgen GH, Brans B et al (2015) Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine (Baltimore) 94:e725CrossRef Bucerius J, Vijgen GH, Brans B et al (2015) Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine (Baltimore) 94:e725CrossRef
23.
Zurück zum Zitat Torigian DA, Green-McKenzie J, Liu X, Shofer FS, Werner T, Smith CE, Strasser AA, Moghbel MC, Parekh AH, Choi G, Goncalves MD, Spaccarelli N, Gholami S, Kumar PS, Tong Y, Udupa JK, Mesaros C, Alavi A (2017) A study of the feasibility of FDG-PET/CT to systematically detect and quantify differential metabolic effects of chronic tobacco use in organs of the whole body-a prospective pilot study. Acad Radiol 24:930–940CrossRefPubMed Torigian DA, Green-McKenzie J, Liu X, Shofer FS, Werner T, Smith CE, Strasser AA, Moghbel MC, Parekh AH, Choi G, Goncalves MD, Spaccarelli N, Gholami S, Kumar PS, Tong Y, Udupa JK, Mesaros C, Alavi A (2017) A study of the feasibility of FDG-PET/CT to systematically detect and quantify differential metabolic effects of chronic tobacco use in organs of the whole body-a prospective pilot study. Acad Radiol 24:930–940CrossRefPubMed
24.
Zurück zum Zitat Van de Wiele C, Van Vlaenderen M, D’Hulst L et al (2017) Metabolic and morphological measurements of subcutaneous and visceral fat and their relationship with disease stage and overall survival in newly diagnosed pancreatic adenocarcinoma: metabolic and morphological fat measurements in pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 44:110–116CrossRefPubMed Van de Wiele C, Van Vlaenderen M, D’Hulst L et al (2017) Metabolic and morphological measurements of subcutaneous and visceral fat and their relationship with disease stage and overall survival in newly diagnosed pancreatic adenocarcinoma: metabolic and morphological fat measurements in pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 44:110–116CrossRefPubMed
25.
Zurück zum Zitat Veld J, O’Donnell EK, Reagan MR, Yee AJ, Torriani M, Rosen CJ, Bredella MA (2016) Abdominal adipose tissue in MGUS and multiple myeloma. Skelet Radiol 45:1277–1283CrossRef Veld J, O’Donnell EK, Reagan MR, Yee AJ, Torriani M, Rosen CJ, Bredella MA (2016) Abdominal adipose tissue in MGUS and multiple myeloma. Skelet Radiol 45:1277–1283CrossRef
26.
Zurück zum Zitat Pahk K, Rhee S, Kim S, Choe JG (2016) Predictive role of functional visceral fat activity assessed by preoperative F-18 FDG PET/CT for regional lymph node or distant metastasis in patients with colorectal cancer. PLoS One 11:e0148776CrossRefPubMedPubMedCentral Pahk K, Rhee S, Kim S, Choe JG (2016) Predictive role of functional visceral fat activity assessed by preoperative F-18 FDG PET/CT for regional lymph node or distant metastasis in patients with colorectal cancer. PLoS One 11:e0148776CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Im HJ, Paeng JC, Cheon GJ, Kim EE, Lee JS, Goo JM, Kang KW, Chung JK, Lee DS (2016) Feasibility of simultaneous [18F]FDG PET/MRI for the quantitative volumetric and metabolic measurements of abdominal fat tissues using fat segmentation. Nucl Med Commun 37:616–622CrossRefPubMed Im HJ, Paeng JC, Cheon GJ, Kim EE, Lee JS, Goo JM, Kang KW, Chung JK, Lee DS (2016) Feasibility of simultaneous [18F]FDG PET/MRI for the quantitative volumetric and metabolic measurements of abdominal fat tissues using fat segmentation. Nucl Med Commun 37:616–622CrossRefPubMed
28.
Zurück zum Zitat Kodama N, Tahara N, Tahara A, Honda A, Nitta Y, Mizoguchi M, Kaida H, Ishibashi M, Abe T, Ikeda H, Narula J, Fukumoto Y, Yamagishi SI, Imaizumi T (2013) Effects of pioglitazone on visceral fat metabolic activity in impaired glucose tolerance or type 2 diabetes mellitus. J Clin Endocrinol Metab 98:4438–4445CrossRefPubMed Kodama N, Tahara N, Tahara A, Honda A, Nitta Y, Mizoguchi M, Kaida H, Ishibashi M, Abe T, Ikeda H, Narula J, Fukumoto Y, Yamagishi SI, Imaizumi T (2013) Effects of pioglitazone on visceral fat metabolic activity in impaired glucose tolerance or type 2 diabetes mellitus. J Clin Endocrinol Metab 98:4438–4445CrossRefPubMed
29.
Zurück zum Zitat Reichkendler MH, Auerbach P, Rosenkilde M et al (2013) Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging. Am J Physiol Endocrinol Metab 305:E496–E506CrossRefPubMed Reichkendler MH, Auerbach P, Rosenkilde M et al (2013) Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging. Am J Physiol Endocrinol Metab 305:E496–E506CrossRefPubMed
30.
Zurück zum Zitat Kramer GM, Frings V, Hoetjes N, Hoekstra OS, Smit EF, de Langen AJ, Boellaard R (2016) Repeatability of quantitative whole-body [18F]FDG PET/CT uptake measures as function of uptake interval and lesion selection in non-small cell lung cancer patients. J Nucl Med 57:1343–1349CrossRefPubMed Kramer GM, Frings V, Hoetjes N, Hoekstra OS, Smit EF, de Langen AJ, Boellaard R (2016) Repeatability of quantitative whole-body [18F]FDG PET/CT uptake measures as function of uptake interval and lesion selection in non-small cell lung cancer patients. J Nucl Med 57:1343–1349CrossRefPubMed
31.
Zurück zum Zitat Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear Medicine (EANM) (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354CrossRefPubMed Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear Medicine (EANM) (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354CrossRefPubMed
32.
Zurück zum Zitat Figueroa AL, Takx RA, MacNabb MH et al (2016) Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ Cardiovasc Imaging 9:e004043CrossRefPubMedPubMedCentral Figueroa AL, Takx RA, MacNabb MH et al (2016) Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ Cardiovasc Imaging 9:e004043CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O'Donnell CJ, Hoffmann U (2007) Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int J Obes 31:500–506CrossRef Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O'Donnell CJ, Hoffmann U (2007) Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int J Obes 31:500–506CrossRef
34.
Zurück zum Zitat Shuster A, Patlas M, Pinthus JH, Mourtzakis M (2012) The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 85:1–10CrossRefPubMedPubMedCentral Shuster A, Patlas M, Pinthus JH, Mourtzakis M (2012) The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 85:1–10CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Nemoto M, Yeernuer T, Masutani Y et al (2014) Development of automatic visceral fat volume calculation software for CT volume data. J Obes 2014:95084CrossRef Nemoto M, Yeernuer T, Masutani Y et al (2014) Development of automatic visceral fat volume calculation software for CT volume data. J Obes 2014:95084CrossRef
36.
Zurück zum Zitat Kinahan PE, Fletcher JW (2010) Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31:496–505CrossRefPubMedPubMedCentral Kinahan PE, Fletcher JW (2010) Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31:496–505CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582CrossRefPubMed Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582CrossRefPubMed
39.
Zurück zum Zitat Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM, Nevitt M, Holvoet P, Newman AB (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 165:777–783CrossRefPubMed Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM, Nevitt M, Holvoet P, Newman AB (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 165:777–783CrossRefPubMed
Metadaten
Titel
Performance Evaluation of a Semi-automated Method for [18F]FDG Uptake in Abdominal Visceral Adipose Tissue
verfasst von
Stefanie A. de Boer
Daan S. Spoor
Riemer H. J. A. Slart
Douwe J. Mulder
Melanie Reijrink
Ronald J. H. Borra
Gerbrand M. Kramer
Otto S. Hoekstra
Ronald Boellaard
Marcel J. Greuter
Publikationsdatum
22.05.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 1/2019
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1211-1

Weitere Artikel der Ausgabe 1/2019

Molecular Imaging and Biology 1/2019 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.