Skip to main content
Erschienen in: Diabetologia 6/2016

19.03.2016 | Article

PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes

verfasst von: Ramzi Hassouneh, Rania Nasrallah, Joe Zimpelmann, Alex Gutsol, David Eckert, Jamie Ghossein, Kevin D. Burns, Richard L. Hébert

Erschienen in: Diabetologia | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury.

Methods

Male Ep 3 −/− (also known as Ptger3 −/−) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption.

Results

Ep 3 −/−-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 −/−-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 −/− and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 −/−-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts.

Conclusions/interpretation

Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang S, Mitu GM, Hirschenberg R (2008) Osmotic polyuria: an overlooked mechanism in diabetic nephropathy. Nephrol Dial Transplant 23:2167–2172CrossRefPubMed Wang S, Mitu GM, Hirschenberg R (2008) Osmotic polyuria: an overlooked mechanism in diabetic nephropathy. Nephrol Dial Transplant 23:2167–2172CrossRefPubMed
2.
Zurück zum Zitat Marsh DJ, Martin CM (1975) Effects of diuretic states on collecting duct fluid flow resistance in the hamster kidney. Am J Physiol 229:13–17PubMed Marsh DJ, Martin CM (1975) Effects of diuretic states on collecting duct fluid flow resistance in the hamster kidney. Am J Physiol 229:13–17PubMed
3.
Zurück zum Zitat Cherney DZI, Miller J, Scholey JW et al (2008) The effect of cyclooxygenase 2 inhibition on renal hemodynamic function in humans with type 1 diabetes mellitus. Diabetes 57:688–695CrossRefPubMed Cherney DZI, Miller J, Scholey JW et al (2008) The effect of cyclooxygenase 2 inhibition on renal hemodynamic function in humans with type 1 diabetes mellitus. Diabetes 57:688–695CrossRefPubMed
4.
Zurück zum Zitat Cherney DZ, Reich HN, Jiang S et al (2012) Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 303:R710–R718CrossRefPubMedPubMedCentral Cherney DZ, Reich HN, Jiang S et al (2012) Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 303:R710–R718CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Cherney DZI, Scholey JW, Nasrallah R et al (2008) Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 294:F1336–F1341CrossRefPubMed Cherney DZI, Scholey JW, Nasrallah R et al (2008) Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 294:F1336–F1341CrossRefPubMed
6.
Zurück zum Zitat Nasrallah R, Robertson SJ, Hébert RL (2009) Chronic COX inhibition reduces diabetes-induced hyperfiltration, proteinuria, and renal pathological markers in 36-wk B6-Ins2 (Akita) mice. Am J Nephrol 30:346–353CrossRefPubMed Nasrallah R, Robertson SJ, Hébert RL (2009) Chronic COX inhibition reduces diabetes-induced hyperfiltration, proteinuria, and renal pathological markers in 36-wk B6-Ins2 (Akita) mice. Am J Nephrol 30:346–353CrossRefPubMed
7.
Zurück zum Zitat Nasrallah R, Robertson SJ, Karsh J, Hébert RL (2013) Celecoxib modifies glomerular basement membrane, mesangial area and podocyte structure in OVE26 mice, but ibuprofen is more detrimental. Clin Sci 124:685–694CrossRefPubMed Nasrallah R, Robertson SJ, Karsh J, Hébert RL (2013) Celecoxib modifies glomerular basement membrane, mesangial area and podocyte structure in OVE26 mice, but ibuprofen is more detrimental. Clin Sci 124:685–694CrossRefPubMed
8.
Zurück zum Zitat Nasrallah R, Xiong H, Hébert RL (2007) Renal prostaglandin E2 receptor (EP) expression profile is altered in streptozotocin and B6-Ins2Akita type 1 diabetic mice. Am J Physiol Renal Physiol 292:F278–F284CrossRefPubMed Nasrallah R, Xiong H, Hébert RL (2007) Renal prostaglandin E2 receptor (EP) expression profile is altered in streptozotocin and B6-Ins2Akita type 1 diabetic mice. Am J Physiol Renal Physiol 292:F278–F284CrossRefPubMed
9.
Zurück zum Zitat Hébert RL, Jacobson HR, Fredin D, Breyer MD (1993) Evidence that separates PGE2 receptors modulate water and sodium transport in rabbit cortical collecting duct. Am J Physiol 265:F643–F650PubMed Hébert RL, Jacobson HR, Fredin D, Breyer MD (1993) Evidence that separates PGE2 receptors modulate water and sodium transport in rabbit cortical collecting duct. Am J Physiol 265:F643–F650PubMed
10.
Zurück zum Zitat Hébert RL, Jacobson HR, Breyer MD (1990) PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. Am J Physiol 259:F318–F325PubMed Hébert RL, Jacobson HR, Breyer MD (1990) PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. Am J Physiol 259:F318–F325PubMed
11.
Zurück zum Zitat Nadler SP, Zimpelmann JA, Hébert RL (1992) PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am J Physiol 262:F229–F235PubMed Nadler SP, Zimpelmann JA, Hébert RL (1992) PGE2 inhibits water permeability at a post-cAMP site in rat terminal inner medullary collecting duct. Am J Physiol 262:F229–F235PubMed
12.
Zurück zum Zitat Li JH, Chou CL, Li B et al (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126CrossRefPubMedPubMedCentral Li JH, Chou CL, Li B et al (2009) A selective EP4 PGE2 receptor agonist alleviates disease in a new model of X-linked nephrogenic diabetes insipidus. J Clin Invest 119:3115–3126CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 108:12949–12954CrossRefPubMedPubMedCentral Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 108:12949–12954CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Breyer MD, Jacobson HR, Davis LS, Breyer RM (1993) In situ hybridization and localization of mRNA for the rabbit prostaglandin EP3 receptor. Kidney Int 44:1372–1378CrossRefPubMed Breyer MD, Jacobson HR, Davis LS, Breyer RM (1993) In situ hybridization and localization of mRNA for the rabbit prostaglandin EP3 receptor. Kidney Int 44:1372–1378CrossRefPubMed
15.
Zurück zum Zitat Breyer MD, Davis L, Jacobson HR, Breyer RM (1996) Differential localization of prostaglandin E receptor subtypes in human kidney. Am J Physiol 270:F912–F918PubMed Breyer MD, Davis L, Jacobson HR, Breyer RM (1996) Differential localization of prostaglandin E receptor subtypes in human kidney. Am J Physiol 270:F912–F918PubMed
16.
Zurück zum Zitat Rouch AJ, Kudo LH (2000) Role of PGE2 in alpha2-induced inhibition of AVP- and cAMP-stimulated H2O, Na+, and urea transport in rat IMCD. Am J Physiol Renal Physiol 279:F294–F301PubMed Rouch AJ, Kudo LH (2000) Role of PGE2 in alpha2-induced inhibition of AVP- and cAMP-stimulated H2O, Na+, and urea transport in rat IMCD. Am J Physiol Renal Physiol 279:F294–F301PubMed
17.
Zurück zum Zitat Nielsen S, Frokiaer J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244CrossRefPubMed Nielsen S, Frokiaer J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244CrossRefPubMed
18.
Zurück zum Zitat Fleming EF, Athirakul K, Oliverio MI et al (1998) Urinary concentrating function in mice lacking EP3 receptors for prostaglandin E2. Am J Physiol 275:F955–F961PubMed Fleming EF, Athirakul K, Oliverio MI et al (1998) Urinary concentrating function in mice lacking EP3 receptors for prostaglandin E2. Am J Physiol 275:F955–F961PubMed
19.
Zurück zum Zitat Zhang Y, Pop IL, Carlson NG, Kishore BK (2012) Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am J Physiol Renal Physiol 302:F70–F77CrossRefPubMed Zhang Y, Pop IL, Carlson NG, Kishore BK (2012) Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am J Physiol Renal Physiol 302:F70–F77CrossRefPubMed
20.
Zurück zum Zitat Ceddia RP, Lee D, Maulis MF et al (2016) The PGE2 EP3 receptor regulates diet-induced adiposity in male mice. Endocrinology 157:220–232CrossRefPubMed Ceddia RP, Lee D, Maulis MF et al (2016) The PGE2 EP3 receptor regulates diet-induced adiposity in male mice. Endocrinology 157:220–232CrossRefPubMed
21.
Zurück zum Zitat Qi Z, Fujita H, Jin J et al (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54:2628–2637CrossRefPubMed Qi Z, Fujita H, Jin J et al (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54:2628–2637CrossRefPubMed
22.
Zurück zum Zitat Qi Z, Whitt I, Mehta A et al (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596CrossRefPubMed Qi Z, Whitt I, Mehta A et al (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596CrossRefPubMed
23.
Zurück zum Zitat Walsh CH, Baylis PH, Malins JM (1979) Plasma arginine-vasopressin in diabetic ketoacidosis. Diabetologia 16:93–96CrossRefPubMed Walsh CH, Baylis PH, Malins JM (1979) Plasma arginine-vasopressin in diabetic ketoacidosis. Diabetologia 16:93–96CrossRefPubMed
24.
Zurück zum Zitat Kamoi K, Ishibashi M, Yamaji T (1991) Thirst and plasma levels of vasopressin, angiotensin II and atrial natriuretic peptide in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 11:195–202CrossRefPubMed Kamoi K, Ishibashi M, Yamaji T (1991) Thirst and plasma levels of vasopressin, angiotensin II and atrial natriuretic peptide in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 11:195–202CrossRefPubMed
25.
Zurück zum Zitat Iwasaki Y, Kondo K, Murase T, Hasegawa H, Oiso Y (1996) Osmoregulation of plasma vasopressin in diabetes mellitus with sustained hyperglycemia. J Neuroendocrinol 8:755–760CrossRefPubMed Iwasaki Y, Kondo K, Murase T, Hasegawa H, Oiso Y (1996) Osmoregulation of plasma vasopressin in diabetes mellitus with sustained hyperglycemia. J Neuroendocrinol 8:755–760CrossRefPubMed
26.
Zurück zum Zitat Van Itallie CM, Fernstrom JD (1982) Osmolal effects on vasopressin secretion in the streptozotocin-diabetic rats. Am J Physiol 242:E411–E417PubMed Van Itallie CM, Fernstrom JD (1982) Osmolal effects on vasopressin secretion in the streptozotocin-diabetic rats. Am J Physiol 242:E411–E417PubMed
27.
Zurück zum Zitat Brooks DD, Nutting DF, Crofton JT, Share L (1989) Vasopressin in rats with genetic and streptozotocin-induced diabetes. Diabetes 38:54–57CrossRefPubMed Brooks DD, Nutting DF, Crofton JT, Share L (1989) Vasopressin in rats with genetic and streptozotocin-induced diabetes. Diabetes 38:54–57CrossRefPubMed
28.
Zurück zum Zitat Fenton RA (2009) Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch 458:169–177CrossRefPubMed Fenton RA (2009) Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch 458:169–177CrossRefPubMed
29.
Zurück zum Zitat Nasrallah R, Landry A, Singh S, Sklepowicz M, Hébert RL (2003) Increased expression of cyclooxygenase-1 and -2 in the diabetic rat renal medulla. Am J Physiol Renal Physiol 285:F1068–F1077CrossRefPubMed Nasrallah R, Landry A, Singh S, Sklepowicz M, Hébert RL (2003) Increased expression of cyclooxygenase-1 and -2 in the diabetic rat renal medulla. Am J Physiol Renal Physiol 285:F1068–F1077CrossRefPubMed
30.
Zurück zum Zitat Kjaersgaard G, Madsen K, Marcussen N, Jensen BL (2014) Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2. Physiol Rep 2:e00202CrossRefPubMedPubMedCentral Kjaersgaard G, Madsen K, Marcussen N, Jensen BL (2014) Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2. Physiol Rep 2:e00202CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kjaersgaard G, Madsen K, Marcussen N, Christensen S, Walter S, Jensen BL (2012) Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium. Am J Physiol Renal Physiol 302:F455–F465CrossRefPubMed Kjaersgaard G, Madsen K, Marcussen N, Christensen S, Walter S, Jensen BL (2012) Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium. Am J Physiol Renal Physiol 302:F455–F465CrossRefPubMed
32.
Zurück zum Zitat Yang B, Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–F472CrossRefPubMed Yang B, Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:F465–F472CrossRefPubMed
33.
Zurück zum Zitat Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444–452CrossRefPubMed Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444–452CrossRefPubMed
34.
Zurück zum Zitat Nejsum LN, Kwon TH, Marples D et al (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol Renal Physiol 280:F715–F726PubMed Nejsum LN, Kwon TH, Marples D et al (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol Renal Physiol 280:F715–F726PubMed
35.
Zurück zum Zitat Bardoux P, Ahloulay M, Le Maout S, Bankir L, Trinh-Trang-Tan MM (2001) Aquaporin-2 and urea transporter-A1 are up-regulated in rats with type I diabetes mellitus. Diabetologia 44:637–645CrossRefPubMed Bardoux P, Ahloulay M, Le Maout S, Bankir L, Trinh-Trang-Tan MM (2001) Aquaporin-2 and urea transporter-A1 are up-regulated in rats with type I diabetes mellitus. Diabetologia 44:637–645CrossRefPubMed
36.
Zurück zum Zitat Leung JC, Chan LY, Tsang AQ, Tang SC, Lai KN (2005) Differential expression of aquaporins in the kidneys of streptozotocin-induced diabetic mice. Nephrology 10:63–72CrossRefPubMed Leung JC, Chan LY, Tsang AQ, Tang SC, Lai KN (2005) Differential expression of aquaporins in the kidneys of streptozotocin-induced diabetic mice. Nephrology 10:63–72CrossRefPubMed
37.
Zurück zum Zitat Ward DT, Yau SK, Mee AP et al (2001) Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. J Am Soc Nephrol 12:779–790PubMed Ward DT, Yau SK, Mee AP et al (2001) Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. J Am Soc Nephrol 12:779–790PubMed
38.
Zurück zum Zitat Ortiz MC, Albertoni Borghese MF, Balonga SE et al (2014) Renal response to L-arginine in diabetic mice. A possible link between nitric oxide system and aquaporin-2. PLoS One 9:e104923CrossRefPubMedPubMedCentral Ortiz MC, Albertoni Borghese MF, Balonga SE et al (2014) Renal response to L-arginine in diabetic mice. A possible link between nitric oxide system and aquaporin-2. PLoS One 9:e104923CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Thompson CJ, Davis DN, Baylis PH (1989) Effect of blood glucose concentration on osmoregulation in diabetes mellitus. Am J Physiol 256:R597–R604PubMed Thompson CJ, Davis DN, Baylis PH (1989) Effect of blood glucose concentration on osmoregulation in diabetes mellitus. Am J Physiol 256:R597–R604PubMed
40.
Zurück zum Zitat McKenna K, Morris AD, Ryan M et al (2000) Renal resistance to vasopressin in poorly controlled type 1 diabetes mellitus. Am J Physiol Endocrinol Metab 279:E155–E160PubMed McKenna K, Morris AD, Ryan M et al (2000) Renal resistance to vasopressin in poorly controlled type 1 diabetes mellitus. Am J Physiol Endocrinol Metab 279:E155–E160PubMed
41.
Zurück zum Zitat Maeda Y, Terada Y, Nonoguchi H, Knepper MA (1992) Hormone and autacoid regulation of cAMP production in rat IMCD subsegments. Am J Physiol 263:F319–F327PubMed Maeda Y, Terada Y, Nonoguchi H, Knepper MA (1992) Hormone and autacoid regulation of cAMP production in rat IMCD subsegments. Am J Physiol 263:F319–F327PubMed
42.
Zurück zum Zitat Bardoux P, Martin H, Ahloulay M et al (1999) Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A 96:10397–10402CrossRefPubMedPubMedCentral Bardoux P, Martin H, Ahloulay M et al (1999) Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A 96:10397–10402CrossRefPubMedPubMedCentral
43.
44.
Zurück zum Zitat Belibi FA, Reif G, Wallace DP et al (2004) Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 66:964–973CrossRefPubMed Belibi FA, Reif G, Wallace DP et al (2004) Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 66:964–973CrossRefPubMed
45.
Zurück zum Zitat Wang X, Wu Y, Ward CJ, Harris PC, Torres VE (2009) Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol 19:102–108CrossRef Wang X, Wu Y, Ward CJ, Harris PC, Torres VE (2009) Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol 19:102–108CrossRef
Metadaten
Titel
PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes
verfasst von
Ramzi Hassouneh
Rania Nasrallah
Joe Zimpelmann
Alex Gutsol
David Eckert
Jamie Ghossein
Kevin D. Burns
Richard L. Hébert
Publikationsdatum
19.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 6/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3916-5

Weitere Artikel der Ausgabe 6/2016

Diabetologia 6/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.