Skip to main content
Erschienen in: BioDrugs 5/2018

01.10.2018 | Review Article

Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody–Drug Conjugates

verfasst von: Eshita Khera, Greg M. Thurber

Erschienen in: BioDrugs | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Antibody–drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of ‘next-generation’ ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Literatur
1.
Zurück zum Zitat Dan N, Setua S, Kashyap V, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018;11:32.PubMedCentralCrossRef Dan N, Setua S, Kashyap V, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018;11:32.PubMedCentralCrossRef
2.
3.
Zurück zum Zitat Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the “high-hanging fruit”. Nat Rev Drug Discov. 2018;17:197–223.CrossRefPubMed Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the “high-hanging fruit”. Nat Rev Drug Discov. 2018;17:197–223.CrossRefPubMed
5.
Zurück zum Zitat Perez HL, Cardarelli PM, Deshpande S, et al. Antibody–drug conjugates: current status and future directions. Drug Discov Today. 2014;19:869–81.CrossRefPubMed Perez HL, Cardarelli PM, Deshpande S, et al. Antibody–drug conjugates: current status and future directions. Drug Discov Today. 2014;19:869–81.CrossRefPubMed
6.
Zurück zum Zitat Lucas A, Price L, Schorzman A, et al. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies. 2018;7:10.CrossRefPubMedCentral Lucas A, Price L, Schorzman A, et al. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies. 2018;7:10.CrossRefPubMedCentral
8.
Zurück zum Zitat Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.CrossRefPubMed Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.CrossRefPubMed
9.
Zurück zum Zitat Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther (Seoul). 2015;23:493–509.PubMedCentralPubMedCrossRef Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther (Seoul). 2015;23:493–509.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Bander NH. Antibody–drug conjugate target selection: critical factors. In: Ducry L, editor. Antibody-drug conjugates, methods in molecular biology. 1st ed. Totowa: Humana Press; 2013. p. 29–40.CrossRef Bander NH. Antibody–drug conjugate target selection: critical factors. In: Ducry L, editor. Antibody-drug conjugates, methods in molecular biology. 1st ed. Totowa: Humana Press; 2013. p. 29–40.CrossRef
11.
Zurück zum Zitat Sharma SK, Pourat J, Abdel-Atti D, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77:3931–41.PubMedCentralPubMedCrossRef Sharma SK, Pourat J, Abdel-Atti D, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77:3931–41.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Hendriks BS, Klinz SG, Reynolds JG, et al. Impact of tumor HER2/ERBB2 expression level on HER2- targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect. Mol Cancer Ther. 2013;12:1816–28.CrossRefPubMed Hendriks BS, Klinz SG, Reynolds JG, et al. Impact of tumor HER2/ERBB2 expression level on HER2- targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect. Mol Cancer Ther. 2013;12:1816–28.CrossRefPubMed
13.
Zurück zum Zitat Ackerman ME, Pawlowski D, Wittrup KD. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008;7:2233–40.PubMedCentralPubMedCrossRef Ackerman ME, Pawlowski D, Wittrup KD. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008;7:2233–40.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Thurber GM, Wittrup KD. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res. 2008;68:3334–41.PubMedCentralPubMedCrossRef Thurber GM, Wittrup KD. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res. 2008;68:3334–41.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Rudnick S, Lou J, Shaller C, et al. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71:2250–9.PubMedCentralPubMedCrossRef Rudnick S, Lou J, Shaller C, et al. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71:2250–9.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Buckley NE, Forde C, McArt DG, et al. Quantification of HER2 heterogeneity in breast cancer–implications for identification of sub-dominant clones for personalised treatment. Sci Rep. 2016;6:23383.PubMedCentralPubMedCrossRef Buckley NE, Forde C, McArt DG, et al. Quantification of HER2 heterogeneity in breast cancer–implications for identification of sub-dominant clones for personalised treatment. Sci Rep. 2016;6:23383.PubMedCentralPubMedCrossRef
17.
18.
Zurück zum Zitat Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedCentralPubMedCrossRef Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126–42.CrossRefPubMed Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126–42.CrossRefPubMed
20.
Zurück zum Zitat Breij ECW, de Goeij BECG, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74:1214–26.CrossRefPubMed Breij ECW, de Goeij BECG, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74:1214–26.CrossRefPubMed
21.
Zurück zum Zitat Petrul HM, Schatz CA, Kopitz CC, et al. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther. 2012;11:340–9.CrossRefPubMed Petrul HM, Schatz CA, Kopitz CC, et al. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther. 2012;11:340–9.CrossRefPubMed
22.
Zurück zum Zitat Zeng P, Chen M-B, Zhou L-N, et al. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:33658.PubMedCentralPubMedCrossRef Zeng P, Chen M-B, Zhou L-N, et al. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:33658.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Strop P, Tran T-T, Dorywalska M, et al. RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther. 2016;15:2698–708.CrossRefPubMed Strop P, Tran T-T, Dorywalska M, et al. RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther. 2016;15:2698–708.CrossRefPubMed
24.
Zurück zum Zitat Harper J, Lloyd C, Dimasi N, et al. Preclinical evaluation of MEDI0641, a pyrrolobenzodiazepine-conjugated antibody-drug conjugate targeting 5T4. Mol Cancer Ther. 2017;16:1576–87.CrossRefPubMed Harper J, Lloyd C, Dimasi N, et al. Preclinical evaluation of MEDI0641, a pyrrolobenzodiazepine-conjugated antibody-drug conjugate targeting 5T4. Mol Cancer Ther. 2017;16:1576–87.CrossRefPubMed
25.
Zurück zum Zitat Junttila MR, Mao W, Wang X, et al. Targeting LGR5 + cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7:314186.CrossRef Junttila MR, Mao W, Wang X, et al. Targeting LGR5 + cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7:314186.CrossRef
26.
Zurück zum Zitat DeVay RM, Delaria K, Zhu G, et al. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem. 2017;28:1102–14.CrossRefPubMed DeVay RM, Delaria K, Zhu G, et al. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem. 2017;28:1102–14.CrossRefPubMed
27.
Zurück zum Zitat Li JY, Perry SR, Muniz-Medina V, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29:117–29.CrossRefPubMed Li JY, Perry SR, Muniz-Medina V, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29:117–29.CrossRefPubMed
28.
Zurück zum Zitat Deonarain M, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7:16.CrossRefPubMedCentral Deonarain M, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7:16.CrossRefPubMedCentral
29.
Zurück zum Zitat Marks IS, Gardeen SS, Kurdziel SJ, et al. Development of a small molecule tubulysin B conjugate for treatment of carbonic anhydrase IX receptor expressing cancers. Mol Pharm. 2018;15:2289–96.CrossRefPubMed Marks IS, Gardeen SS, Kurdziel SJ, et al. Development of a small molecule tubulysin B conjugate for treatment of carbonic anhydrase IX receptor expressing cancers. Mol Pharm. 2018;15:2289–96.CrossRefPubMed
30.
Zurück zum Zitat Adams GP, Schier R, Mccall AM, et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 2001;61:4750–5.PubMed Adams GP, Schier R, Mccall AM, et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 2001;61:4750–5.PubMed
31.
Zurück zum Zitat Perrino E, Steiner M, Krall N, et al. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 2014;74:2569–78.PubMedCrossRef Perrino E, Steiner M, Krall N, et al. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 2014;74:2569–78.PubMedCrossRef
32.
Zurück zum Zitat Rossin R, Versteegen RM, Wu J, et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat Commun. 2018;9:1484.PubMedCentralPubMedCrossRef Rossin R, Versteegen RM, Wu J, et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat Commun. 2018;9:1484.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Olov H, Gren S, et al. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res. 1997;57:4530–6. Olov H, Gren S, et al. Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res. 1997;57:4530–6.
35.
Zurück zum Zitat Maass KF, Kulkarni C, Quadir MA, et al. A flow cytometric clonogenic assay reveals the single-cell potency of doxorubicin. J Pharm Sci. 2015;104:4409–16.PubMedCentralPubMedCrossRef Maass KF, Kulkarni C, Quadir MA, et al. A flow cytometric clonogenic assay reveals the single-cell potency of doxorubicin. J Pharm Sci. 2015;104:4409–16.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Lee J-H, Kim H, Yao Z, et al. Tumor-shed antigen affects antibody tumor targeting: comparison of two 89 Zr-labeled antibodies directed against shed or nonshed antigens. Contrast Media Mol Imaging. 2018;2018:2461257.PubMedCentralPubMedCrossRef Lee J-H, Kim H, Yao Z, et al. Tumor-shed antigen affects antibody tumor targeting: comparison of two 89 Zr-labeled antibodies directed against shed or nonshed antigens. Contrast Media Mol Imaging. 2018;2018:2461257.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Cassady JM, Chan KK, Floss HG, Leistner E. Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull. 2004;52:1–26.CrossRef Cassady JM, Chan KK, Floss HG, Leistner E. Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull. 2004;52:1–26.CrossRef
38.
Zurück zum Zitat Maderna A, Leverett CA. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol Pharm. 2015;12:1798–812.PubMedCrossRef Maderna A, Leverett CA. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol Pharm. 2015;12:1798–812.PubMedCrossRef
39.
Zurück zum Zitat Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed. 2017;56:462–88.CrossRef Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed. 2017;56:462–88.CrossRef
41.
Zurück zum Zitat Hechler T, Kulke M, Mueller C, et al. Amanitin-based antibody-drug conjugates targeting the prostate-specific membrane antigen. Proc AACR Annu Meet. 2014;74:Abstract nr 664. Hechler T, Kulke M, Mueller C, et al. Amanitin-based antibody-drug conjugates targeting the prostate-specific membrane antigen. Proc AACR Annu Meet. 2014;74:Abstract nr 664.
42.
Zurück zum Zitat Miller ML, Fishkin NE, Li W, et al. A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol Cancer Ther. 2016;15:1870–8.PubMedCrossRef Miller ML, Fishkin NE, Li W, et al. A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol Cancer Ther. 2016;15:1870–8.PubMedCrossRef
43.
Zurück zum Zitat Khera E, Cilliers C, Bhatnagar S, Thurber GM. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng. 2018;3:73–88.CrossRef Khera E, Cilliers C, Bhatnagar S, Thurber GM. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng. 2018;3:73–88.CrossRef
44.
Zurück zum Zitat Li F, Emmerton KK, Jonas M, et al. Intratumoral payload release influences the potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76:2710–20.PubMedCrossRef Li F, Emmerton KK, Jonas M, et al. Intratumoral payload release influences the potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016;76:2710–20.PubMedCrossRef
45.
Zurück zum Zitat Levengood MR, Zhang X, Hunter JH, et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew Chem Int Ed. 2017;56:733–7.CrossRef Levengood MR, Zhang X, Hunter JH, et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody-drug conjugates. Angew Chem Int Ed. 2017;56:733–7.CrossRef
46.
Zurück zum Zitat Anami Y, Xiong W, Gui X, et al. Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Org Biomol Chem. 2017;15:5635–42.PubMedCrossRef Anami Y, Xiong W, Gui X, et al. Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Org Biomol Chem. 2017;15:5635–42.PubMedCrossRef
48.
Zurück zum Zitat Spangler B, Kline T, Hanson J, et al. Toward a ferrous iron-cleavable linker for antibody–drug conjugates. Mol Pharm. 2018;15:2054–9.PubMedCrossRef Spangler B, Kline T, Hanson J, et al. Toward a ferrous iron-cleavable linker for antibody–drug conjugates. Mol Pharm. 2018;15:2054–9.PubMedCrossRef
49.
Zurück zum Zitat Pillow TH, Schutten M, Yu S-F, et al. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol Cancer Ther. 2017;16:871–8.PubMedCrossRef Pillow TH, Schutten M, Yu S-F, et al. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol Cancer Ther. 2017;16:871–8.PubMedCrossRef
50.
Zurück zum Zitat Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 2014;25:1223–32.PubMedCrossRef Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 2014;25:1223–32.PubMedCrossRef
51.
Zurück zum Zitat Guo J, Kumar S, Chipley M, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27:604–15.PubMedCrossRef Guo J, Kumar S, Chipley M, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27:604–15.PubMedCrossRef
52.
Zurück zum Zitat Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32:1059–62.PubMedCrossRef Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32:1059–62.PubMedCrossRef
53.
Zurück zum Zitat Christie RJ, Fleming R, Bezabeh B, et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release. 2015;220:660–70.PubMedCrossRef Christie RJ, Fleming R, Bezabeh B, et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release. 2015;220:660–70.PubMedCrossRef
54.
Zurück zum Zitat Dovgan I, Kolodych S, Koniev O, Wagner A. 2-(Maleimidomethyl)-1,3-dioxanes (MD): a serum-stable self-hydrolysable hydrophilic alternative to classical maleimide conjugation. Sci Rep. 2016;6:30835.PubMedCentralPubMedCrossRef Dovgan I, Kolodych S, Koniev O, Wagner A. 2-(Maleimidomethyl)-1,3-dioxanes (MD): a serum-stable self-hydrolysable hydrophilic alternative to classical maleimide conjugation. Sci Rep. 2016;6:30835.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Sochaj AM, Świderska KW, Otlewski J. Current methods for the synthesis of homogeneous antibody–drug conjugates. Biotechnol Adv. 2015;33:775–84.PubMedCrossRef Sochaj AM, Świderska KW, Otlewski J. Current methods for the synthesis of homogeneous antibody–drug conjugates. Biotechnol Adv. 2015;33:775–84.PubMedCrossRef
56.
Zurück zum Zitat Shinmi D, Taguchi E, Iwano J, et al. One-step conjugation method for site-specific antibody–drug conjugates through reactive cysteine-engineered antibodies. Bioconjug Chem. 2016;27:1324–31.PubMedCrossRef Shinmi D, Taguchi E, Iwano J, et al. One-step conjugation method for site-specific antibody–drug conjugates through reactive cysteine-engineered antibodies. Bioconjug Chem. 2016;27:1324–31.PubMedCrossRef
57.
Zurück zum Zitat Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–32.PubMedCrossRef Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–32.PubMedCrossRef
58.
Zurück zum Zitat Agarwal P, Bertozzi CR. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26:176–92.PubMedCrossRef Agarwal P, Bertozzi CR. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26:176–92.PubMedCrossRef
60.
Zurück zum Zitat Falck G, Müller K. Enzyme-based labeling strategies for antibody–drug conjugates and antibody mimetics. Antibodies. 2018;7:4.CrossRefPubMedCentral Falck G, Müller K. Enzyme-based labeling strategies for antibody–drug conjugates and antibody mimetics. Antibodies. 2018;7:4.CrossRefPubMedCentral
61.
Zurück zum Zitat Griebenow N, Dilmaç AM, Greven S, Bräse S. Site-specific conjugation of peptides and proteins via rebridging of disulfide bonds using the thiol–yne coupling reaction. Bioconjug Chem. 2016;27:911–7.CrossRefPubMed Griebenow N, Dilmaç AM, Greven S, Bräse S. Site-specific conjugation of peptides and proteins via rebridging of disulfide bonds using the thiol–yne coupling reaction. Bioconjug Chem. 2016;27:911–7.CrossRefPubMed
63.
Zurück zum Zitat Schumacher FF, Nunes JPM, Maruani A, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem. 2014;12:7261–9.PubMedCentralPubMedCrossRef Schumacher FF, Nunes JPM, Maruani A, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem. 2014;12:7261–9.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Zhou Q, Stefano JE, Manning C, et al. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem. 2014;25:510–20.CrossRefPubMed Zhou Q, Stefano JE, Manning C, et al. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem. 2014;25:510–20.CrossRefPubMed
65.
Zurück zum Zitat Adumeau P, Vivier D, Sharma SK, et al. Site-specifically labeled antibody-drug conjugate for simultaneous therapy and immunoPET. Mol Pharm. 2018;15:892–8.CrossRefPubMedPubMedCentral Adumeau P, Vivier D, Sharma SK, et al. Site-specifically labeled antibody-drug conjugate for simultaneous therapy and immunoPET. Mol Pharm. 2018;15:892–8.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Li X, Fang T, Boons G-J. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed. 2014;53:7179–82.CrossRef Li X, Fang T, Boons G-J. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed. 2014;53:7179–82.CrossRef
67.
Zurück zum Zitat Arlotta K, Gandhi A, Chen H-N, et al. In-depth comparison of lysine-based antibody-drug conjugates prepared on solid support versus in solution. Antibodies. 2018;7:6.CrossRefPubMedCentral Arlotta K, Gandhi A, Chen H-N, et al. In-depth comparison of lysine-based antibody-drug conjugates prepared on solid support versus in solution. Antibodies. 2018;7:6.CrossRefPubMedCentral
68.
Zurück zum Zitat Ohri R, Bhakta S, Fourie-O’Donohue A, et al. High-throughput cysteine scanning to identify stable antibody conjugation sites for maleimide- and disulfide-based linkers. Bioconjug Chem. 2018;29:473–85.PubMedCrossRef Ohri R, Bhakta S, Fourie-O’Donohue A, et al. High-throughput cysteine scanning to identify stable antibody conjugation sites for maleimide- and disulfide-based linkers. Bioconjug Chem. 2018;29:473–85.PubMedCrossRef
69.
Zurück zum Zitat Puthenveetil S, Musto S, Loganzo F, et al. Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and Fab drug conjugates. Bioconjug Chem. 2016;27:1030–9.PubMedCrossRef Puthenveetil S, Musto S, Loganzo F, et al. Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and Fab drug conjugates. Bioconjug Chem. 2016;27:1030–9.PubMedCrossRef
70.
71.
Zurück zum Zitat Su D, Kozak KR, Sadowsky J, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.CrossRefPubMed Su D, Kozak KR, Sadowsky J, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.CrossRefPubMed
72.
Zurück zum Zitat Schuurman J, Van Ree R, Perdok GJ, et al. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology. 1999;97:693–8.PubMedCentralPubMedCrossRef Schuurman J, Van Ree R, Perdok GJ, et al. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology. 1999;97:693–8.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Satomaa T, Pynnönen H, Vilkman A, et al. Hydrophilic auristatin glycoside payload enables improved antibody-drug conjugate efficacy and biocompatibility. Antibodies. 2018;7:15.CrossRefPubMedCentral Satomaa T, Pynnönen H, Vilkman A, et al. Hydrophilic auristatin glycoside payload enables improved antibody-drug conjugate efficacy and biocompatibility. Antibodies. 2018;7:15.CrossRefPubMedCentral
75.
Zurück zum Zitat Mendelsohn BA, Barnscher SD, Snyder JT, et al. Investigation of hydrophilic auristatin derivatives for use in antibody drug conjugates. Bioconjug Chem. 2017;28:371–81.CrossRefPubMed Mendelsohn BA, Barnscher SD, Snyder JT, et al. Investigation of hydrophilic auristatin derivatives for use in antibody drug conjugates. Bioconjug Chem. 2017;28:371–81.CrossRefPubMed
76.
Zurück zum Zitat Pabst M, McDowell W, Manin A, et al. Modulation of drug-linker design to enhance in vivo potency of homogeneous antibody-drug conjugates. J Control Release. 2017;253:160–4.CrossRefPubMed Pabst M, McDowell W, Manin A, et al. Modulation of drug-linker design to enhance in vivo potency of homogeneous antibody-drug conjugates. J Control Release. 2017;253:160–4.CrossRefPubMed
77.
Zurück zum Zitat Su D, Kozak KR, Sadowsky J, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.CrossRefPubMed Su D, Kozak KR, Sadowsky J, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.CrossRefPubMed
78.
Zurück zum Zitat Sauerborn M, van Dongen W. Practical considerations for the pharmacokinetic and immunogenic assessment of antibody–drug conjugates. BioDrugs. 2014;28:383–91.CrossRefPubMed Sauerborn M, van Dongen W. Practical considerations for the pharmacokinetic and immunogenic assessment of antibody–drug conjugates. BioDrugs. 2014;28:383–91.CrossRefPubMed
79.
Zurück zum Zitat Wei C, Su D, Wang J, et al. LC–MS challenges in characterizing and quantifying monoclonal antibodies (mAb) and antibody-drug conjugates (ADC) in biological samples. Curr Pharmacol Rep. 2018;4:45–63.CrossRef Wei C, Su D, Wang J, et al. LC–MS challenges in characterizing and quantifying monoclonal antibodies (mAb) and antibody-drug conjugates (ADC) in biological samples. Curr Pharmacol Rep. 2018;4:45–63.CrossRef
80.
Zurück zum Zitat Wei C, Zhang G, Clark T, et al. Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem. 2016;88:4979–86.CrossRefPubMed Wei C, Zhang G, Clark T, et al. Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem. 2016;88:4979–86.CrossRefPubMed
81.
Zurück zum Zitat Dong L, Li C, Locuson C, et al. A two-step immunocapture LC/MS/MS assay for plasma stability and payload migration assessment of cysteine–maleimide-based antibody drug conjugates. Anal Chem. 2018;90:5989–94.CrossRefPubMed Dong L, Li C, Locuson C, et al. A two-step immunocapture LC/MS/MS assay for plasma stability and payload migration assessment of cysteine–maleimide-based antibody drug conjugates. Anal Chem. 2018;90:5989–94.CrossRefPubMed
82.
Zurück zum Zitat Su D, Ng C, Khosraviani M, et al. Custom-designed affinity capture LC-MS F(ab′)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem. 2016;88:11340–6.CrossRefPubMed Su D, Ng C, Khosraviani M, et al. Custom-designed affinity capture LC-MS F(ab′)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem. 2016;88:11340–6.CrossRefPubMed
83.
Zurück zum Zitat He J, Su D, Ng C, et al. High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates. Anal Chem. 2017;89:5476–83.CrossRefPubMed He J, Su D, Ng C, et al. High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates. Anal Chem. 2017;89:5476–83.CrossRefPubMed
84.
85.
Zurück zum Zitat de Goeij BE, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol. 2016;40:14–23.CrossRefPubMed de Goeij BE, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol. 2016;40:14–23.CrossRefPubMed
87.
Zurück zum Zitat Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I–related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.CrossRefPubMed Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I–related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.CrossRefPubMed
88.
Zurück zum Zitat Story CM, Mikulska JE, Simister NE. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med. 1994;180:2377–81.CrossRefPubMed Story CM, Mikulska JE, Simister NE. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med. 1994;180:2377–81.CrossRefPubMed
89.
Zurück zum Zitat Blumberg RS, Koss T, Story CM, et al. A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes. J Clin Invest. 1995;95:2397–402.PubMedCentralPubMedCrossRef Blumberg RS, Koss T, Story CM, et al. A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes. J Clin Invest. 1995;95:2397–402.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Guffroy M, Falahatpisheh H, Biddle K, et al. Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring. Clin Cancer Res. 2017;23:1760–70.CrossRefPubMed Guffroy M, Falahatpisheh H, Biddle K, et al. Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring. Clin Cancer Res. 2017;23:1760–70.CrossRefPubMed
91.
Zurück zum Zitat Nechansky A. HAHA, —nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J Pharm Biomed Anal. 2010;51:252–4.CrossRefPubMed Nechansky A. HAHA, —nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J Pharm Biomed Anal. 2010;51:252–4.CrossRefPubMed
92.
Zurück zum Zitat Fiorotti CK. Immunogenicity considerations for antibody–drug conjugates: a focus on neutralizing antibody assays. Bioanalysis. 2018;10:65–70.CrossRefPubMed Fiorotti CK. Immunogenicity considerations for antibody–drug conjugates: a focus on neutralizing antibody assays. Bioanalysis. 2018;10:65–70.CrossRefPubMed
93.
Zurück zum Zitat Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17:35–43.CrossRefPubMed Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17:35–43.CrossRefPubMed
94.
97.
Zurück zum Zitat Hinrichs MJM, Ryan PM, Zheng B, et al. Fractionated dosing improves preclinical therapeutic index of pyrrolobenzodiazepine-containing antibody drug conjugates. Clin Cancer Res. 2017;23:5858–68.CrossRefPubMed Hinrichs MJM, Ryan PM, Zheng B, et al. Fractionated dosing improves preclinical therapeutic index of pyrrolobenzodiazepine-containing antibody drug conjugates. Clin Cancer Res. 2017;23:5858–68.CrossRefPubMed
98.
99.
Zurück zum Zitat Thurber GM. Tumor effect-site pharmacokinetics: mechanisms and impact on efficacy. In: Zhou H, Thiel F-P, editors. ADME and translational pharmacokinetics/pharmacodynamics of therapeutic proteins: applications in drug discovery and development. 1st ed. Hoboken: John Wiley & Sons; 2016. p. 225–39. Thurber GM. Tumor effect-site pharmacokinetics: mechanisms and impact on efficacy. In: Zhou H, Thiel F-P, editors. ADME and translational pharmacokinetics/pharmacodynamics of therapeutic proteins: applications in drug discovery and development. 1st ed. Hoboken: John Wiley & Sons; 2016. p. 225–39.
100.
Zurück zum Zitat Zhang D, Yu S-F, Khojasteh SC, et al. Intratumoral payload concentration correlates with the activity of antibody-drug conjugates. Mol Cancer Ther. 2018;17:677–85.CrossRefPubMed Zhang D, Yu S-F, Khojasteh SC, et al. Intratumoral payload concentration correlates with the activity of antibody-drug conjugates. Mol Cancer Ther. 2018;17:677–85.CrossRefPubMed
101.
Zurück zum Zitat Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60:1421–34.PubMedCentralPubMedCrossRef Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60:1421–34.PubMedCentralPubMedCrossRef
102.
Zurück zum Zitat Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010;10:255.PubMedCentralPubMedCrossRef Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010;10:255.PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Oldham RK, Foon KA, Morgan AC, et al. Monoclonal antibody therapy of malignant melanoma: in vivo localization in cutaneous metastasis after intravenous administration. J Clin Oncol. 1984;2:1235–44.CrossRefPubMed Oldham RK, Foon KA, Morgan AC, et al. Monoclonal antibody therapy of malignant melanoma: in vivo localization in cutaneous metastasis after intravenous administration. J Clin Oncol. 1984;2:1235–44.CrossRefPubMed
104.
Zurück zum Zitat Schroff RW, Woodhouse CS, Foon KA, et al. Intratumor localization of monoclonal antibody in patients with melanoma treated with antibody to a 250,000-dalton melanoma-associated antigen. J Natl Cancer Inst. 1985;74:299–306.PubMed Schroff RW, Woodhouse CS, Foon KA, et al. Intratumor localization of monoclonal antibody in patients with melanoma treated with antibody to a 250,000-dalton melanoma-associated antigen. J Natl Cancer Inst. 1985;74:299–306.PubMed
105.
Zurück zum Zitat Houghton AN, Mintzer D, Cordon-Cardo C, et al. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci. 1985;82:1242–6.CrossRefPubMedPubMedCentral Houghton AN, Mintzer D, Cordon-Cardo C, et al. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci. 1985;82:1242–6.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Schroff RW, Morgan AC Jr, Woodhouse CS, et al. Monoclonal antibody therapy in malignant melanoma: factors effecting in vivo localization. J Biol Responses Modif. 1987;6:457–72. Schroff RW, Morgan AC Jr, Woodhouse CS, et al. Monoclonal antibody therapy in malignant melanoma: factors effecting in vivo localization. J Biol Responses Modif. 1987;6:457–72.
107.
Zurück zum Zitat Eary JF, Schroff RW, Abrams PG, et al. Successful imaging of malignant melanoma with technetium-99 m-labeled monoclonal antibodies. J Nucl Med. 1989;30:25–32.PubMed Eary JF, Schroff RW, Abrams PG, et al. Successful imaging of malignant melanoma with technetium-99 m-labeled monoclonal antibodies. J Nucl Med. 1989;30:25–32.PubMed
108.
Zurück zum Zitat Del Vecchio S, Reynolds JC, Carrasquillo JA, et al. Local distribution and concentration of intravenously injected 131I-9. 2. 27 monoclonal antibody in human malignant melanoma. Cancer Res. 1989;5:2783–9. Del Vecchio S, Reynolds JC, Carrasquillo JA, et al. Local distribution and concentration of intravenously injected 131I-9. 2. 27 monoclonal antibody in human malignant melanoma. Cancer Res. 1989;5:2783–9.
109.
Zurück zum Zitat Elias DJ, Hirschowitz L, Kline LE, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res. 1990;50:4154–9.PubMed Elias DJ, Hirschowitz L, Kline LE, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res. 1990;50:4154–9.PubMed
110.
Zurück zum Zitat Oosterwijk BE, Bender NH, Divgi CR, et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol. 1993;11:738–50.CrossRefPubMed Oosterwijk BE, Bender NH, Divgi CR, et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol. 1993;11:738–50.CrossRefPubMed
111.
Zurück zum Zitat Scott AM, Lee F, Jones R, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinom: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11:4810–7.CrossRefPubMed Scott AM, Lee F, Jones R, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinom: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11:4810–7.CrossRefPubMed
112.
Zurück zum Zitat Cilliers C, Guo H, Liao J, et al. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18:1117–30.PubMedCrossRef Cilliers C, Guo H, Liao J, et al. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18:1117–30.PubMedCrossRef
113.
Zurück zum Zitat Cilliers C, Menezes B, Nessler I, et al. Improved tumor penetration and single-cell targeting of antibody-drug conjugates increases anticancer efficacy and host survival. Cancer Res. 2018;78:758–68.CrossRefPubMed Cilliers C, Menezes B, Nessler I, et al. Improved tumor penetration and single-cell targeting of antibody-drug conjugates increases anticancer efficacy and host survival. Cancer Res. 2018;78:758–68.CrossRefPubMed
114.
Zurück zum Zitat Cilliers C, Liao J, Atangcho L, Thurber GM. Residualization rates of near-infrared dyes for the rational design of molecular imaging agents. Mol Imaging Biol. 2015;17:757–62.PubMedCentralPubMedCrossRef Cilliers C, Liao J, Atangcho L, Thurber GM. Residualization rates of near-infrared dyes for the rational design of molecular imaging agents. Mol Imaging Biol. 2015;17:757–62.PubMedCentralPubMedCrossRef
115.
Zurück zum Zitat Cilliers C, Nessler I, Christodolu N, Thurber GM. Tracking antibody distribution with near-infrared fluorescent dyes: impact of dye structure and degree of labeling on plasma clearance. Mol Pharm. 2017;14:1623–33.PubMedCentralPubMedCrossRef Cilliers C, Nessler I, Christodolu N, Thurber GM. Tracking antibody distribution with near-infrared fluorescent dyes: impact of dye structure and degree of labeling on plasma clearance. Mol Pharm. 2017;14:1623–33.PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Giesen C, Wang HAO, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11:417–22.CrossRefPubMed Giesen C, Wang HAO, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11:417–22.CrossRefPubMed
117.
Zurück zum Zitat Ilovich O, Qutaish M, Hesterman J, et al. Dual-isotope cryo-imaging quantitative autoradiography (CIQA): investigating antibody-drug conjugate distribution and payload delivery through imaging. J Nucl Med. 2018;118:207753. Ilovich O, Qutaish M, Hesterman J, et al. Dual-isotope cryo-imaging quantitative autoradiography (CIQA): investigating antibody-drug conjugate distribution and payload delivery through imaging. J Nucl Med. 2018;118:207753.
118.
119.
Zurück zum Zitat Yasunaga M, Manabe S, Tsuji A, et al. Development of antibody-drug conjugates using DDS and molecular imaging. Bioengineering. 2017;4:78–90.PubMedCentralCrossRef Yasunaga M, Manabe S, Tsuji A, et al. Development of antibody-drug conjugates using DDS and molecular imaging. Bioengineering. 2017;4:78–90.PubMedCentralCrossRef
120.
Zurück zum Zitat Winfield A. Digital spatial profiling platform allows for spatially-resolved, multiplexed measurement of solid tumor protein distribution and abundance in FFPE tissue sections. Eur J Cancer. 2018;92:S9.CrossRef Winfield A. Digital spatial profiling platform allows for spatially-resolved, multiplexed measurement of solid tumor protein distribution and abundance in FFPE tissue sections. Eur J Cancer. 2018;92:S9.CrossRef
121.
Zurück zum Zitat Rios-Doria J, Harper J, Rothstein R, et al. Antibody–drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res. 2017;77:2686–98.CrossRefPubMed Rios-Doria J, Harper J, Rothstein R, et al. Antibody–drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res. 2017;77:2686–98.CrossRefPubMed
123.
Zurück zum Zitat Muenst S, Läubli H, Soysal SD, et al. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016;279:541–62.CrossRefPubMed Muenst S, Läubli H, Soysal SD, et al. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 2016;279:541–62.CrossRefPubMed
124.
Zurück zum Zitat Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.CrossRefPubMed Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.CrossRefPubMed
125.
Zurück zum Zitat Webster RM. The immune checkpoint inhibitors: where are we now? Nat Rev Drug Discov. 2014;13:883–4.CrossRefPubMed Webster RM. The immune checkpoint inhibitors: where are we now? Nat Rev Drug Discov. 2014;13:883–4.CrossRefPubMed
127.
Zurück zum Zitat Müller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2 + breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7:315.CrossRef Müller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2 + breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7:315.CrossRef
128.
Zurück zum Zitat Hoffmann RM, Coumbe BGT, Josephs DH, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Oncoimmunology. 2018;7:e1395127.CrossRefPubMed Hoffmann RM, Coumbe BGT, Josephs DH, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Oncoimmunology. 2018;7:e1395127.CrossRefPubMed
129.
Zurück zum Zitat Xiao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci. 2016;113:10304–9.CrossRefPubMedPubMedCentral Xiao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci. 2016;113:10304–9.CrossRefPubMedPubMedCentral
130.
Zurück zum Zitat Li F, Ulrich M, Jonas M, et al. Tumor-associated macrophages can contribute to antitumor activity through FcγR-mediated processing of antibody–drug conjugates. Mol Cancer Ther. 2017;16:1347–54.CrossRefPubMed Li F, Ulrich M, Jonas M, et al. Tumor-associated macrophages can contribute to antitumor activity through FcγR-mediated processing of antibody–drug conjugates. Mol Cancer Ther. 2017;16:1347–54.CrossRefPubMed
131.
Zurück zum Zitat Sharma SK, Chow A, Monette S, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res. 2018;78:1820–32.PubMedCentralPubMedCrossRef Sharma SK, Chow A, Monette S, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res. 2018;78:1820–32.PubMedCentralPubMedCrossRef
132.
Zurück zum Zitat Lo M, Kim HS, Tong RK, et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J Biol Chem. 2017;292:3900–8.PubMedCentralPubMedCrossRef Lo M, Kim HS, Tong RK, et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J Biol Chem. 2017;292:3900–8.PubMedCentralPubMedCrossRef
133.
Zurück zum Zitat Müller P, Martin K, Theurich S, et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res. 2014;2:741–55.PubMedCrossRef Müller P, Martin K, Theurich S, et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res. 2014;2:741–55.PubMedCrossRef
134.
Zurück zum Zitat Martin K, Müller P, Schreiner J, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63:925–38.PubMedCrossRef Martin K, Müller P, Schreiner J, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63:925–38.PubMedCrossRef
136.
Zurück zum Zitat Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32:3508–25.PubMedCrossRef Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32:3508–25.PubMedCrossRef
137.
Zurück zum Zitat Schmidt BJ, Pan C, Vezina HE, et al. Nonclinical pharmacology and mechanistic modeling of antibody-drug conjugates in support of human clinical trials. In: Olivier KJ, Hurvitz SA, editors. Antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Hoboken: Wiley; 2016. p. 207–43.CrossRef Schmidt BJ, Pan C, Vezina HE, et al. Nonclinical pharmacology and mechanistic modeling of antibody-drug conjugates in support of human clinical trials. In: Olivier KJ, Hurvitz SA, editors. Antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Hoboken: Wiley; 2016. p. 207–43.CrossRef
138.
Zurück zum Zitat Zhu AZ. Quantitative translational modeling to facilitate preclinical to clinical efficacy and toxicity translation in oncology. Futur Sci OA. 2018;4:306.CrossRef Zhu AZ. Quantitative translational modeling to facilitate preclinical to clinical efficacy and toxicity translation in oncology. Futur Sci OA. 2018;4:306.CrossRef
139.
Zurück zum Zitat Bender B, Leipold DD, Xu K, et al. A mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an antibody–drug conjugate (ADC) for treatment of metastatic breast cancer. AAPS J. 2014;16:994–1008.PubMedCentralPubMedCrossRef Bender B, Leipold DD, Xu K, et al. A mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an antibody–drug conjugate (ADC) for treatment of metastatic breast cancer. AAPS J. 2014;16:994–1008.PubMedCentralPubMedCrossRef
140.
Zurück zum Zitat Sukumaran S, Gadkar K, Zhang C, et al. Mechanism-based pharmacokinetic/pharmacodynamic model for THIOMAB™ drug conjugates. Pharm Res. 2015;32:1884–93.PubMedCrossRef Sukumaran S, Gadkar K, Zhang C, et al. Mechanism-based pharmacokinetic/pharmacodynamic model for THIOMAB™ drug conjugates. Pharm Res. 2015;32:1884–93.PubMedCrossRef
141.
Zurück zum Zitat Shah DK, Balthasar JP. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm. 2014;465:228–38.PubMedCentralPubMedCrossRef Shah DK, Balthasar JP. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm. 2014;465:228–38.PubMedCentralPubMedCrossRef
142.
Zurück zum Zitat Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.CrossRefPubMed Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.CrossRefPubMed
143.
Zurück zum Zitat Ait-Oudhia S, Zhang W, Mager DE. A mechanism-based PK/PD model for hematological toxicities induced by antibody-drug conjugates. AAPS J. 2017;19:1436–48.CrossRefPubMed Ait-Oudhia S, Zhang W, Mager DE. A mechanism-based PK/PD model for hematological toxicities induced by antibody-drug conjugates. AAPS J. 2017;19:1436–48.CrossRefPubMed
144.
Zurück zum Zitat Jumbe NL, Xin Y, Leipold DD, et al. Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J Pharmacokinet Pharmacodyn. 2010;37:221–42.CrossRefPubMed Jumbe NL, Xin Y, Leipold DD, et al. Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J Pharmacokinet Pharmacodyn. 2010;37:221–42.CrossRefPubMed
145.
146.
Zurück zum Zitat Sadekar S, Figueroa I, Tabrizi M. Antibody drug conjugates: application of quantitative pharmacology in modality design and target selection. AAPS J. 2015;17:828–36.PubMedCentralPubMedCrossRef Sadekar S, Figueroa I, Tabrizi M. Antibody drug conjugates: application of quantitative pharmacology in modality design and target selection. AAPS J. 2015;17:828–36.PubMedCentralPubMedCrossRef
147.
Zurück zum Zitat Maass KF, Kulkarni C, Betts AM, Wittrup KD. Determination of cellular processing rates for a trastuzumab-maytansinoid antibody-drug conjugate (ADC) highlights key parameters for ADC design. AAPS J. 2016;18:635–46.PubMedCentralPubMedCrossRef Maass KF, Kulkarni C, Betts AM, Wittrup KD. Determination of cellular processing rates for a trastuzumab-maytansinoid antibody-drug conjugate (ADC) highlights key parameters for ADC design. AAPS J. 2016;18:635–46.PubMedCentralPubMedCrossRef
148.
Zurück zum Zitat Singh AP, Shah DK. Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with trastuzumab emtansine (T-DM1). AAPS J. 2017;19:1054–70.PubMedCrossRef Singh AP, Shah DK. Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with trastuzumab emtansine (T-DM1). AAPS J. 2017;19:1054–70.PubMedCrossRef
149.
Zurück zum Zitat Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn. 2012;39:643–59.CrossRefPubMed Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn. 2012;39:643–59.CrossRefPubMed
150.
Zurück zum Zitat Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 Is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015;75:5329–40.PubMedCrossRef Hamblett KJ, Jacob AP, Gurgel JL, et al. SLC46A3 Is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015;75:5329–40.PubMedCrossRef
151.
Zurück zum Zitat Shah DK, Loganzo F, Haddish-Berhane N, et al. Establishing in vitro–in vivo correlation for antibody drug conjugate efficacy: a PK/PD modeling approach. J Pharmacokinet Pharmacodyn. 2018;45:339–49.PubMedCrossRef Shah DK, Loganzo F, Haddish-Berhane N, et al. Establishing in vitro–in vivo correlation for antibody drug conjugate efficacy: a PK/PD modeling approach. J Pharmacokinet Pharmacodyn. 2018;45:339–49.PubMedCrossRef
152.
Zurück zum Zitat Eftimie R, Gillard JJ, Cantrell DA. Mathematical models for immunology: current state of the art and future research directions. Bull Math Biol. 2016;78:2091–134.PubMedCentralPubMedCrossRef Eftimie R, Gillard JJ, Cantrell DA. Mathematical models for immunology: current state of the art and future research directions. Bull Math Biol. 2016;78:2091–134.PubMedCentralPubMedCrossRef
153.
Zurück zum Zitat Hoffman F, Gavaghan D, Osborne J, et al. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC). J Theor Biol. 2018;436:39–50.PubMedCrossRef Hoffman F, Gavaghan D, Osborne J, et al. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC). J Theor Biol. 2018;436:39–50.PubMedCrossRef
154.
Zurück zum Zitat Mahlbacher G, Curtis LT, Lowengrub J, Frieboes HB. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer. 2018;6:10.PubMedCentralPubMedCrossRef Mahlbacher G, Curtis LT, Lowengrub J, Frieboes HB. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer. 2018;6:10.PubMedCentralPubMedCrossRef
Metadaten
Titel
Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody–Drug Conjugates
verfasst von
Eshita Khera
Greg M. Thurber
Publikationsdatum
01.10.2018
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 5/2018
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.1007/s40259-018-0302-5

Weitere Artikel der Ausgabe 5/2018

BioDrugs 5/2018 Zur Ausgabe

Adis Biosimilar Brief

SB5: An Adalimumab Biosimilar