Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2001

01.11.2001 | Review Articles

Pharmacokinetic Aspects of Treating Infections in the Intensive Care Unit

Focus on Drug Interactions

verfasst von: Dr Federico Pea, Mario Furlanut

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2001

Einloggen, um Zugang zu erhalten

Abstract

Pharmacokinetic interactions involving anti-infective drugs may be important in the intensive care unit (ICU). Although some interactions involve absorption or distribution, the most clinically relevant interactions during anti-infective treatment involve the elimination phase.
Cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 are the major isoforms responsible for oxidative metabolism of drugs. Macrolides (especially troleandomycin and erythromycin versus CYP3A4), fluoroquinolones (especially enoxacin, ciprofloxacin and norfloxacin versus CYP1A2) and azole antifungals (especially fluconazole versus CYP2C9 and CYP2C19, and ketoconazole and itraconazole versus CYP3A4) are all inhibitors of CYP-mediated metabolism and may therefore be responsible for toxicity of other coadministered drugs by decreasing their clearance. On the other hand, rifampicin is a nonspecific inducer of CYP-mediated metabolism (especially of CYP2C9, CYP2C19 and CYP3A4) and may therefore cause therapeutic failure of other coadministered drugs by increasing their clearance.
Drugs frequently used in the ICU that are at risk of clinically relevant pharmacokinetic interactions with anti-infective agents include some benzodiazepines (especially midazolam and triazolam), immunosuppressive agents (cyclosporin, tacrolimus), antiasthmatic agents (theophylline), opioid analgesics (alfentanil), anticonvulsants (phenytoin, carbamazepine), calcium antagonists (verapamil, nifedipine, felodipine) and anticoagulants (warfarin).
Some lipophilic anti-infective agents inhibit (clarithromycin, itraconazole) or induce (rifampicin) the transmembrane transporter P-glycoprotein, which promotes excretion from renal tubular and intestinal cells. This results in a decrease or increase, respectively, in the clearance of P-glycoprotein substrates at the renal level and an increase or decrease, respectively, of their oral bioavailability at the intestinal level.
Hydrophilic anti-infective agents are often eliminated unchanged by renal glomerular filtration and tubular secretion, and are therefore involved in competition for excretion. β-Lactams are known to compete with other drugs for renal tubular secretion mediated by the organic anion transport system, but this is frequently not of major concern, given their wide therapeutic index. However, there is a risk of nephrotoxicity and neurotoxicity with some cephalosporins and carbapenems. Therapeutic failure with these hydrophilic compounds may be due to haemodynamically active coadministered drugs, such as dopamine, dobutamine and furosemide, which increase their renal clearance by means of enhanced cardiac output and/or renal blood flow.
Therefore, coadministration of some drugs should be avoided, or at least careful therapeutic drug monitoring should be performed when available. Monitoring may be especially helpful when there is some coexisting pathophysiological condition affecting drug disposition, for example malabsorption or marked instability of the systemic circulation or of renal or hepatic function.
Literatur
1.
Zurück zum Zitat Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995; 274(8): 639–44PubMedCrossRef Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995; 274(8): 639–44PubMedCrossRef
2.
Zurück zum Zitat Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38PubMedCrossRef Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38PubMedCrossRef
3.
Zurück zum Zitat Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17PubMedCrossRef Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17PubMedCrossRef
4.
Zurück zum Zitat Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57PubMedCrossRef Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57PubMedCrossRef
5.
Zurück zum Zitat Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38(2): 111–80PubMedCrossRef Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38(2): 111–80PubMedCrossRef
6.
Zurück zum Zitat Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23PubMed Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23PubMed
7.
Zurück zum Zitat Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36(1): 89–96PubMed Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36(1): 89–96PubMed
8.
Zurück zum Zitat Schmider J, Brockmoller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9(6): 725–34PubMedCrossRef Schmider J, Brockmoller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9(6): 725–34PubMedCrossRef
9.
Zurück zum Zitat Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38(2): 131–7PubMedCrossRef Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38(2): 131–7PubMedCrossRef
10.
Zurück zum Zitat Yasumori T, Nagata K, Yang SK, et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993; 3(6): 291–301PubMedCrossRef Yasumori T, Nagata K, Yang SK, et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993; 3(6): 291–301PubMedCrossRef
11.
Zurück zum Zitat Schwarz HJ. Pharmacokinetics and metabolism of temazepam in man and several animal species. Br J Clin Pharmacol 1979; 8(1): 23S–9SPubMedCrossRef Schwarz HJ. Pharmacokinetics and metabolism of temazepam in man and several animal species. Br J Clin Pharmacol 1979; 8(1): 23S–9SPubMedCrossRef
12.
Zurück zum Zitat Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43(6): 630–5PubMedCrossRef Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43(6): 630–5PubMedCrossRef
13.
Zurück zum Zitat Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3 A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20(5): 753–61PubMed Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3 A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20(5): 753–61PubMed
14.
15.
Zurück zum Zitat Campana C, Regazzi MB, Buggia I, et al. Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet 1996; 30(2): 141–79PubMedCrossRef Campana C, Regazzi MB, Buggia I, et al. Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet 1996; 30(2): 141–79PubMedCrossRef
16.
Zurück zum Zitat Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404–30PubMedCrossRef Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404–30PubMedCrossRef
17.
Zurück zum Zitat Christians U, Braun F, Schmidt M, et al. Specific and sensitive measurement of FK506 and its metabolites in blood and urine of liver-graft recipients. Clin Chem 1992; 38(10): 2025–32PubMed Christians U, Braun F, Schmidt M, et al. Specific and sensitive measurement of FK506 and its metabolites in blood and urine of liver-graft recipients. Clin Chem 1992; 38(10): 2025–32PubMed
18.
Zurück zum Zitat Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276(3): 912–7PubMed Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276(3): 912–7PubMed
19.
Zurück zum Zitat Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4. An explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76(5): 1033–9PubMedCrossRef Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4. An explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76(5): 1033–9PubMedCrossRef
20.
Zurück zum Zitat Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50PubMedCrossRef Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50PubMedCrossRef
21.
Zurück zum Zitat Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos 1996; 24(9): 932–9PubMed Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos 1996; 24(9): 932–9PubMed
22.
Zurück zum Zitat Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77(3): 467–74PubMedCrossRef Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77(3): 467–74PubMedCrossRef
23.
Zurück zum Zitat Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503 A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23(4): 490–6PubMed Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503 A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23(4): 490–6PubMed
24.
Zurück zum Zitat Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996; 82(1): 167–72PubMed Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996; 82(1): 167–72PubMed
25.
Zurück zum Zitat Guitton J, Buronfosse T, Desage M, et al. Possible involvement of multiple cytochrome P450s in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 1997; 53(11): 1613–9PubMedCrossRef Guitton J, Buronfosse T, Desage M, et al. Possible involvement of multiple cytochrome P450s in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 1997; 53(11): 1613–9PubMedCrossRef
26.
Zurück zum Zitat Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10, 11-epoxide formation. Biochem Pharmacol 1994; 47(11): 1969–79PubMedCrossRef Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10, 11-epoxide formation. Biochem Pharmacol 1994; 47(11): 1969–79PubMedCrossRef
27.
Zurück zum Zitat Tucker RM, Denning DW, Hanson LH, et al. Interaction of azoles with rifampin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis 1992; 14(1): 165–74PubMedCrossRef Tucker RM, Denning DW, Hanson LH, et al. Interaction of azoles with rifampin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis 1992; 14(1): 165–74PubMedCrossRef
28.
Zurück zum Zitat Bonay M, Jonville-Bera AP, Diot P, et al. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf 1993; 9(4): 309–11PubMedCrossRef Bonay M, Jonville-Bera AP, Diot P, et al. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf 1993; 9(4): 309–11PubMedCrossRef
29.
Zurück zum Zitat Dickinson RG, Hooper WD, Patterson M, et al. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 1985; 7(3): 283–9PubMedCrossRef Dickinson RG, Hooper WD, Patterson M, et al. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 1985; 7(3): 283–9PubMedCrossRef
30.
Zurück zum Zitat Cadle RM, Zenon GJ 3rd, Rodriguez-Barradas MC, et al. Fluconazole-induced symptomatic phenytoin toxicity. Ann Pharmacother 1994; 28(2): 191–5PubMed Cadle RM, Zenon GJ 3rd, Rodriguez-Barradas MC, et al. Fluconazole-induced symptomatic phenytoin toxicity. Ann Pharmacother 1994; 28(2): 191–5PubMed
31.
Zurück zum Zitat Bajpai M, Roskos LK, Shen DD, et al. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos 1996; 24(12): 1401–3PubMed Bajpai M, Roskos LK, Shen DD, et al. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos 1996; 24(12): 1401–3PubMed
32.
Zurück zum Zitat Guengerich FP, Brian WR, Iwasaki M, et al. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34(6): 1838–44PubMedCrossRef Guengerich FP, Brian WR, Iwasaki M, et al. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34(6): 1838–44PubMedCrossRef
33.
Zurück zum Zitat Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 1997; 282(1): 294–300PubMed Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 1997; 282(1): 294–300PubMed
34.
Zurück zum Zitat Bailey DG, Arnold JM, Munoz C, et al. Grapefruit juicefelodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53(6): 637–42PubMedCrossRef Bailey DG, Arnold JM, Munoz C, et al. Grapefruit juicefelodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53(6): 637–42PubMedCrossRef
35.
Zurück zum Zitat Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(3): 332–7PubMedCrossRef Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(3): 332–7PubMedCrossRef
36.
Zurück zum Zitat Krecic-Shepard ME, Barnas CR, Slimko J, et al. In vivo comparison of putative probes of CYP3A4/5 activity: erythromycin, dextromethorphan, and verapamil. Clin Pharmacol Ther 1999; 66(1): 40–50PubMedCrossRef Krecic-Shepard ME, Barnas CR, Slimko J, et al. In vivo comparison of putative probes of CYP3A4/5 activity: erythromycin, dextromethorphan, and verapamil. Clin Pharmacol Ther 1999; 66(1): 40–50PubMedCrossRef
37.
Zurück zum Zitat Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99(10): 2545–53PubMedCrossRef Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99(10): 2545–53PubMedCrossRef
38.
Zurück zum Zitat Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 2000; 28(2): 125–30PubMed Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 2000; 28(2): 125–30PubMed
39.
Zurück zum Zitat Zhang Z, Fasco MJ, Huang Z, et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23(12): 1339–46PubMed Zhang Z, Fasco MJ, Huang Z, et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23(12): 1339–46PubMed
40.
41.
Zurück zum Zitat Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol 1997; 54(11): 1195–203PubMedCrossRef Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol 1997; 54(11): 1195–203PubMedCrossRef
42.
Zurück zum Zitat Tanigawara Y Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22(1): 137–40CrossRef Tanigawara Y Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22(1): 137–40CrossRef
43.
Zurück zum Zitat Hori R, Okamura N, Aiba T, et al. Role of P-glycoprotein in renal tubular secretion of digoxin in the isolated perfused rat kidney. J Pharmacol Exp Ther 1993; 266(3): 1620–5PubMed Hori R, Okamura N, Aiba T, et al. Role of P-glycoprotein in renal tubular secretion of digoxin in the isolated perfused rat kidney. J Pharmacol Exp Ther 1993; 266(3): 1620–5PubMed
44.
Zurück zum Zitat Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62(3): 248–60PubMedCrossRef Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62(3): 248–60PubMedCrossRef
45.
Zurück zum Zitat Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 1998; 64(1): 123–8PubMedCrossRef Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 1998; 64(1): 123–8PubMedCrossRef
46.
Zurück zum Zitat Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104(2): 147–53PubMedCrossRef Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104(2): 147–53PubMedCrossRef
47.
Zurück zum Zitat Besseghir K, Roch-Ramel F. Renal excretion of drugs and other xenobiotics. Ren Physiol 1987; 10(5): 221–41PubMed Besseghir K, Roch-Ramel F. Renal excretion of drugs and other xenobiotics. Ren Physiol 1987; 10(5): 221–41PubMed
48.
Zurück zum Zitat Tsuji A, Terasaki T, Tamai I, et al. In vivo evidence for carriermediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther 1990; 253(1): 315–20PubMed Tsuji A, Terasaki T, Tamai I, et al. In vivo evidence for carriermediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther 1990; 253(1): 315–20PubMed
49.
Zurück zum Zitat Overbosch D, Van Gulpen C, Hermans J, et al. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol 1988; 25(1): 51–8PubMedCrossRef Overbosch D, Van Gulpen C, Hermans J, et al. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol 1988; 25(1): 51–8PubMedCrossRef
50.
Zurück zum Zitat Hatos G. Treatment of gonorrhoea by penicillin and a renal blocking agent (probenecid). Med J Aust 1970; 1(22): 1096–9PubMed Hatos G. Treatment of gonorrhoea by penicillin and a renal blocking agent (probenecid). Med J Aust 1970; 1(22): 1096–9PubMed
51.
Zurück zum Zitat Bonate PL, Reith K, Weir S. Drug interactions at the renal level. Implications for drug development. Clin Pharmacokinet 1998; 34(5): 375–404PubMedCrossRef Bonate PL, Reith K, Weir S. Drug interactions at the renal level. Implications for drug development. Clin Pharmacokinet 1998; 34(5): 375–404PubMedCrossRef
52.
Zurück zum Zitat Brown GR. Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 1993; 24(4): 289–300PubMedCrossRef Brown GR. Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 1993; 24(4): 289–300PubMedCrossRef
53.
Zurück zum Zitat Olsen NV. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull 1998; 45(3): 282–97PubMed Olsen NV. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull 1998; 45(3): 282–97PubMed
54.
Zurück zum Zitat Leier CV, Webel J, Bush CA. The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation 1977; 56(3): 468–72PubMedCrossRef Leier CV, Webel J, Bush CA. The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation 1977; 56(3): 468–72PubMedCrossRef
55.
Zurück zum Zitat Lass NA, Glock D, Goldberg LI. Cardiovascular and renal hemodynamic effects of intravenous infusions of the selective DAI agonist, fenoldopam, used alone or in combination with dopamine and dobutamine. Circulation 1988; 78 (5 Pt 1): 1310–5PubMedCrossRef Lass NA, Glock D, Goldberg LI. Cardiovascular and renal hemodynamic effects of intravenous infusions of the selective DAI agonist, fenoldopam, used alone or in combination with dopamine and dobutamine. Circulation 1988; 78 (5 Pt 1): 1310–5PubMedCrossRef
56.
Zurück zum Zitat Ludens JH, Hook JB, Brody MJ, et al. Enhancement of renal blood flow by furosemide. J Pharmacol Exp Ther 1968; 163(2): 456–60PubMed Ludens JH, Hook JB, Brody MJ, et al. Enhancement of renal blood flow by furosemide. J Pharmacol Exp Ther 1968; 163(2): 456–60PubMed
57.
Zurück zum Zitat Williamson HE, Bourland WA, Marchand GR, et al. Furosemide induced release of prostaglandin E to increase renal blood flow. Proc Soc Exp Biol Med 1975; 150(1): 104–6PubMed Williamson HE, Bourland WA, Marchand GR, et al. Furosemide induced release of prostaglandin E to increase renal blood flow. Proc Soc Exp Biol Med 1975; 150(1): 104–6PubMed
58.
Zurück zum Zitat Nuutinen LS, Tuononen S. The effect of furosemide on renal blood flow and renal tissue oxygen tension in dogs. Ann Chir Gynaecol 1976; 65(4): 272–6PubMed Nuutinen LS, Tuononen S. The effect of furosemide on renal blood flow and renal tissue oxygen tension in dogs. Ann Chir Gynaecol 1976; 65(4): 272–6PubMed
59.
Zurück zum Zitat Ljubicic N, Bilic A, Plavsic V. Effect of propranolol on urinary prostaglandin E2 excretion and renal interlobar arterial blood flow after furosemide administration in patients with hepatic cirrhosis. Eur J Clin Pharmacol 1992; 43(5): 555–8PubMedCrossRef Ljubicic N, Bilic A, Plavsic V. Effect of propranolol on urinary prostaglandin E2 excretion and renal interlobar arterial blood flow after furosemide administration in patients with hepatic cirrhosis. Eur J Clin Pharmacol 1992; 43(5): 555–8PubMedCrossRef
60.
Zurück zum Zitat Delaforge M, Jaouen M, Mansuy D. Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: a structure-activity relationship. Biochem Pharmacol 1983; 32(15): 2309–18PubMedCrossRef Delaforge M, Jaouen M, Mansuy D. Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: a structure-activity relationship. Biochem Pharmacol 1983; 32(15): 2309–18PubMedCrossRef
61.
Zurück zum Zitat Pessayre D, Larrey D, Vitaux J, et al. Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem Pharmacol 1982; 31(9): 1699–704PubMedCrossRef Pessayre D, Larrey D, Vitaux J, et al. Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem Pharmacol 1982; 31(9): 1699–704PubMedCrossRef
62.
Zurück zum Zitat Larrey D, Funck-Brentano C, Breil P, et al. Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 1983; 32(6): 1063–8PubMedCrossRef Larrey D, Funck-Brentano C, Breil P, et al. Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 1983; 32(6): 1063–8PubMedCrossRef
63.
Zurück zum Zitat Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992; 23(2): 106–31PubMedCrossRef Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992; 23(2): 106–31PubMedCrossRef
64.
Zurück zum Zitat von Rosensteil NA, Adam D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf 1995; 13(2): 105–22CrossRef von Rosensteil NA, Adam D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf 1995; 13(2): 105–22CrossRef
65.
Zurück zum Zitat Amsden GW Macrolides versus azalides: a drug interaction update. Ann Pharmacother 1995; 29(9): 906–17PubMed Amsden GW Macrolides versus azalides: a drug interaction update. Ann Pharmacother 1995; 29(9): 906–17PubMed
66.
Zurück zum Zitat Nahata M. Drug interactions with azithromycin and the macrolides: an overview. J Antimicrob Chemother 1996; 37 Suppl. C: 133–42PubMedCrossRef Nahata M. Drug interactions with azithromycin and the macrolides: an overview. J Antimicrob Chemother 1996; 37 Suppl. C: 133–42PubMedCrossRef
67.
Zurück zum Zitat Watkins VS, Polk RE, Stotka JL. Drug interactions of macrolides: emphasis on dirithromycin. Ann Pharmacother 1997; 31(3): 349–56PubMed Watkins VS, Polk RE, Stotka JL. Drug interactions of macrolides: emphasis on dirithromycin. Ann Pharmacother 1997; 31(3): 349–56PubMed
68.
Zurück zum Zitat Pai MP, Graci DM, Amsden GW. Macrolide drug interactions: an update. Ann Pharmacother 2000; 34(4): 495–513PubMedCrossRef Pai MP, Graci DM, Amsden GW. Macrolide drug interactions: an update. Ann Pharmacother 2000; 34(4): 495–513PubMedCrossRef
69.
Zurück zum Zitat Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000; 50(4): 285–95PubMedCrossRef Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000; 50(4): 285–95PubMedCrossRef
70.
Zurück zum Zitat Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53(3): 298–305PubMedCrossRef Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53(3): 298–305PubMedCrossRef
71.
Zurück zum Zitat Mattila MJ, Idanpaan-Heikkila JJ, Tornwall M, et al. Oral single doses of erythromycin and roxithromycin may increase the effects of midazolam on human performance. Pharmacol Toxicol 1993; 73(3): 180–5PubMedCrossRef Mattila MJ, Idanpaan-Heikkila JJ, Tornwall M, et al. Oral single doses of erythromycin and roxithromycin may increase the effects of midazolam on human performance. Pharmacol Toxicol 1993; 73(3): 180–5PubMedCrossRef
72.
Zurück zum Zitat Yeates RA, Laufen H, Zimmermann T, et al. Pharmacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin. Int J Clin Pharmacol Ther 1997; 35(12): 577–9PubMed Yeates RA, Laufen H, Zimmermann T, et al. Pharmacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin. Int J Clin Pharmacol Ther 1997; 35(12): 577–9PubMed
73.
Zurück zum Zitat Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43PubMedCrossRef Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43PubMedCrossRef
74.
Zurück zum Zitat Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34(9): 400–5PubMed Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34(9): 400–5PubMed
75.
Zurück zum Zitat Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5PubMedCrossRef Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5PubMedCrossRef
76.
Zurück zum Zitat Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995; 33(6): 356–9PubMed Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995; 33(6): 356–9PubMed
77.
Zurück zum Zitat Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittel Forschung 1996; 46(2): 213–7PubMed Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittel Forschung 1996; 46(2): 213–7PubMed
78.
Zurück zum Zitat Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6(5): 297–9PubMedCrossRef Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6(5): 297–9PubMedCrossRef
79.
Zurück zum Zitat Warot D, Bergougnan L, Lamiable D, et al. Troleandomycintriazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur J Clin Pharmacol 1987; 32(4): 389–93PubMedCrossRef Warot D, Bergougnan L, Lamiable D, et al. Troleandomycintriazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur J Clin Pharmacol 1987; 32(4): 389–93PubMedCrossRef
80.
Zurück zum Zitat Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and nitrazepam in healthy volunteers. Pharmacol Toxicol 1995; 76(4): 255–8PubMedCrossRef Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and nitrazepam in healthy volunteers. Pharmacol Toxicol 1995; 76(4): 255–8PubMedCrossRef
81.
Zurück zum Zitat Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 1996; 78(2): 117–22PubMedCrossRef Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 1996; 78(2): 117–22PubMedCrossRef
82.
Zurück zum Zitat Luurila H, Olkkola KT, Neuvonen PJ. Lack of interaction of erythromycin with temazepam. Ther Drug Monit 1994; 16(6): 548–51PubMedCrossRef Luurila H, Olkkola KT, Neuvonen PJ. Lack of interaction of erythromycin with temazepam. Ther Drug Monit 1994; 16(6): 548–51PubMedCrossRef
83.
Zurück zum Zitat Martell R, Heinrichs D, Stiller CR, et al. The effects of erythromycin in patients treated with cyclosporine. Ann Intern Med 1986; 104(5): 660–1PubMed Martell R, Heinrichs D, Stiller CR, et al. The effects of erythromycin in patients treated with cyclosporine. Ann Intern Med 1986; 104(5): 660–1PubMed
84.
Zurück zum Zitat Harnett JD, Parfrey PS, Paul MD, et al. Erythromycin-cyclosporine interaction in renal transplant recipients. Transplantation 1987; 43(2): 316–8PubMedCrossRef Harnett JD, Parfrey PS, Paul MD, et al. Erythromycin-cyclosporine interaction in renal transplant recipients. Transplantation 1987; 43(2): 316–8PubMedCrossRef
85.
Zurück zum Zitat Jensen CW, Flechner SM, Van Buren CT, et al. Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation 1987; 43(2): 263–70PubMedCrossRef Jensen CW, Flechner SM, Van Buren CT, et al. Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation 1987; 43(2): 263–70PubMedCrossRef
86.
Zurück zum Zitat Gupta SK, Bakran A, Johnson RW, et al. Erythromycin enhances the absorption of cyclosporin. Br J Clin Pharmacol 1988; 25(3): 401–2PubMedCrossRef Gupta SK, Bakran A, Johnson RW, et al. Erythromycin enhances the absorption of cyclosporin. Br J Clin Pharmacol 1988; 25(3): 401–2PubMedCrossRef
87.
Zurück zum Zitat Koselj M, Bren A, Kandus A, et al. Drug interactions between cyclosporine and rifampicin, erythromycin, and azoles in kidney recipients with opportunistic infections. Transplant Proc 1994; 26(5): 2823–4PubMed Koselj M, Bren A, Kandus A, et al. Drug interactions between cyclosporine and rifampicin, erythromycin, and azoles in kidney recipients with opportunistic infections. Transplant Proc 1994; 26(5): 2823–4PubMed
88.
Zurück zum Zitat Zylber-Katz E. Multiple drug interactions with cyclosporine in a heart transplant patient. Ann Pharmacother 1995; 29(2): 127–31PubMed Zylber-Katz E. Multiple drug interactions with cyclosporine in a heart transplant patient. Ann Pharmacother 1995; 29(2): 127–31PubMed
89.
Zurück zum Zitat Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporinerythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23(6): 776–8PubMed Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporinerythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23(6): 776–8PubMed
90.
Zurück zum Zitat Gersema LM, Porter CB, Russell EH. Suspected drug interaction between cyclosporine and clarithromycin [letter]. J Heart Lung Transplant 1994; 13(2): 343–5PubMed Gersema LM, Porter CB, Russell EH. Suspected drug interaction between cyclosporine and clarithromycin [letter]. J Heart Lung Transplant 1994; 13(2): 343–5PubMed
91.
Zurück zum Zitat Ferrari SL, Goffin E, Mourad M, et al. The interaction between clarithromycin and cyclosporine in kidney transplant recipients. Transplantation 1994; 58(6): 725–7PubMed Ferrari SL, Goffin E, Mourad M, et al. The interaction between clarithromycin and cyclosporine in kidney transplant recipients. Transplantation 1994; 58(6): 725–7PubMed
92.
Zurück zum Zitat Sketris IS, Wright MR, West ML. Possible role of the intestinal P-450 enzyme system in a cyclosporine-clarithromycin interaction. Pharmacotherapy 1996; 16(2): 301–5PubMed Sketris IS, Wright MR, West ML. Possible role of the intestinal P-450 enzyme system in a cyclosporine-clarithromycin interaction. Pharmacotherapy 1996; 16(2): 301–5PubMed
93.
Zurück zum Zitat Spicer ST, Liddle C, Chapman JR, et al. The mechanism of cyclosporine toxicity induced by clarithromycin. Br J Clin Pharmacol 1997; 43(2): 194–6PubMedCrossRef Spicer ST, Liddle C, Chapman JR, et al. The mechanism of cyclosporine toxicity induced by clarithromycin. Br J Clin Pharmacol 1997; 43(2): 194–6PubMedCrossRef
94.
Zurück zum Zitat Sadaba B, Lopez de Ocariz A, Azanza JR, et al. Concurrent clarithromycin and cyclosporin A treatment. J Antimicrob Chemother 1998; 42(3): 393–5PubMedCrossRef Sadaba B, Lopez de Ocariz A, Azanza JR, et al. Concurrent clarithromycin and cyclosporin A treatment. J Antimicrob Chemother 1998; 42(3): 393–5PubMedCrossRef
95.
Zurück zum Zitat Billaud EM, Guillemain R, Fortineau N, et al. Interaction between roxithromycin and cyclosporin in heart transplant patients. Clin Pharmacokinet 1990; 19(6): 499–502PubMedCrossRef Billaud EM, Guillemain R, Fortineau N, et al. Interaction between roxithromycin and cyclosporin in heart transplant patients. Clin Pharmacokinet 1990; 19(6): 499–502PubMedCrossRef
96.
Zurück zum Zitat Gomez E, Sanchez-Nunez M, Sanchez JE, et al. Treatment of cyclosporin-induced gingival hyperplasia with azithromycin. Nephrol Dial Transplant 1997; 12(12): 2694–7PubMedCrossRef Gomez E, Sanchez-Nunez M, Sanchez JE, et al. Treatment of cyclosporin-induced gingival hyperplasia with azithromycin. Nephrol Dial Transplant 1997; 12(12): 2694–7PubMedCrossRef
97.
Zurück zum Zitat Palomar R, Belart M, Soy D, et al. Effectiveness and safety of azithromycin on the treatment of cyclosporine-induced gingival overgrowth [letter]. Nephron 1998; 79(1): 101–2PubMedCrossRef Palomar R, Belart M, Soy D, et al. Effectiveness and safety of azithromycin on the treatment of cyclosporine-induced gingival overgrowth [letter]. Nephron 1998; 79(1): 101–2PubMedCrossRef
98.
Zurück zum Zitat Wirnsberger GH, Pfragner R, Mauric A, et al. Effect of antibiotic treatment with azithromycin on cyclosporine A-induced gingival hyperplasia among renal transplant recipients. Transplant Proc 1998; 30(5): 2117–9PubMedCrossRef Wirnsberger GH, Pfragner R, Mauric A, et al. Effect of antibiotic treatment with azithromycin on cyclosporine A-induced gingival hyperplasia among renal transplant recipients. Transplant Proc 1998; 30(5): 2117–9PubMedCrossRef
99.
Zurück zum Zitat Nowicki M, Kokot F, Wiecek A. Partial regression of advanced cyclosporin-induced gingival hyperplasia after treatment with azithromycin. A case report. Ann Transplant 1998; 3(3): 25–7PubMed Nowicki M, Kokot F, Wiecek A. Partial regression of advanced cyclosporin-induced gingival hyperplasia after treatment with azithromycin. A case report. Ann Transplant 1998; 3(3): 25–7PubMed
100.
Zurück zum Zitat Shaeffer MS, Collier D, Sorrell ME Interaction between FK506 and erythromycin [letter]. Ann Pharmacother 1994; 28(2): 280–1PubMed Shaeffer MS, Collier D, Sorrell ME Interaction between FK506 and erythromycin [letter]. Ann Pharmacother 1994; 28(2): 280–1PubMed
101.
Zurück zum Zitat Jensen C, Jordan M, Shapiro R, et al. Interaction between tacrolimus and erythromycin [letter]. Lancet 1994; 344(8925): 825PubMedCrossRef Jensen C, Jordan M, Shapiro R, et al. Interaction between tacrolimus and erythromycin [letter]. Lancet 1994; 344(8925): 825PubMedCrossRef
102.
Zurück zum Zitat Padhi ID, Long P, Basha M, et al. Interaction between tacrolimus and erythromycin. Ther Drug Monit 1997; 19(1): 120–2PubMedCrossRef Padhi ID, Long P, Basha M, et al. Interaction between tacrolimus and erythromycin. Ther Drug Monit 1997; 19(1): 120–2PubMedCrossRef
103.
Zurück zum Zitat Wolter K, Wagner K, Philipp T, et al. Interaction between FK 506 and clarithromycin in a renal transplant patient [letter]. Eur J Clin Pharmacol 1994; 47(2): 207–8PubMedCrossRef Wolter K, Wagner K, Philipp T, et al. Interaction between FK 506 and clarithromycin in a renal transplant patient [letter]. Eur J Clin Pharmacol 1994; 47(2): 207–8PubMedCrossRef
104.
Zurück zum Zitat Katari SR, Magnone M, Shapiro R, et al. Clinical features of acute reversible tacrolimus (FK 506) nephrotoxicity in kidney transplant recipients. Clin Transplant 1997; 11(3): 237–42PubMed Katari SR, Magnone M, Shapiro R, et al. Clinical features of acute reversible tacrolimus (FK 506) nephrotoxicity in kidney transplant recipients. Clin Transplant 1997; 11(3): 237–42PubMed
105.
Zurück zum Zitat Gomez G, Alvarez ML, Errasti P, et al. Acute tacrolimus nephrotoxicity in renal transplant patients treated with clarithromycin. Transplant Proc 1999; 31(6): 2250–1PubMedCrossRef Gomez G, Alvarez ML, Errasti P, et al. Acute tacrolimus nephrotoxicity in renal transplant patients treated with clarithromycin. Transplant Proc 1999; 31(6): 2250–1PubMedCrossRef
106.
Zurück zum Zitat Bartolucci L, Gradoli C, Vincenzi V, et al. Macrolide antibiotics and serum theophylline levels in relation to the severity of respiratory impairment: a comparison between the effects of erythromycin and josamycin. Chemioterapia 1984; 3(5): 286–90PubMed Bartolucci L, Gradoli C, Vincenzi V, et al. Macrolide antibiotics and serum theophylline levels in relation to the severity of respiratory impairment: a comparison between the effects of erythromycin and josamycin. Chemioterapia 1984; 3(5): 286–90PubMed
107.
Zurück zum Zitat Wiggins J, Arbab O, Ayres JG, et al. Elevated serum theophylline concentration following cessation of erythromycin treatment. Eur J Respir Dis 1986; 68(4): 298–300PubMed Wiggins J, Arbab O, Ayres JG, et al. Elevated serum theophylline concentration following cessation of erythromycin treatment. Eur J Respir Dis 1986; 68(4): 298–300PubMed
108.
Zurück zum Zitat Paulsen O, Hoglund P, Nilsson LG, et al. The interaction of erythromycin with theophylline. Eur J Clin Pharmacol 1987; 32(5): 493–8PubMedCrossRef Paulsen O, Hoglund P, Nilsson LG, et al. The interaction of erythromycin with theophylline. Eur J Clin Pharmacol 1987; 32(5): 493–8PubMedCrossRef
109.
Zurück zum Zitat Ludden TM. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985; 10(1): 63–79PubMedCrossRef Ludden TM. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985; 10(1): 63–79PubMedCrossRef
110.
Zurück zum Zitat Ha HR, Chen J, Freiburghaus AU, et al. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol 1995; 39(3): 321–6PubMedCrossRef Ha HR, Chen J, Freiburghaus AU, et al. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol 1995; 39(3): 321–6PubMedCrossRef
111.
Zurück zum Zitat Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25(6): 450–82PubMedCrossRef Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25(6): 450–82PubMedCrossRef
112.
Zurück zum Zitat Gillum JG, Israel DS, Scott RB, et al. Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 1996; 40(7): 1715–6PubMed Gillum JG, Israel DS, Scott RB, et al. Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 1996; 40(7): 1715–6PubMed
113.
Zurück zum Zitat McConnell SA, Nafziger AN, Amsden GW. Lack of effect of dirithromycin on theophylline pharmacokinetics in healthy volunteers. J Antimicrob Chemother 1999; 43(5): 733–6PubMedCrossRef McConnell SA, Nafziger AN, Amsden GW. Lack of effect of dirithromycin on theophylline pharmacokinetics in healthy volunteers. J Antimicrob Chemother 1999; 43(5): 733–6PubMedCrossRef
114.
Zurück zum Zitat Cazzola M, Matera MG, Paterno E, et al. Impact of rokitamycin, anew 16-membered macrolide, on serum theophylline. J Chemother 1991; 3(4): 240–4PubMed Cazzola M, Matera MG, Paterno E, et al. Impact of rokitamycin, anew 16-membered macrolide, on serum theophylline. J Chemother 1991; 3(4): 240–4PubMed
115.
Zurück zum Zitat Bartkowski RR, Goldberg ME, Larijani GE, et al. Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 1989; 46(1): 99–102PubMedCrossRef Bartkowski RR, Goldberg ME, Larijani GE, et al. Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 1989; 46(1): 99–102PubMedCrossRef
116.
Zurück zum Zitat Bartkowski RR, McDonnell TE. Prolonged alfentanil effect following erythromycin administration. Anesthesiology 1990; 73(3): 566–8PubMedCrossRef Bartkowski RR, McDonnell TE. Prolonged alfentanil effect following erythromycin administration. Anesthesiology 1990; 73(3): 566–8PubMedCrossRef
117.
Zurück zum Zitat Dravet C, Mesdjian E, Cenraud B, et al. Interaction between carbamazepine and triacetyloleandomycin [letter]. Lancet 1977; I(8015): 810–1CrossRef Dravet C, Mesdjian E, Cenraud B, et al. Interaction between carbamazepine and triacetyloleandomycin [letter]. Lancet 1977; I(8015): 810–1CrossRef
118.
Zurück zum Zitat Wong YY, Ludden TM, Bell RD. Effect of erythromycin on carbamazepine kinetics. Clin Pharmacol Ther 1983; 33: 460–3PubMedCrossRef Wong YY, Ludden TM, Bell RD. Effect of erythromycin on carbamazepine kinetics. Clin Pharmacol Ther 1983; 33: 460–3PubMedCrossRef
119.
Zurück zum Zitat Hedrick R, Williams F, Morin R, et al. Carbamazepine-erythromycin interaction leading to carbamazepine toxicity in four epileptic children. Ther Drug Monit 1983; 5(4): 405–7PubMedCrossRef Hedrick R, Williams F, Morin R, et al. Carbamazepine-erythromycin interaction leading to carbamazepine toxicity in four epileptic children. Ther Drug Monit 1983; 5(4): 405–7PubMedCrossRef
120.
Zurück zum Zitat Carranco E, Karcus J, Co S. Carbamazepine toxicity induced by concurrent erythromycin therapy. Arch Neurol 1985; 42: 171–6CrossRef Carranco E, Karcus J, Co S. Carbamazepine toxicity induced by concurrent erythromycin therapy. Arch Neurol 1985; 42: 171–6CrossRef
121.
Zurück zum Zitat Mota CR, Carvalho C, Mota C, et al. Severe carbamazepine toxicity induced by concurrent erythromycin therapy [letter]. Eur J Pediatr 1996; 155(4): 345PubMedCrossRef Mota CR, Carvalho C, Mota C, et al. Severe carbamazepine toxicity induced by concurrent erythromycin therapy [letter]. Eur J Pediatr 1996; 155(4): 345PubMedCrossRef
122.
Zurück zum Zitat Dammann HG. Therapy with omeprazole and clarithromycin increases serum carbamazepine levels in patients with H. pylori gastritis [letter]. Dig Dis Sci 1996; 41(3): 519–20PubMedCrossRef Dammann HG. Therapy with omeprazole and clarithromycin increases serum carbamazepine levels in patients with H. pylori gastritis [letter]. Dig Dis Sci 1996; 41(3): 519–20PubMedCrossRef
123.
Zurück zum Zitat Yasui N, Otani K, Kaneko S, et al. Carbamazepine toxicity induced by clarithromycin coadministration in psychiatric patients. Int Clin Psychopharmacol 1997; 12(4): 225–9PubMedCrossRef Yasui N, Otani K, Kaneko S, et al. Carbamazepine toxicity induced by clarithromycin coadministration in psychiatric patients. Int Clin Psychopharmacol 1997; 12(4): 225–9PubMedCrossRef
124.
Zurück zum Zitat Sachdeo RC, Narang-Sachdeo S, Montgomery PA, et al. Evaluation of the potential interaction between felbamate and erythromycin in patients with epilepsy. J Clin Pharmacol 1998; 38(2): 184–90PubMed Sachdeo RC, Narang-Sachdeo S, Montgomery PA, et al. Evaluation of the potential interaction between felbamate and erythromycin in patients with epilepsy. J Clin Pharmacol 1998; 38(2): 184–90PubMed
125.
Zurück zum Zitat Thomsen MS, Groes L, Agerso H, et al. Lack of pharmacokinetic interaction between tiagabine and erythromycin. J Clin Pharmacol 1998; 38(11): 1051–6PubMedCrossRef Thomsen MS, Groes L, Agerso H, et al. Lack of pharmacokinetic interaction between tiagabine and erythromycin. J Clin Pharmacol 1998; 38(11): 1051–6PubMedCrossRef
126.
Zurück zum Zitat Bailey DG, Bend JR, Arnold JM, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60(1): 25–33PubMedCrossRef Bailey DG, Bend JR, Arnold JM, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60(1): 25–33PubMedCrossRef
127.
Zurück zum Zitat Liedholm H, Nordin G. Erythromycin-felodipine interaction [letter]. Drug Intell Clin Pharm 1991; 25(9): 1007–8 Liedholm H, Nordin G. Erythromycin-felodipine interaction [letter]. Drug Intell Clin Pharm 1991; 25(9): 1007–8
128.
Zurück zum Zitat Kaeser YA, Branner F, Drewe J, et al. Severe hypotension and bradycardia associated with verapamil and clarithromycin [letter]. Am J Health Syst Pharm 1998; 55(22): 2417–8PubMed Kaeser YA, Branner F, Drewe J, et al. Severe hypotension and bradycardia associated with verapamil and clarithromycin [letter]. Am J Health Syst Pharm 1998; 55(22): 2417–8PubMed
129.
Zurück zum Zitat Steenbergen JA, Stauffer VL. Potential macrolide interaction with verapamil [letter]. Ann Pharmacother 1998; 32(3): 387–8PubMedCrossRef Steenbergen JA, Stauffer VL. Potential macrolide interaction with verapamil [letter]. Ann Pharmacother 1998; 32(3): 387–8PubMedCrossRef
130.
Zurück zum Zitat Recker MW, Kier KL. Potential interaction between clarithromycin and warfarin. Ann Pharmacother 1997; 31(9): 996–8PubMed Recker MW, Kier KL. Potential interaction between clarithromycin and warfarin. Ann Pharmacother 1997; 31(9): 996–8PubMed
131.
Zurück zum Zitat Oberg KC. Delayed elevation of international normalized ratio with concurrent clarithromycin and warfarin therapy. Pharmacotherapy 1998; 18(2): 386–91PubMed Oberg KC. Delayed elevation of international normalized ratio with concurrent clarithromycin and warfarin therapy. Pharmacotherapy 1998; 18(2): 386–91PubMed
132.
Zurück zum Zitat Lane G. Increased hypoprothrombinemic effect of warfarin possibly induced by azithromycin [letter]. Ann Pharmacother 1996; 30(7-8): 884–5PubMed Lane G. Increased hypoprothrombinemic effect of warfarin possibly induced by azithromycin [letter]. Ann Pharmacother 1996; 30(7-8): 884–5PubMed
133.
Zurück zum Zitat Foster DR, Milan NL. Potential interaction between azithromycin and warfarin. Pharmacotherapy 1999; 19(7): 902–8PubMedCrossRef Foster DR, Milan NL. Potential interaction between azithromycin and warfarin. Pharmacotherapy 1999; 19(7): 902–8PubMedCrossRef
134.
Zurück zum Zitat Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64(2): 177–82PubMedCrossRef Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64(2): 177–82PubMedCrossRef
135.
Zurück zum Zitat van Haarst AD, van’t Klooster GA, van Gerven JM, et al. The influence of cisapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998; 64(5): 542–6PubMedCrossRef van Haarst AD, van’t Klooster GA, van Gerven JM, et al. The influence of cisapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998; 64(5): 542–6PubMedCrossRef
136.
Zurück zum Zitat Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 1998; 42(3): 631–9PubMed Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 1998; 42(3): 631–9PubMed
137.
Zurück zum Zitat Michalets EL, Williams CR. Drag interactions with cisapride. Clin Pharmacokinet 2000; 39(1): 49–75PubMedCrossRef Michalets EL, Williams CR. Drag interactions with cisapride. Clin Pharmacokinet 2000; 39(1): 49–75PubMedCrossRef
138.
Zurück zum Zitat Lindenbaum J, Rund DG, Butler Jr VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981; 305(14): 789–94PubMedCrossRef Lindenbaum J, Rund DG, Butler Jr VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981; 305(14): 789–94PubMedCrossRef
139.
Zurück zum Zitat Friedman HS, Bonventre MV. Erythromycin-induced digoxin toxicity [letter]. Chest 1982; 82(2): 202PubMedCrossRef Friedman HS, Bonventre MV. Erythromycin-induced digoxin toxicity [letter]. Chest 1982; 82(2): 202PubMedCrossRef
140.
141.
Zurück zum Zitat Morton MR, Cooper JW. Erythromycin-induced digoxin toxicity. Drug Intell Clin Pharm 1989; 23(9): 668–70 Morton MR, Cooper JW. Erythromycin-induced digoxin toxicity. Drug Intell Clin Pharm 1989; 23(9): 668–70
142.
Zurück zum Zitat Maxwell DL, Gilmour-White SK, Hall MR. Digoxin toxicity due to interaction of digoxin with erythromycin. BMJ 1989; 298(6673): 572PubMedCrossRef Maxwell DL, Gilmour-White SK, Hall MR. Digoxin toxicity due to interaction of digoxin with erythromycin. BMJ 1989; 298(6673): 572PubMedCrossRef
143.
Zurück zum Zitat Bizjak ED, Mauro VF. Digoxin-macrolide drug interaction. Ann Pharmacother 1997; 31(9): 1077–9PubMed Bizjak ED, Mauro VF. Digoxin-macrolide drug interaction. Ann Pharmacother 1997; 31(9): 1077–9PubMed
144.
Zurück zum Zitat Francis H, Tyndall A, Webb J. Severe vascular spasm due to erythromycin-ergotamine interaction. Clin Rheumatol 1984; 3(2): 243–6PubMedCrossRef Francis H, Tyndall A, Webb J. Severe vascular spasm due to erythromycin-ergotamine interaction. Clin Rheumatol 1984; 3(2): 243–6PubMedCrossRef
145.
Zurück zum Zitat Leroy F, Asseman P, Pravost P, et al. Dihydroergotamine-erythromycin-induced ergotism. Ann Intern Med 1988; 109(3): 249PubMed Leroy F, Asseman P, Pravost P, et al. Dihydroergotamine-erythromycin-induced ergotism. Ann Intern Med 1988; 109(3): 249PubMed
146.
Zurück zum Zitat Ghali R, De Lean J, Douville Y, et al. Erythromycin-associated ergotamine intoxication: arteriographic and electrophysiologic analysis of a rare cause of severe ischemia of the lower extremities and associated ischemic neuropathy. Ann Vasc Surg 1993; 7(3): 291–6PubMedCrossRef Ghali R, De Lean J, Douville Y, et al. Erythromycin-associated ergotamine intoxication: arteriographic and electrophysiologic analysis of a rare cause of severe ischemia of the lower extremities and associated ischemic neuropathy. Ann Vasc Surg 1993; 7(3): 291–6PubMedCrossRef
147.
Zurück zum Zitat Karam B, Farah E, Ashoush R, et al. Ergotism precipitated by erythromycin: a rare case of vasospasm. Eur J Vasc Endovasc Surg 2000; 19(1): 96–8PubMedCrossRef Karam B, Farah E, Ashoush R, et al. Ergotism precipitated by erythromycin: a rare case of vasospasm. Eur J Vasc Endovasc Surg 2000; 19(1): 96–8PubMedCrossRef
148.
Zurück zum Zitat Spinier SA, Cheng JW, Kindwall KE, et al. Possible inhibition of hepatic metabolism of quinidine by erythromycin. Clin Pharmacol Ther 1995; 57(1): 89–94CrossRef Spinier SA, Cheng JW, Kindwall KE, et al. Possible inhibition of hepatic metabolism of quinidine by erythromycin. Clin Pharmacol Ther 1995; 57(1): 89–94CrossRef
149.
Zurück zum Zitat Lin JC, Quasny HA. QT prolongation and development of torsades de pointes with the concomitant administration of oral erythromycin base and quinidine. Pharmacotherapy 1997; 17(3): 626–30PubMed Lin JC, Quasny HA. QT prolongation and development of torsades de pointes with the concomitant administration of oral erythromycin base and quinidine. Pharmacotherapy 1997; 17(3): 626–30PubMed
150.
Zurück zum Zitat Amsden GW, Cheng KL, Peloquin CA, et al. Oral cimetidine prolongs clarithromycin absorption. Antimicrob Agents Chemother 1998; 42(7): 1578–80PubMed Amsden GW, Cheng KL, Peloquin CA, et al. Oral cimetidine prolongs clarithromycin absorption. Antimicrob Agents Chemother 1998; 42(7): 1578–80PubMed
151.
Zurück zum Zitat Paar D, Terjung B, Sauerbrach T. Life-threatening interaction between clarithromycin and disopyramide [letter]. Lancet 1997; 349(9048): 326–7PubMedCrossRef Paar D, Terjung B, Sauerbrach T. Life-threatening interaction between clarithromycin and disopyramide [letter]. Lancet 1997; 349(9048): 326–7PubMedCrossRef
152.
Zurück zum Zitat Horowitz RS, Dart RC, Gomez HE Clinical ergotism with lingual ischemia induced by clarithromycin-ergotamine interaction. Arch Intern Med 1996; 156(4): 456–8PubMedCrossRef Horowitz RS, Dart RC, Gomez HE Clinical ergotism with lingual ischemia induced by clarithromycin-ergotamine interaction. Arch Intern Med 1996; 156(4): 456–8PubMedCrossRef
153.
Zurück zum Zitat Borachoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67(4): 351–9CrossRef Borachoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67(4): 351–9CrossRef
154.
Zurück zum Zitat Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64(4): 355–62PubMedCrossRef Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64(4): 355–62PubMedCrossRef
155.
Zurück zum Zitat Apseloff G, Foulds G, LaBoy-Goral L, et al. Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J Clin Pharmacol 1998; 38(9): 830–5PubMed Apseloff G, Foulds G, LaBoy-Goral L, et al. Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J Clin Pharmacol 1998; 38(9): 830–5PubMed
156.
Zurück zum Zitat Fost DA, Leung DY, Martin RJ, et al. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999; 103(6): 1031–5PubMedCrossRef Fost DA, Leung DY, Martin RJ, et al. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999; 103(6): 1031–5PubMedCrossRef
157.
Zurück zum Zitat Guillemet C, Alt M, Arpin-Bott MP, et al. Clarithromycin-digoxin: an unrecognized interaction in some patients [letter, in French]. Presse Med 1997; 26(11): 512PubMed Guillemet C, Alt M, Arpin-Bott MP, et al. Clarithromycin-digoxin: an unrecognized interaction in some patients [letter, in French]. Presse Med 1997; 26(11): 512PubMed
158.
Zurück zum Zitat Laberge P, Martineau P. Clarithromycin-induced digoxin intoxication. Ann Pharmacother 1997; 31(9): 999–1002PubMed Laberge P, Martineau P. Clarithromycin-induced digoxin intoxication. Ann Pharmacother 1997; 31(9): 999–1002PubMed
159.
Zurück zum Zitat Brown BA, Wallace Jr RJ, Griffith DE, et al. Clarithromycinassociated digoxin toxicity in the elderly. Clin Infect Dis 1997; 24(1): 92–3PubMedCrossRef Brown BA, Wallace Jr RJ, Griffith DE, et al. Clarithromycinassociated digoxin toxicity in the elderly. Clin Infect Dis 1997; 24(1): 92–3PubMedCrossRef
160.
Zurück zum Zitat Nawarskas JJ, McCarthy DM, Spinler SA. Digoxin toxicity secondary to clarithromycin therapy. Ann Pharmacother 1997; 31(7-8): 864–6PubMed Nawarskas JJ, McCarthy DM, Spinler SA. Digoxin toxicity secondary to clarithromycin therapy. Ann Pharmacother 1997; 31(7-8): 864–6PubMed
161.
Zurück zum Zitat Guerriero SE, Ehrenpreis E, Gallagher KL. Two cases of clarithromycin-induced digoxin toxicity. Pharmacotherapy 1997; 17(5): 1035–7PubMed Guerriero SE, Ehrenpreis E, Gallagher KL. Two cases of clarithromycin-induced digoxin toxicity. Pharmacotherapy 1997; 17(5): 1035–7PubMed
162.
Zurück zum Zitat Juurlink DN, Ito S. Comment: clarithromycin-digoxin interaction [letter]. Ann Pharmacother 1999; 33(12): 1375–6PubMedCrossRef Juurlink DN, Ito S. Comment: clarithromycin-digoxin interaction [letter]. Ann Pharmacother 1999; 33(12): 1375–6PubMedCrossRef
163.
Zurück zum Zitat Thalhammer F, Hollenstein UM, Locker GJ, et al. Azithromycin-related toxic effects of digitoxin [letter]. Br J Clin Pharmacol 1998; 45(1): 91–2PubMedCrossRef Thalhammer F, Hollenstein UM, Locker GJ, et al. Azithromycin-related toxic effects of digitoxin [letter]. Br J Clin Pharmacol 1998; 45(1): 91–2PubMedCrossRef
164.
Zurück zum Zitat Eick APT, Sallee D, Preminger T, et al. Possible drag interaction between digoxin and azithromycin in a young child. Clin Drag Invest 2000; 20(1): 61–4CrossRef Eick APT, Sallee D, Preminger T, et al. Possible drag interaction between digoxin and azithromycin in a young child. Clin Drag Invest 2000; 20(1): 61–4CrossRef
165.
Zurück zum Zitat Sekkarie MA. Torsades de pointes in two chronic renal failure patients treated with cisapride and clarithromycin. Am J Kidney Dis 1997; 30(3): 437–9PubMedCrossRef Sekkarie MA. Torsades de pointes in two chronic renal failure patients treated with cisapride and clarithromycin. Am J Kidney Dis 1997; 30(3): 437–9PubMedCrossRef
166.
Zurück zum Zitat Gray VS. Syncopal episodes associated with cisapride and concurrent drags. Ann Pharmacother 1998; 32(6): 648–51PubMedCrossRef Gray VS. Syncopal episodes associated with cisapride and concurrent drags. Ann Pharmacother 1998; 32(6): 648–51PubMedCrossRef
167.
Zurück zum Zitat Piquette RK. Torsade de pointes induced by cisapride/clarithromycin interaction. Ann Pharmacother 1999; 33(1): 22–6PubMedCrossRef Piquette RK. Torsade de pointes induced by cisapride/clarithromycin interaction. Ann Pharmacother 1999; 33(1): 22–6PubMedCrossRef
168.
Zurück zum Zitat Ragosta M, Weihl AC, Rosenfeld LE. Potentially fatal interaction between erythromycin and disopyramide. Am J Med 1989; 86(4): 465–6PubMedCrossRef Ragosta M, Weihl AC, Rosenfeld LE. Potentially fatal interaction between erythromycin and disopyramide. Am J Med 1989; 86(4): 465–6PubMedCrossRef
169.
Zurück zum Zitat Malaty LI, Kuper JJ. Drag interactions of HIV protease inhibitors. Drug Saf 1999; 20(2): 147–69PubMedCrossRef Malaty LI, Kuper JJ. Drag interactions of HIV protease inhibitors. Drug Saf 1999; 20(2): 147–69PubMedCrossRef
170.
Zurück zum Zitat LaForce CF, Szefler SJ, Miller MF, et al. Inhibition of methylprednisolone elimination in the presence of erythromycin therapy. J Allergy Clin Immunol 1983; 72(1): 34–9PubMedCrossRef LaForce CF, Szefler SJ, Miller MF, et al. Inhibition of methylprednisolone elimination in the presence of erythromycin therapy. J Allergy Clin Immunol 1983; 72(1): 34–9PubMedCrossRef
171.
Zurück zum Zitat Szefler SJ, Rose JQ, Ellis EF, et al. The effect of troleandomycin on methylprednisolone elimination. J Allergy Clin Immunol 1980; 66(6): 447–51PubMedCrossRef Szefler SJ, Rose JQ, Ellis EF, et al. The effect of troleandomycin on methylprednisolone elimination. J Allergy Clin Immunol 1980; 66(6): 447–51PubMedCrossRef
172.
Zurück zum Zitat Szefler SJ, Brenner M, Jusko WJ, et al. Dose- and time-related effect of troleandomycin on methylprednisolone elimination. Clin Pharmacol Ther 1982; 32(2): 166–71PubMedCrossRef Szefler SJ, Brenner M, Jusko WJ, et al. Dose- and time-related effect of troleandomycin on methylprednisolone elimination. Clin Pharmacol Ther 1982; 32(2): 166–71PubMedCrossRef
173.
Zurück zum Zitat Trivedi S, Hyman J, Lichstein E. Clarithromycin and digoxin toxicity [letter]. Ann Intern Med 1998; 128(7): 604PubMed Trivedi S, Hyman J, Lichstein E. Clarithromycin and digoxin toxicity [letter]. Ann Intern Med 1998; 128(7): 604PubMed
174.
Zurück zum Zitat Nordt SP, Williams SR, Manoguerra AS, et al. Clarithromycin induced digoxin toxicity. J Accident Emerg Med 1998; 15(3): 194–5CrossRef Nordt SP, Williams SR, Manoguerra AS, et al. Clarithromycin induced digoxin toxicity. J Accident Emerg Med 1998; 15(3): 194–5CrossRef
175.
Zurück zum Zitat Gooderham MJ, Bolli P, Fernandez PG. Concomitant digoxin toxicity and warfarin interaction in a patient receiving clarithromycin. Ann Pharmacother 1999; 33(7–8): 796–9PubMedCrossRef Gooderham MJ, Bolli P, Fernandez PG. Concomitant digoxin toxicity and warfarin interaction in a patient receiving clarithromycin. Ann Pharmacother 1999; 33(7–8): 796–9PubMedCrossRef
176.
Zurück zum Zitat Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989; 46(6): 700–5PubMedCrossRef Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989; 46(6): 700–5PubMedCrossRef
177.
Zurück zum Zitat Parpia SH, Nix DE, Hejmanowski LG, et al. Sucralfate reduces the gastrointestinal absorption of norfloxacin. Antimicrob Agents Chemother 1989; 33(1): 99–102PubMedCrossRef Parpia SH, Nix DE, Hejmanowski LG, et al. Sucralfate reduces the gastrointestinal absorption of norfloxacin. Antimicrob Agents Chemother 1989; 33(1): 99–102PubMedCrossRef
178.
Zurück zum Zitat Nix DE, Watson WA, Handy L, et al. The effect of sucralfate pretreatment on the pharmacokinetics of ciprofloxacin. Phar-macotherapy 1989; 9(6): 377–80 Nix DE, Watson WA, Handy L, et al. The effect of sucralfate pretreatment on the pharmacokinetics of ciprofloxacin. Phar-macotherapy 1989; 9(6): 377–80
179.
Zurück zum Zitat Radandt JM, Marchbanks CR, Dudley MN. Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance, and management. Clin Infect Dis 1992; 14(1): 272–84PubMedCrossRef Radandt JM, Marchbanks CR, Dudley MN. Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance, and management. Clin Infect Dis 1992; 14(1): 272–84PubMedCrossRef
180.
Zurück zum Zitat Fuhr U, Anders EM, Mahr G, et al. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36(5): 942–8PubMedCrossRef Fuhr U, Anders EM, Mahr G, et al. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36(5): 942–8PubMedCrossRef
181.
Zurück zum Zitat McLellan RA, Drobitch RK, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-medi-ated microsomal drug metabolism in rat and human. Drug Metab Dispos 1996; 24(10): 1134–8PubMed McLellan RA, Drobitch RK, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-medi-ated microsomal drug metabolism in rat and human. Drug Metab Dispos 1996; 24(10): 1134–8PubMed
182.
Zurück zum Zitat Fuhr U, Strobl G, Manaut F, et al. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol 1993; 43(2): 191–9PubMed Fuhr U, Strobl G, Manaut F, et al. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol 1993; 43(2): 191–9PubMed
183.
Zurück zum Zitat Mizuki Y, Fujiwara I, Yamaguchi T. Pharmacokinetic interactions related to the chemical structures of fluoroquinolones. J Antimicrob Chemother 1996; 37 Suppl. A: 41–55PubMedCrossRef Mizuki Y, Fujiwara I, Yamaguchi T. Pharmacokinetic interactions related to the chemical structures of fluoroquinolones. J Antimicrob Chemother 1996; 37 Suppl. A: 41–55PubMedCrossRef
184.
Zurück zum Zitat Mizuki Y, Yamamoto K, Yamaguchi T, et al. Intermolecular interactions of antimicrobial fluoroquinolones with purified rat liver CYP1A2 studied by proton nuclear magnetic resonance spectroscopy. Xenobiotica 1996; 26(10): 1057–66PubMedCrossRef Mizuki Y, Yamamoto K, Yamaguchi T, et al. Intermolecular interactions of antimicrobial fluoroquinolones with purified rat liver CYP1A2 studied by proton nuclear magnetic resonance spectroscopy. Xenobiotica 1996; 26(10): 1057–66PubMedCrossRef
185.
Zurück zum Zitat Wijnands WJ, Vree TB, van Herwaarden CL. The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 1986; 22(6): 677–83PubMedCrossRef Wijnands WJ, Vree TB, van Herwaarden CL. The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 1986; 22(6): 677–83PubMedCrossRef
186.
Zurück zum Zitat Kinzig-Schippers M, Fuhr U, Zaigler M, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther 1999; 65(3): 262–74PubMedCrossRef Kinzig-Schippers M, Fuhr U, Zaigler M, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther 1999; 65(3): 262–74PubMedCrossRef
187.
188.
Zurück zum Zitat Tryba M. Stress bleeding prophylaxis with sucralfate. Pathophysiologic basis and clinical use. Scand J Gastroenterol 1990; 173 (Suppl.): 22–33CrossRef Tryba M. Stress bleeding prophylaxis with sucralfate. Pathophysiologic basis and clinical use. Scand J Gastroenterol 1990; 173 (Suppl.): 22–33CrossRef
189.
Zurück zum Zitat Yuk JH, Nightingale CN, Quintiliani R. Ciprofloxacin levels when receiving sucralfate [letter]. JAMA 1989; 262(7): 901PubMedCrossRef Yuk JH, Nightingale CN, Quintiliani R. Ciprofloxacin levels when receiving sucralfate [letter]. JAMA 1989; 262(7): 901PubMedCrossRef
190.
Zurück zum Zitat Garrelts JC, Godley PJ, Peterie JD, et al. Sucralfate significantly reduces ciprofloxacin concentrations in serum. Antimicrob Agents Chemother 1990; 34(5): 931–3PubMedCrossRef Garrelts JC, Godley PJ, Peterie JD, et al. Sucralfate significantly reduces ciprofloxacin concentrations in serum. Antimicrob Agents Chemother 1990; 34(5): 931–3PubMedCrossRef
191.
Zurück zum Zitat Kawakami J, Matsuse T, Kotaki H, et al. The effect of food on the interaction of ofloxacin with sucralfate in healthy volunteers. Eur J Clin Pharmacol 1994; 47(1): 67–9PubMedCrossRef Kawakami J, Matsuse T, Kotaki H, et al. The effect of food on the interaction of ofloxacin with sucralfate in healthy volunteers. Eur J Clin Pharmacol 1994; 47(1): 67–9PubMedCrossRef
192.
Zurück zum Zitat Lehto P, Kivisto KT. Effect of sucralfate on absorption of norfloxacin and ofloxacin. Antimicrob Agents Chemother 1994; 38(2): 248–51PubMedCrossRef Lehto P, Kivisto KT. Effect of sucralfate on absorption of norfloxacin and ofloxacin. Antimicrob Agents Chemother 1994; 38(2): 248–51PubMedCrossRef
193.
Zurück zum Zitat Lee LJ, Hafkin B, Lee ID, et al. Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41(10): 2196–200PubMed Lee LJ, Hafkin B, Lee ID, et al. Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41(10): 2196–200PubMed
194.
Zurück zum Zitat Allen A, Bygate E, Faessel H, et al. The effect of ferrous sulphate and sucralfate on the bioavailability of oral gemifloxacin in healthy volunteers. Int J Antimicrob Agents 2000; 15(4): 283–9PubMedCrossRef Allen A, Bygate E, Faessel H, et al. The effect of ferrous sulphate and sucralfate on the bioavailability of oral gemifloxacin in healthy volunteers. Int J Antimicrob Agents 2000; 15(4): 283–9PubMedCrossRef
195.
Zurück zum Zitat McLellan RA, Drobitch RK, McLellan H, et al. Norfloxacin interferes with cyclosporine disposition in pediatric patients undergoing renal transplantation. Clin Pharmacol Ther 1995; 58(3): 322–7PubMedCrossRef McLellan RA, Drobitch RK, McLellan H, et al. Norfloxacin interferes with cyclosporine disposition in pediatric patients undergoing renal transplantation. Clin Pharmacol Ther 1995; 58(3): 322–7PubMedCrossRef
196.
Zurück zum Zitat Van Buren DH, Koestner J, Adedoyin A, et al. Effect of ciprofloxacin on cyclosporine pharmacokinetics. Transplantation 1990; 50(5): 888–9PubMed Van Buren DH, Koestner J, Adedoyin A, et al. Effect of ciprofloxacin on cyclosporine pharmacokinetics. Transplantation 1990; 50(5): 888–9PubMed
197.
Zurück zum Zitat Lang J, Finaz de Villaine J, Garraffo R, et al. Cyclosporine (cyclosporin A) pharmacokinetics in renal transplant patients receiving ciprofloxacin. Am J Med 1989; 87(5A): 82S–5SPubMedCrossRef Lang J, Finaz de Villaine J, Garraffo R, et al. Cyclosporine (cyclosporin A) pharmacokinetics in renal transplant patients receiving ciprofloxacin. Am J Med 1989; 87(5A): 82S–5SPubMedCrossRef
198.
Zurück zum Zitat Kruger HU, Schuler U, Proksch B, et al. Investigation of potential interaction of ciprofloxacin with cyclosporine in bone marrow transplant recipients. Antimicrob Agents Chemother 1990; 34(6): 1048–52PubMedCrossRef Kruger HU, Schuler U, Proksch B, et al. Investigation of potential interaction of ciprofloxacin with cyclosporine in bone marrow transplant recipients. Antimicrob Agents Chemother 1990; 34(6): 1048–52PubMedCrossRef
199.
Zurück zum Zitat Hoey LL, Lake KD. Does ciprofloxacin interact with cyclosporine? Ann Pharmacother 1994; 28(1): 93–6PubMed Hoey LL, Lake KD. Does ciprofloxacin interact with cyclosporine? Ann Pharmacother 1994; 28(1): 93–6PubMed
200.
Zurück zum Zitat Doose DR, Walker SA, Chien SC, et al. Levofloxacin does not alter cyclosporine disposition. J Clin Pharmacol 1998; 38(1): 90–3PubMed Doose DR, Walker SA, Chien SC, et al. Levofloxacin does not alter cyclosporine disposition. J Clin Pharmacol 1998; 38(1): 90–3PubMed
201.
Zurück zum Zitat Nix DE, DeVito JM, Whitbread MA, et al. Effect of multiple dose oral ciprofloxacin on the pharmacokinetics of theophylline and indocyanine green. J Antimicrob Chemother 1987; 19(2): 263–9PubMedCrossRef Nix DE, DeVito JM, Whitbread MA, et al. Effect of multiple dose oral ciprofloxacin on the pharmacokinetics of theophylline and indocyanine green. J Antimicrob Chemother 1987; 19(2): 263–9PubMedCrossRef
202.
Zurück zum Zitat Thomson AH, Thomson GD, Hepburn M, et al. A clinically significant interaction between ciprofloxacin and theophylline. Eur J Clin Pharmacol 1987; 33(4): 435–6PubMedCrossRef Thomson AH, Thomson GD, Hepburn M, et al. A clinically significant interaction between ciprofloxacin and theophylline. Eur J Clin Pharmacol 1987; 33(4): 435–6PubMedCrossRef
203.
Zurück zum Zitat Raoof S, Wollschlager C, Khan FA. Ciprofloxacin increases serum levels of theophylline. Am J Med 1987; 82(4A): 115–8PubMed Raoof S, Wollschlager C, Khan FA. Ciprofloxacin increases serum levels of theophylline. Am J Med 1987; 82(4A): 115–8PubMed
204.
Zurück zum Zitat Rybak MJ, Bowles SK, Chandrasekar PH, et al. Increased theophylline concentrations secondary to ciprofloxacin. Drug Intell Clin Pharm 1987; 21(11): 879–81PubMed Rybak MJ, Bowles SK, Chandrasekar PH, et al. Increased theophylline concentrations secondary to ciprofloxacin. Drug Intell Clin Pharm 1987; 21(11): 879–81PubMed
205.
Zurück zum Zitat Wijnands WJ, Vree TB, Baars AM, et al. Steady-state kinetics of the quinolone derivatives ofloxacin, enoxacin, ciprofloxacin and pefloxacin during maintenance treatment with theophylline. Drugs 1987; 34 Suppl. 1: 159–69PubMedCrossRef Wijnands WJ, Vree TB, Baars AM, et al. Steady-state kinetics of the quinolone derivatives ofloxacin, enoxacin, ciprofloxacin and pefloxacin during maintenance treatment with theophylline. Drugs 1987; 34 Suppl. 1: 159–69PubMedCrossRef
206.
Zurück zum Zitat Wijnands WJ, Vree TB, Baars AM, et al. The influence of the 4-quinolones ciprofloxacin, pefloxacin and ofloxacin on the elimination of theophylline. Pharm Weekbl Sci 1987; 9 (Suppl.): S72–5PubMedCrossRef Wijnands WJ, Vree TB, Baars AM, et al. The influence of the 4-quinolones ciprofloxacin, pefloxacin and ofloxacin on the elimination of theophylline. Pharm Weekbl Sci 1987; 9 (Suppl.): S72–5PubMedCrossRef
207.
Zurück zum Zitat Schwartz J, Jauregui L, Lettieri J, et al. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32(1): 75–7PubMedCrossRef Schwartz J, Jauregui L, Lettieri J, et al. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32(1): 75–7PubMedCrossRef
208.
Zurück zum Zitat Bern JL, Mann RD. Danger of interaction between ciprofloxacin and theophylline. BMJ Clin Res Ed 1988; 296(6629): 1131 Bern JL, Mann RD. Danger of interaction between ciprofloxacin and theophylline. BMJ Clin Res Ed 1988; 296(6629): 1131
209.
Zurück zum Zitat Paidipaty B, Erickson S. Ciprofloxacin-theophylline drug interaction [letter]. Crit Care Med 1990; 18(6): 685–6PubMed Paidipaty B, Erickson S. Ciprofloxacin-theophylline drug interaction [letter]. Crit Care Med 1990; 18(6): 685–6PubMed
210.
Zurück zum Zitat Spivey JM, Laughlin PH, Goss TF, et al. Theophylline toxicity secondary to ciprofloxacin administration. Ann Emerg Med 1991; 20(10): 1131–4PubMedCrossRef Spivey JM, Laughlin PH, Goss TF, et al. Theophylline toxicity secondary to ciprofloxacin administration. Ann Emerg Med 1991; 20(10): 1131–4PubMedCrossRef
211.
Zurück zum Zitat Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. Drug Intell Clin Pharm 1990; 24(6): 595–6 Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. Drug Intell Clin Pharm 1990; 24(6): 595–6
212.
Zurück zum Zitat Grasela Jr TH, Dreis MW. An evaluation of the quinolone-theophylline interaction using the Food and Drug Administration spontaneous reporting system. Arch Intern Med 1992; 152(3): 617–21PubMedCrossRef Grasela Jr TH, Dreis MW. An evaluation of the quinolone-theophylline interaction using the Food and Drug Administration spontaneous reporting system. Arch Intern Med 1992; 152(3): 617–21PubMedCrossRef
213.
Zurück zum Zitat Loi CM, Parker BM, Cusack BJ, et al. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol 1993; 36(3): 195–200PubMedCrossRef Loi CM, Parker BM, Cusack BJ, et al. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol 1993; 36(3): 195–200PubMedCrossRef
214.
Zurück zum Zitat Rockwood RP, Embardo LS. Theophylline, ciprofloxacin, erythromycin: a potentially harmful regimen [letter]. Ann Pharmacother 1993; 27(5): 651–2PubMed Rockwood RP, Embardo LS. Theophylline, ciprofloxacin, erythromycin: a potentially harmful regimen [letter]. Ann Pharmacother 1993; 27(5): 651–2PubMed
215.
Zurück zum Zitat Batty KT, Davis TM, Ilett KF, et al. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 1995; 39(3): 305–11PubMedCrossRef Batty KT, Davis TM, Ilett KF, et al. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 1995; 39(3): 305–11PubMedCrossRef
216.
Zurück zum Zitat Robson RA, Begg EJ, Atkinson HC, et al. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol 1990; 29(4): 491–3PubMedCrossRef Robson RA, Begg EJ, Atkinson HC, et al. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol 1990; 29(4): 491–3PubMedCrossRef
217.
Zurück zum Zitat Landi MT, Sinha R, Lang NP, et al. Human cytochrome P4501A2. IARC Sci Publ 1999; (148): 173–95PubMed Landi MT, Sinha R, Lang NP, et al. Human cytochrome P4501A2. IARC Sci Publ 1999; (148): 173–95PubMed
218.
Zurück zum Zitat Ou-Yang DS, Huang SL, Wang W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 2000; 49(2): 145–51PubMedCrossRef Ou-Yang DS, Huang SL, Wang W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 2000; 49(2): 145–51PubMedCrossRef
219.
Zurück zum Zitat Ilett KF, Castleden WM, Vandongen YK, et al. Acetylation phenotype and cytochrome P450IA2 phenotype are unlikely to be associated with peripheral arterial disease. Clin Pharmacol Ther 1993; 54(3): 317–22PubMedCrossRef Ilett KF, Castleden WM, Vandongen YK, et al. Acetylation phenotype and cytochrome P450IA2 phenotype are unlikely to be associated with peripheral arterial disease. Clin Pharmacol Ther 1993; 54(3): 317–22PubMedCrossRef
220.
Zurück zum Zitat Catteau A, Bechtel YC, Poisson N, et al. A population and family study of CYP1A2 using caffeine urinary metabolites. Eur J Clin Pharmacol 1995; 47(5): 423–30PubMedCrossRef Catteau A, Bechtel YC, Poisson N, et al. A population and family study of CYP1A2 using caffeine urinary metabolites. Eur J Clin Pharmacol 1995; 47(5): 423–30PubMedCrossRef
221.
Zurück zum Zitat Welfare MR, Aitkin M, Bassendine MF, et al. Detailed modelling of caffeine metabolism and examination of the CYP1A2 gene: lack of a polymorphism in CYP1A2 in Caucasians. Pharmacogenetics 1999; 9(3): 367–75PubMedCrossRef Welfare MR, Aitkin M, Bassendine MF, et al. Detailed modelling of caffeine metabolism and examination of the CYP1A2 gene: lack of a polymorphism in CYP1A2 in Caucasians. Pharmacogenetics 1999; 9(3): 367–75PubMedCrossRef
222.
Zurück zum Zitat Parent M, LeBel M. Meta-analysis of quinolone-theophylline interactions. Drug Intell Clin Pharm 1991; 25(2): 191–4 Parent M, LeBel M. Meta-analysis of quinolone-theophylline interactions. Drug Intell Clin Pharm 1991; 25(2): 191–4
223.
Zurück zum Zitat Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: II. Changes in the disposition of theophylline and its metabolites during intermittent administration of enoxacin. Clin Pharmacol Ther 1989; 46(4): 420–8PubMedCrossRef Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: II. Changes in the disposition of theophylline and its metabolites during intermittent administration of enoxacin. Clin Pharmacol Ther 1989; 46(4): 420–8PubMedCrossRef
224.
Zurück zum Zitat Koup JR, Toothaker RD, Posvar E, et al. Theophylline dosage adjustment during enoxacin coadministration. Antimicrob Agents Chemother 1990; 34(5): 803–7PubMedCrossRef Koup JR, Toothaker RD, Posvar E, et al. Theophylline dosage adjustment during enoxacin coadministration. Antimicrob Agents Chemother 1990; 34(5): 803–7PubMedCrossRef
225.
Zurück zum Zitat Sorgel F, Mahr G, Granneman GR, et al. Effects of 2 quinolone antibacterials, temafloxacin and enoxacin, on theophylline pharmacokinetics. Clin Pharmacokinet 1992; 22 Suppl. 1: 65–74PubMedCrossRef Sorgel F, Mahr G, Granneman GR, et al. Effects of 2 quinolone antibacterials, temafloxacin and enoxacin, on theophylline pharmacokinetics. Clin Pharmacokinet 1992; 22 Suppl. 1: 65–74PubMedCrossRef
226.
Zurück zum Zitat Ho G, Tierney MG, Dales RE. Evaluation of the effect of norfloxacin on the pharmacokinetics of theophylline. Clin Pharmacol Ther 1988; 44(1): 35–8PubMedCrossRef Ho G, Tierney MG, Dales RE. Evaluation of the effect of norfloxacin on the pharmacokinetics of theophylline. Clin Pharmacol Ther 1988; 44(1): 35–8PubMedCrossRef
227.
Zurück zum Zitat Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37(8): 744–50PubMed Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37(8): 744–50PubMed
228.
Zurück zum Zitat Kinzig-Schippers M, Fuhr U, Cesana M, et al. Absence of effect of rufloxacin on theophylline pharmacokinetics in steady state. Antimicrob Agents Chemother 1998; 42(9): 2359–64PubMed Kinzig-Schippers M, Fuhr U, Cesana M, et al. Absence of effect of rufloxacin on theophylline pharmacokinetics in steady state. Antimicrob Agents Chemother 1998; 42(9): 2359–64PubMed
229.
Zurück zum Zitat Davy M, Allen A, Bird N, et al. Lack of effect of gemifloxacin on the steady-state pharmacokinetics of theophylline in healthy volunteers. Chemotherapy 1999; 45(6): 478–84PubMedCrossRef Davy M, Allen A, Bird N, et al. Lack of effect of gemifloxacin on the steady-state pharmacokinetics of theophylline in healthy volunteers. Chemotherapy 1999; 45(6): 478–84PubMedCrossRef
230.
Zurück zum Zitat Mott FE, Murphy S, Hunt V. Ciprofloxacin and warfarin [letter]. Ann Intern Med 1989; 111(6): 542–3PubMed Mott FE, Murphy S, Hunt V. Ciprofloxacin and warfarin [letter]. Ann Intern Med 1989; 111(6): 542–3PubMed
231.
Zurück zum Zitat Kamada AK. Possible interaction between ciprofloxacin and warfarin. Drug Intell Clin Pharm 1990; 24(1): 27–8 Kamada AK. Possible interaction between ciprofloxacin and warfarin. Drug Intell Clin Pharm 1990; 24(1): 27–8
232.
Zurück zum Zitat Renzi R, Finkbeiner S. Ciprofloxacin interaction with sodium warfarin: a potentially dangerous side effect. Am J Emerg Med 1991; 9(6): 551–2PubMedCrossRef Renzi R, Finkbeiner S. Ciprofloxacin interaction with sodium warfarin: a potentially dangerous side effect. Am J Emerg Med 1991; 9(6): 551–2PubMedCrossRef
233.
Zurück zum Zitat Rocci Jr ML, Vlasses PH, Distlerath LM, et al. Norfloxacin does not alter warfarin’s disposition or anticoagulant effect. J Clin Pharmacol 1990; 30(8): 728–32PubMed Rocci Jr ML, Vlasses PH, Distlerath LM, et al. Norfloxacin does not alter warfarin’s disposition or anticoagulant effect. J Clin Pharmacol 1990; 30(8): 728–32PubMed
234.
Zurück zum Zitat Linville II D, Emory C, Graves III L. Ciprofloxacin and warfarin interaction [letter]. Am J Med 1991; 90(6): 765PubMedCrossRef Linville II D, Emory C, Graves III L. Ciprofloxacin and warfarin interaction [letter]. Am J Med 1991; 90(6): 765PubMedCrossRef
235.
Zurück zum Zitat Bianco TM, Bussey HI, Farnett LE, et al. Potential warfarinciprofloxacin interaction in patients receiving long-term anticoagulation. Pharmacotherapy 1992; 12(6): 435–9PubMed Bianco TM, Bussey HI, Farnett LE, et al. Potential warfarinciprofloxacin interaction in patients receiving long-term anticoagulation. Pharmacotherapy 1992; 12(6): 435–9PubMed
236.
Zurück zum Zitat Israel DS, Stotka J, Rock W, et al. Effect of ciprofloxacin on the pharmacokinetics and pharmacodynamics of warfarin. Clin Infect Dis 1996; 22(2): 251–6PubMedCrossRef Israel DS, Stotka J, Rock W, et al. Effect of ciprofloxacin on the pharmacokinetics and pharmacodynamics of warfarin. Clin Infect Dis 1996; 22(2): 251–6PubMedCrossRef
237.
Zurück zum Zitat Ellis RJ, Mayo MS, Bodensteiner DM. Ciprofloxacin-warfarin coagulopathy: a case series. Am J Hematol 2000; 63(1): 28–31PubMedCrossRef Ellis RJ, Mayo MS, Bodensteiner DM. Ciprofloxacin-warfarin coagulopathy: a case series. Am J Hematol 2000; 63(1): 28–31PubMedCrossRef
238.
Zurück zum Zitat Wijnands WJ, Vree TB, Van Herwaarden CL. Enoxacin decreases the clearance of theophylline in man. Br J Clin Pharmacol 1985; 20(6): 583–8PubMedCrossRef Wijnands WJ, Vree TB, Van Herwaarden CL. Enoxacin decreases the clearance of theophylline in man. Br J Clin Pharmacol 1985; 20(6): 583–8PubMedCrossRef
239.
Zurück zum Zitat Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clin Pharmacol Ther 1988; 44(5): 579–87PubMedCrossRef Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clin Pharmacol Ther 1988; 44(5): 579–87PubMedCrossRef
240.
Zurück zum Zitat Bowles SK, Popovski Z, Rybak MJ, et al. Effect of norfloxacin on theophylline pharmacokinetics at steady state. Antimicrob Agents Chemother 1988; 32(4): 510–2PubMedCrossRef Bowles SK, Popovski Z, Rybak MJ, et al. Effect of norfloxacin on theophylline pharmacokinetics at steady state. Antimicrob Agents Chemother 1988; 32(4): 510–2PubMedCrossRef
241.
Zurück zum Zitat Gang RK, Sanyal SC, Mokaddas E, et al. Rifampicin as an adjunct to vancomycin therapy in MRSA septicaemia in burns. Burns 1999; 25(7): 640–4PubMedCrossRef Gang RK, Sanyal SC, Mokaddas E, et al. Rifampicin as an adjunct to vancomycin therapy in MRSA septicaemia in burns. Burns 1999; 25(7): 640–4PubMedCrossRef
242.
Zurück zum Zitat Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24(5): 475–90PubMed Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24(5): 475–90PubMed
243.
Zurück zum Zitat Li AP. Primary hepatocyte cultures as an in vitro experimental model for the evaluation of pharmacokinetic drug-drug interactions. Adv Pharmacol 1997; 43: 103–30PubMedCrossRef Li AP. Primary hepatocyte cultures as an in vitro experimental model for the evaluation of pharmacokinetic drug-drug interactions. Adv Pharmacol 1997; 43: 103–30PubMedCrossRef
244.
Zurück zum Zitat Kostrubsky VE, Ramachandran V, Venkataramanan R, et al. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos 1999; 27(8): 887–94PubMed Kostrubsky VE, Ramachandran V, Venkataramanan R, et al. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos 1999; 27(8): 887–94PubMed
245.
Zurück zum Zitat Zhou HH, Anthony LB, Wood AJ, et al. Induction of polymorphic 4′-hydroxylation of 5-mephenytoin by rifampicin. Br J Clin Pharmacol 1990; 30(3): 471–5PubMedCrossRef Zhou HH, Anthony LB, Wood AJ, et al. Induction of polymorphic 4′-hydroxylation of 5-mephenytoin by rifampicin. Br J Clin Pharmacol 1990; 30(3): 471–5PubMedCrossRef
246.
Zurück zum Zitat Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydroxylase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45(1): 27–9PubMedCrossRef Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydroxylase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45(1): 27–9PubMedCrossRef
247.
Zurück zum Zitat Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191(2): 437–44PubMedCrossRef Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191(2): 437–44PubMedCrossRef
248.
Zurück zum Zitat Runge D, Kohler C, Kostrubsky VE, et al. Induction of cytochrome P450 (CYP)lAl, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem Biophys Res Commun 2000; 273(1): 333–41PubMedCrossRef Runge D, Kohler C, Kostrubsky VE, et al. Induction of cytochrome P450 (CYP)lAl, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem Biophys Res Commun 2000; 273(1): 333–41PubMedCrossRef
249.
Zurück zum Zitat Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992; 22(1): 47–65PubMedCrossRef Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992; 22(1): 47–65PubMedCrossRef
250.
Zurück zum Zitat Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf 1994; 11(4): 242–51PubMedCrossRef Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf 1994; 11(4): 242–51PubMedCrossRef
251.
Zurück zum Zitat Strayhorn VA, Baciewicz AM, Self TH. Update on rifampin drug interactions, III. Arch Intern Med 1997; 157(21): 2453–8PubMedCrossRef Strayhorn VA, Baciewicz AM, Self TH. Update on rifampin drug interactions, III. Arch Intern Med 1997; 157(21): 2453–8PubMedCrossRef
252.
Zurück zum Zitat Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59(1): 7–13PubMedCrossRef Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59(1): 7–13PubMedCrossRef
253.
Zurück zum Zitat Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61(1): 8–14PubMedCrossRef Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61(1): 8–14PubMedCrossRef
254.
Zurück zum Zitat Daniels NJ, Dover JS, Schachter RK. Interaction between cyclosporin and rifampicin [letter]. Lancet 1984; II(8403): 639CrossRef Daniels NJ, Dover JS, Schachter RK. Interaction between cyclosporin and rifampicin [letter]. Lancet 1984; II(8403): 639CrossRef
255.
Zurück zum Zitat Van Buren D, Wideman CA, Ried M, et al. The antagonistic effect of rifampin upon cyclosporine bioavailability. Transplant Proc 1984; 16(6): 1642–5PubMed Van Buren D, Wideman CA, Ried M, et al. The antagonistic effect of rifampin upon cyclosporine bioavailability. Transplant Proc 1984; 16(6): 1642–5PubMed
256.
Zurück zum Zitat Cassidy MJ, Van Zyl-Smit R, Pascoe MD, et al. Effect of rifampicin on cyclosporin A blood levels in a renal transplant recipient [letter]. Nephron 1985; 41(2): 207–8PubMedCrossRef Cassidy MJ, Van Zyl-Smit R, Pascoe MD, et al. Effect of rifampicin on cyclosporin A blood levels in a renal transplant recipient [letter]. Nephron 1985; 41(2): 207–8PubMedCrossRef
257.
Zurück zum Zitat Offermann G, Keller F, Molzahn M. Low cyclosporin A blood levels and acute graft rejection in a renal transplant recipient during rifampin treatment. Am J Nephrol 1985; 5(5): 385–7PubMedCrossRef Offermann G, Keller F, Molzahn M. Low cyclosporin A blood levels and acute graft rejection in a renal transplant recipient during rifampin treatment. Am J Nephrol 1985; 5(5): 385–7PubMedCrossRef
258.
Zurück zum Zitat Howard P, Bixler TJ, Gill B. Cyclosporine-rifampin drug interaction [letter]. Drug Intell Clin Pharm 1985; 19(10): 763–4PubMed Howard P, Bixler TJ, Gill B. Cyclosporine-rifampin drug interaction [letter]. Drug Intell Clin Pharm 1985; 19(10): 763–4PubMed
259.
Zurück zum Zitat Allen RD, Hunnisett AG, Morris PJ. Cyclosporin and rifampicin in renal transplantation [letter]. Lancet 1985; I(8435): 980CrossRef Allen RD, Hunnisett AG, Morris PJ. Cyclosporin and rifampicin in renal transplantation [letter]. Lancet 1985; I(8435): 980CrossRef
260.
Zurück zum Zitat Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52(5): 453–7PubMedCrossRef Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52(5): 453–7PubMedCrossRef
261.
Zurück zum Zitat Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90(5): 1871–8PubMedCrossRef Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90(5): 1871–8PubMedCrossRef
262.
Zurück zum Zitat Kim YH, Yoon YR, Kim YW, et al. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc 1998; 30(7): 3570–2PubMedCrossRef Kim YH, Yoon YR, Kim YW, et al. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc 1998; 30(7): 3570–2PubMedCrossRef
263.
Zurück zum Zitat Furlan V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59(8): 1217–8PubMed Furlan V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59(8): 1217–8PubMed
264.
Zurück zum Zitat Furlan V, Parquin F, Penaud JF, et al. Interaction between tacrolimus and itraconazole in a heart-lung transplant recipient. Transplant Proc 1998; 30(1): 187–8PubMedCrossRef Furlan V, Parquin F, Penaud JF, et al. Interaction between tacrolimus and itraconazole in a heart-lung transplant recipient. Transplant Proc 1998; 30(1): 187–8PubMedCrossRef
265.
Zurück zum Zitat Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34(1): 27–31PubMedCrossRef Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34(1): 27–31PubMedCrossRef
266.
Zurück zum Zitat Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39(1): 91–6PubMedCrossRef Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39(1): 91–6PubMedCrossRef
267.
Zurück zum Zitat Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995; 23(12): 1315–24PubMed Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995; 23(12): 1315–24PubMed
268.
Zurück zum Zitat Salphati L, Benet LZ. Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 1998; 55(4): 387–95PubMedCrossRef Salphati L, Benet LZ. Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 1998; 55(4): 387–95PubMedCrossRef
269.
Zurück zum Zitat Barbarash RA. Verapamil-rifampin interaction. Drug Intell Clin Pharm 1985; 19(7-8): 559–60PubMed Barbarash RA. Verapamil-rifampin interaction. Drug Intell Clin Pharm 1985; 19(7-8): 559–60PubMed
270.
Zurück zum Zitat Barbarash RA, Bauman JL, Fischer JH, et al. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 1988; 94(5): 954–9PubMedCrossRef Barbarash RA, Bauman JL, Fischer JH, et al. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 1988; 94(5): 954–9PubMedCrossRef
271.
Zurück zum Zitat Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801PubMedCrossRef Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801PubMedCrossRef
272.
Zurück zum Zitat Tsuchihashi K, Fukami K, Kishimoto H, et al. A case of variant angina exacerbated by administration of rifampicin. Heart Vessels 1987; 3(4): 214–7PubMedCrossRef Tsuchihashi K, Fukami K, Kishimoto H, et al. A case of variant angina exacerbated by administration of rifampicin. Heart Vessels 1987; 3(4): 214–7PubMedCrossRef
273.
Zurück zum Zitat Tada Y, Tsuda Y, Otsuka T, et al. Case report: nifedipine-rifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303(1): 25–7PubMedCrossRef Tada Y, Tsuda Y, Otsuka T, et al. Case report: nifedipine-rifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303(1): 25–7PubMedCrossRef
274.
Zurück zum Zitat Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24(10): 1121–3PubMed Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24(10): 1121–3PubMed
275.
Zurück zum Zitat Lacarelle B, Rahmani R, de Sousa G, et al. Metabolism of digoxin, digoxigenin digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fundam Clin Pharmacol 1991; 5(7): 567–82PubMedCrossRef Lacarelle B, Rahmani R, de Sousa G, et al. Metabolism of digoxin, digoxigenin digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fundam Clin Pharmacol 1991; 5(7): 567–82PubMedCrossRef
276.
Zurück zum Zitat Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9(5): 551–9PubMedCrossRef Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9(5): 551–9PubMedCrossRef
277.
Zurück zum Zitat Dilger K, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67(5): 512–20PubMedCrossRef Dilger K, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67(5): 512–20PubMedCrossRef
278.
Zurück zum Zitat Damkier P, Hansen LL, Brosen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85(6): 257–62PubMedCrossRef Damkier P, Hansen LL, Brosen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85(6): 257–62PubMedCrossRef
279.
Zurück zum Zitat Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54(2): 155–8PubMedCrossRef Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54(2): 155–8PubMedCrossRef
280.
Zurück zum Zitat Apseloff G, Hilligoss DM, Gardner MJ, et al. Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 1991; 31(4): 358–61PubMed Apseloff G, Hilligoss DM, Gardner MJ, et al. Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 1991; 31(4): 358–61PubMed
281.
Zurück zum Zitat Nicolau DP, Crowe HM, Nightingale CH, et al. Rifampinfluconazole interaction in critically ill patients. Ann Pharmacother 1995; 29(10): 994–6PubMed Nicolau DP, Crowe HM, Nightingale CH, et al. Rifampinfluconazole interaction in critically ill patients. Ann Pharmacother 1995; 29(10): 994–6PubMed
282.
Zurück zum Zitat Wallace Jr RJ, Brown BA, Griffith DE, et al. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171(3): 747–50PubMedCrossRef Wallace Jr RJ, Brown BA, Griffith DE, et al. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171(3): 747–50PubMedCrossRef
283.
Zurück zum Zitat Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40(8): 1866–9PubMed Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40(8): 1866–9PubMed
284.
Zurück zum Zitat Backman JT, Kivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54(1): 53–8PubMedCrossRef Backman JT, Kivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54(1): 53–8PubMedCrossRef
285.
Zurück zum Zitat Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single does of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15(9-10): 1571–5PubMedCrossRef Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single does of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15(9-10): 1571–5PubMedCrossRef
286.
Zurück zum Zitat Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24(4): 414–21PubMed Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24(4): 414–21PubMed
287.
Zurück zum Zitat O’Reilly RA, Goulart DA, Kunze KL, et al. Mechanisms of the stereoselective interaction between miconazole and racemic warfarin in human subjects. Clin Pharmacol Ther 1992; 51(6): 656–67PubMedCrossRef O’Reilly RA, Goulart DA, Kunze KL, et al. Mechanisms of the stereoselective interaction between miconazole and racemic warfarin in human subjects. Clin Pharmacol Ther 1992; 51(6): 656–67PubMedCrossRef
288.
Zurück zum Zitat Back DJ, Stevenson P, Tjia JF. Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro. Br J Clin Pharmacol 1989; 28(2): 166–70PubMedCrossRef Back DJ, Stevenson P, Tjia JF. Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro. Br J Clin Pharmacol 1989; 28(2): 166–70PubMedCrossRef
289.
Zurück zum Zitat Wienkers LC, Wurden CJ, Storch E, et al. Formation of (R)-8-hydroxy warfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24(5): 610–4PubMed Wienkers LC, Wurden CJ, Storch E, et al. Formation of (R)-8-hydroxy warfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24(5): 610–4PubMed
290.
Zurück zum Zitat Hall SD, Guengerich FP, Branch RA, et al. Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J Pharmacol Exp Ther 1987; 240(1): 216–22PubMed Hall SD, Guengerich FP, Branch RA, et al. Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J Pharmacol Exp Ther 1987; 240(1): 216–22PubMed
291.
Zurück zum Zitat Maurice M, Pichard L, Daujat M, et al. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 1992; 6(2): 752–8PubMed Maurice M, Pichard L, Daujat M, et al. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 1992; 6(2): 752–8PubMed
292.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36(9): 783–91 von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36(9): 783–91
293.
Zurück zum Zitat Morita K, Konishi H, Shimakawa H. Fluconazole: a potent inhibitor of cytochrome P-450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull Tokyo 1992; 40(5): 1247–51PubMedCrossRef Morita K, Konishi H, Shimakawa H. Fluconazole: a potent inhibitor of cytochrome P-450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull Tokyo 1992; 40(5): 1247–51PubMedCrossRef
294.
Zurück zum Zitat Lomaestro BM, Piatek MA. Update on drug interactions with azole antifungal agents. Ann Pharmacother 1998; 32(9): 915–28PubMedCrossRef Lomaestro BM, Piatek MA. Update on drug interactions with azole antifungal agents. Ann Pharmacother 1998; 32(9): 915–28PubMedCrossRef
295.
Zurück zum Zitat Albengres E, Le Louet H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998; 18(2): 83–97PubMedCrossRef Albengres E, Le Louet H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998; 18(2): 83–97PubMedCrossRef
296.
Zurück zum Zitat Strolin Benedetti M, Bani M. Metabolism-based drag interactions involving oral azole antifungals in humans. Drug Metab Rev 1999; 31(3): 665–717PubMedCrossRef Strolin Benedetti M, Bani M. Metabolism-based drag interactions involving oral azole antifungals in humans. Drug Metab Rev 1999; 31(3): 665–717PubMedCrossRef
297.
Zurück zum Zitat Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55(5): 481–5PubMedCrossRef Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55(5): 481–5PubMedCrossRef
298.
Zurück zum Zitat Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40(3): 270–2PubMed Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40(3): 270–2PubMed
299.
Zurück zum Zitat Ahonen J, Olkkola KT, Neuvonen PJ. The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fundam Clin Pharmacol 1996; 10(3): 314–8PubMedCrossRef Ahonen J, Olkkola KT, Neuvonen PJ. The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fundam Clin Pharmacol 1996; 10(3): 314–8PubMedCrossRef
300.
Zurück zum Zitat Ahonen J, Olkkola KT, Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997; 51(5): 415–9PubMedCrossRef Ahonen J, Olkkola KT, Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997; 51(5): 415–9PubMedCrossRef
301.
Zurück zum Zitat Vanakoski J, Mattila MJ, Vainio P, et al. 150 mg fluconazole does not substantially increase the effects of 10 mg midazolam or the plasma midazolam concentrations in healthy subjects. Int J Clin Pharmacol Ther 1995; 33(9): 518–23PubMed Vanakoski J, Mattila MJ, Vainio P, et al. 150 mg fluconazole does not substantially increase the effects of 10 mg midazolam or the plasma midazolam concentrations in healthy subjects. Int J Clin Pharmacol Ther 1995; 33(9): 518–23PubMed
302.
Zurück zum Zitat Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82(3): 511–6PubMed Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82(3): 511–6PubMed
303.
Zurück zum Zitat Ahonen J, Olkkola KT, Takala A, et al. Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol Scand 1999; 43(5): 509–14PubMedCrossRef Ahonen J, Olkkola KT, Takala A, et al. Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol Scand 1999; 43(5): 509–14PubMedCrossRef
304.
Zurück zum Zitat Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56(6): 601–7PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56(6): 601–7PubMedCrossRef
305.
Zurück zum Zitat Varhe A, Olkkola KT, Neuvonen PJ. Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 1996; 41(4): 319–23PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 1996; 41(4): 319–23PubMedCrossRef
306.
Zurück zum Zitat Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 237–47PubMedCrossRef Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 237–47PubMedCrossRef
307.
Zurück zum Zitat Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42(4): 465–70PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42(4): 465–70PubMedCrossRef
308.
Zurück zum Zitat Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 1998; 139(3): 269–73CrossRef Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 1998; 139(3): 269–73CrossRef
309.
Zurück zum Zitat Ahonen J, Olkkola KT, Neuvonen PJ. Lack of effect of antimycotic itraconazole on the pharmacokinetics or pharmacodynamics of temazepam. Ther Drag Monit 1996; 18(2): 124–7CrossRef Ahonen J, Olkkola KT, Neuvonen PJ. Lack of effect of antimycotic itraconazole on the pharmacokinetics or pharmacodynamics of temazepam. Ther Drag Monit 1996; 18(2): 124–7CrossRef
310.
Zurück zum Zitat Albengres E, Tillement JP. Cyclosporin and ketoconazole, drag interaction or therapeutic association? Int J Clin Pharmacol Ther Toxicol 1992; 30(12): 555–70PubMed Albengres E, Tillement JP. Cyclosporin and ketoconazole, drag interaction or therapeutic association? Int J Clin Pharmacol Ther Toxicol 1992; 30(12): 555–70PubMed
311.
Zurück zum Zitat Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58(1): 15–9PubMedCrossRef Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58(1): 15–9PubMedCrossRef
312.
Zurück zum Zitat First MR, Schroeder TJ, Weiskittel P, et al. Concomitant administration of cyclosporin and ketoconazole in renal transplant recipients. Lancet 1989; II(8673): 1198–201CrossRef First MR, Schroeder TJ, Weiskittel P, et al. Concomitant administration of cyclosporin and ketoconazole in renal transplant recipients. Lancet 1989; II(8673): 1198–201CrossRef
313.
Zurück zum Zitat Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10(3): 351–8PubMed Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10(3): 351–8PubMed
314.
Zurück zum Zitat First MR, Schroeder TJ, Michael A, et al. Cyclosporine-ketoconazole interaction. Long-term follow-up and preliminary results of a randomized trial. Transplantation 1993; 55(5): 1000–4PubMedCrossRef First MR, Schroeder TJ, Michael A, et al. Cyclosporine-ketoconazole interaction. Long-term follow-up and preliminary results of a randomized trial. Transplantation 1993; 55(5): 1000–4PubMedCrossRef
315.
Zurück zum Zitat Patton PR, Branson ME, Pfaff WW, et al. A preliminary report of diltiazem and ketoconazole. Their cyclosporine-sparing effect and impact on transplant outcome. Transplantation 1994; 57(6): 889–92PubMedCrossRef Patton PR, Branson ME, Pfaff WW, et al. A preliminary report of diltiazem and ketoconazole. Their cyclosporine-sparing effect and impact on transplant outcome. Transplantation 1994; 57(6): 889–92PubMedCrossRef
316.
Zurück zum Zitat Keogh A, Spratt P, McCosker C, et al. Ketoconazole to reduce the need for cyclosporine after cardiac transplantation. N Engl J Med 1995; 333(10): 628–33PubMedCrossRef Keogh A, Spratt P, McCosker C, et al. Ketoconazole to reduce the need for cyclosporine after cardiac transplantation. N Engl J Med 1995; 333(10): 628–33PubMedCrossRef
317.
Zurück zum Zitat Odocha O, Kelly B, Trimble S, et al. Cost-containment strategies in transplantation: the utility of cyclosporine-ketoconazole combination therapy. Transplant Proc 1996; 28(2): 907–9PubMed Odocha O, Kelly B, Trimble S, et al. Cost-containment strategies in transplantation: the utility of cyclosporine-ketoconazole combination therapy. Transplant Proc 1996; 28(2): 907–9PubMed
318.
Zurück zum Zitat Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998; 30(5): 1685–7PubMedCrossRef Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998; 30(5): 1685–7PubMedCrossRef
319.
Zurück zum Zitat Sugar AM, Saunders C, Idelson BA, et al. Interaction of fluconazole and cyclosporine [letter]. Ann Intern Med 1989; 110(10): 844PubMed Sugar AM, Saunders C, Idelson BA, et al. Interaction of fluconazole and cyclosporine [letter]. Ann Intern Med 1989; 110(10): 844PubMed
320.
Zurück zum Zitat Collignon P, Hurley B. Interaction between fluconazole and cyclosporin [letter]. Lancet 1989; II(8667): 867–8CrossRef Collignon P, Hurley B. Interaction between fluconazole and cyclosporin [letter]. Lancet 1989; II(8667): 867–8CrossRef
321.
Zurück zum Zitat Kruger HU, Schuler U, Zimmermann R, et al. Absence of significant interaction of fluconazole with cyclosporin. J Antimicrob Chemother 1989; 24(5): 781–6PubMedCrossRef Kruger HU, Schuler U, Zimmermann R, et al. Absence of significant interaction of fluconazole with cyclosporin. J Antimicrob Chemother 1989; 24(5): 781–6PubMedCrossRef
322.
Zurück zum Zitat Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33PubMedCrossRef Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33PubMedCrossRef
323.
Zurück zum Zitat Torregrosa V, De la Torre M, Campistol JM, et al. Interaction of fluconazole with ciclosporin A [letter]. Nephron 1992; 60(1): 125–6PubMedCrossRef Torregrosa V, De la Torre M, Campistol JM, et al. Interaction of fluconazole with ciclosporin A [letter]. Nephron 1992; 60(1): 125–6PubMedCrossRef
324.
Zurück zum Zitat Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dose-dependent effect? Ann Pharmacother 1993; 27(4): 427–30PubMed Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dose-dependent effect? Ann Pharmacother 1993; 27(4): 427–30PubMed
325.
Zurück zum Zitat Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51(5): 1014–8PubMedCrossRef Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51(5): 1014–8PubMedCrossRef
326.
Zurück zum Zitat Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporin and itraconazole [letter]. Lancet 1987; II(8553): 282CrossRef Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporin and itraconazole [letter]. Lancet 1987; II(8553): 282CrossRef
327.
Zurück zum Zitat Trenk D, Brett W, Jahnchen E, et al. Time course of cyclosporin/itraconazole interaction [letter]. Lancet 1987; II(8571): 1335–6CrossRef Trenk D, Brett W, Jahnchen E, et al. Time course of cyclosporin/itraconazole interaction [letter]. Lancet 1987; II(8571): 1335–6CrossRef
328.
Zurück zum Zitat Kramer MR, Merin G, Rudis E, et al. Dose adjustment and cost of itraconazole prophylaxis in lung transplant recipients receiving cyclosporine and tacrolimus (FK 506). Transplant Proc 1997; 29(6): 2657–9PubMedCrossRef Kramer MR, Merin G, Rudis E, et al. Dose adjustment and cost of itraconazole prophylaxis in lung transplant recipients receiving cyclosporine and tacrolimus (FK 506). Transplant Proc 1997; 29(6): 2657–9PubMedCrossRef
329.
Zurück zum Zitat Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole interaction in heart and lung transplant recipients. Ann Intern Med 1990; 113(4): 327–9PubMed Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole interaction in heart and lung transplant recipients. Ann Intern Med 1990; 113(4): 327–9PubMed
330.
Zurück zum Zitat Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997; 62(1): 41–9PubMedCrossRef Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997; 62(1): 41–9PubMedCrossRef
331.
Zurück zum Zitat Assan R, Fredj G, Larger E, et al. FK 506/fluconazole interaction enhances FK 506 nephrotoxicity. Diabetes Metab 1994; 20(1): 49–52 Assan R, Fredj G, Larger E, et al. FK 506/fluconazole interaction enhances FK 506 nephrotoxicity. Diabetes Metab 1994; 20(1): 49–52
332.
Zurück zum Zitat Manez R, Martin M, Raman D, et al. Fluconazole therapy in transplant recipients receiving FK506. Transplantation 1994; 57(10): 1521–3PubMed Manez R, Martin M, Raman D, et al. Fluconazole therapy in transplant recipients receiving FK506. Transplantation 1994; 57(10): 1521–3PubMed
333.
Zurück zum Zitat Hairhara Y, Makuuchi M, Kawarasaki H, et al. Effect of fluconazole on blood levels of tacrolimus. Transplant Proc 1999; 31(7): 2767PubMedCrossRef Hairhara Y, Makuuchi M, Kawarasaki H, et al. Effect of fluconazole on blood levels of tacrolimus. Transplant Proc 1999; 31(7): 2767PubMedCrossRef
334.
Zurück zum Zitat Osowski CL, Dix SP, Lin LS, et al. Evaluation of the drag interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. Transplantation 1996; 61(8): 1268–72PubMedCrossRef Osowski CL, Dix SP, Lin LS, et al. Evaluation of the drag interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. Transplantation 1996; 61(8): 1268–72PubMedCrossRef
335.
Zurück zum Zitat Dhawan A, Tredger JM, North-Lewis PJ, et al. Tacrolimus (FK506) malabsorption: management with fluconazole coadministration. Transpl Int 1997; 10(4): 331–4PubMedCrossRef Dhawan A, Tredger JM, North-Lewis PJ, et al. Tacrolimus (FK506) malabsorption: management with fluconazole coadministration. Transpl Int 1997; 10(4): 331–4PubMedCrossRef
336.
Zurück zum Zitat Billaud EM, Guillemain R, Tacco F, et al. Evidence for a pharmacokinetic interaction between itraconazole and tacrolimus in organ transplant patients [letter]. Br J Clin Pharmacol 1998; 46(3): 271–2PubMed Billaud EM, Guillemain R, Tacco F, et al. Evidence for a pharmacokinetic interaction between itraconazole and tacrolimus in organ transplant patients [letter]. Br J Clin Pharmacol 1998; 46(3): 271–2PubMed
337.
Zurück zum Zitat Outeda Macias M, Salvador P, Hurtado JL, et al. Tacrolimusitraconazole interaction in a kidney transplant patient [letter]. Ann Pharmacother 2000; 34(4): 536PubMedCrossRef Outeda Macias M, Salvador P, Hurtado JL, et al. Tacrolimusitraconazole interaction in a kidney transplant patient [letter]. Ann Pharmacother 2000; 34(4): 536PubMedCrossRef
338.
Zurück zum Zitat Ideura T, Muramatsu T, Higuchi M, et al. Tacrolimus/itraconazole interactions: a case report of ABO-incompatible livingrelated renal transplantation. Nephrol Dial Transplant 2000; 15(10): 1721–3PubMedCrossRef Ideura T, Muramatsu T, Higuchi M, et al. Tacrolimus/itraconazole interactions: a case report of ABO-incompatible livingrelated renal transplantation. Nephrol Dial Transplant 2000; 15(10): 1721–3PubMedCrossRef
339.
Zurück zum Zitat Palkama VJ, Isohanni MH, Neuvonen PJ, et al. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998; 87(1): 190–4PubMed Palkama VJ, Isohanni MH, Neuvonen PJ, et al. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998; 87(1): 190–4PubMed
340.
Zurück zum Zitat Palkama VJ, Neuvonen PJ, Olkkola KT. The CYP 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.V. fentanyl. Br J Anaesth 1998; 81(4): 598–600PubMedCrossRef Palkama VJ, Neuvonen PJ, Olkkola KT. The CYP 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.V. fentanyl. Br J Anaesth 1998; 81(4): 598–600PubMedCrossRef
341.
Zurück zum Zitat Touchette MA, Chandrasekar PH, Milad MA, et al. Contrasting effects of fluconazole and ketoconazole on phenytoin and testosterone disposition in man. Br J Clin Pharmacol 1992; 34(1): 75–8PubMedCrossRef Touchette MA, Chandrasekar PH, Milad MA, et al. Contrasting effects of fluconazole and ketoconazole on phenytoin and testosterone disposition in man. Br J Clin Pharmacol 1992; 34(1): 75–8PubMedCrossRef
342.
Zurück zum Zitat Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more than tenfold by phenytoin. Clin Pharmacol Ther 1995; 58(6): 617–24PubMedCrossRef Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more than tenfold by phenytoin. Clin Pharmacol Ther 1995; 58(6): 617–24PubMedCrossRef
343.
Zurück zum Zitat Spina E, Arena D, Scordo MG, et al. Elevation of plasma carbamazepine concentrations by ketoconazole in patients with epilepsy. Ther Drug Monit 1997; 19(5): 535–8PubMedCrossRef Spina E, Arena D, Scordo MG, et al. Elevation of plasma carbamazepine concentrations by ketoconazole in patients with epilepsy. Ther Drug Monit 1997; 19(5): 535–8PubMedCrossRef
344.
Zurück zum Zitat Rex J. Itraconazole-digoxin interaction [letter]. Ann Intern Med 1992; 116(6): 525PubMed Rex J. Itraconazole-digoxin interaction [letter]. Ann Intern Med 1992; 116(6): 525PubMed
345.
Zurück zum Zitat Kauffman CA, Bagnasco FA. Digoxin toxicity associated with itraconazole therapy [letter]. Clin Infect Dis 1992; 15(5): 886–7PubMedCrossRef Kauffman CA, Bagnasco FA. Digoxin toxicity associated with itraconazole therapy [letter]. Clin Infect Dis 1992; 15(5): 886–7PubMedCrossRef
346.
Zurück zum Zitat Alderman CP, Jersmann HP. Digoxin-itraconazole interaction [letter]. Med J Aust 1993; 159(11-12): 838–9PubMed Alderman CP, Jersmann HP. Digoxin-itraconazole interaction [letter]. Med J Aust 1993; 159(11-12): 838–9PubMed
347.
Zurück zum Zitat Sachs MK, Blanchard LM, Green PJ. Interaction of itraconazole and digoxin. Clin Infect Dis 1993; 16(3): 400–3PubMedCrossRef Sachs MK, Blanchard LM, Green PJ. Interaction of itraconazole and digoxin. Clin Infect Dis 1993; 16(3): 400–3PubMedCrossRef
348.
Zurück zum Zitat McClean KL, Sheehan GJ. Interaction between itraconazole and digoxin [letter]. Clin Infect Dis 1994; 18(2): 259–60PubMedCrossRef McClean KL, Sheehan GJ. Interaction between itraconazole and digoxin [letter]. Clin Infect Dis 1994; 18(2): 259–60PubMedCrossRef
349.
Zurück zum Zitat Cone LA, Himelman RB, Hirschberg JN, et al. Itraconazole-related amaurosis and vomiting due to digoxin toxicity [letter]. West J Med 1996; 165(5): 322PubMed Cone LA, Himelman RB, Hirschberg JN, et al. Itraconazole-related amaurosis and vomiting due to digoxin toxicity [letter]. West J Med 1996; 165(5): 322PubMed
350.
Zurück zum Zitat Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997; 19(6): 609–13PubMedCrossRef Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997; 19(6): 609–13PubMedCrossRef
351.
Zurück zum Zitat Partanen J, Jalava KM, Neuvonen PJ. Itraconazole increases serum digoxin concentration. Pharmacol Toxicol 1996; 79(5): 274–6PubMedCrossRef Partanen J, Jalava KM, Neuvonen PJ. Itraconazole increases serum digoxin concentration. Pharmacol Toxicol 1996; 79(5): 274–6PubMedCrossRef
352.
Zurück zum Zitat Woodland C, Ito S, Koren G. A model for the prediction of digoxin-drug interactions at the renal tubular cell level. Ther Drug Monit 1998; 20(2): 134–8PubMedCrossRef Woodland C, Ito S, Koren G. A model for the prediction of digoxin-drug interactions at the renal tubular cell level. Ther Drug Monit 1998; 20(2): 134–8PubMedCrossRef
353.
Zurück zum Zitat Seaton TL, Celum CL, Black DJ. Possible potentiation of warfarin by fluconazole. Drug Intell Clin Pharm 1990; 24(12): 1177–8 Seaton TL, Celum CL, Black DJ. Possible potentiation of warfarin by fluconazole. Drug Intell Clin Pharm 1990; 24(12): 1177–8
354.
Zurück zum Zitat Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 1996; 24(4): 422–8PubMed Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 1996; 24(4): 422–8PubMed
355.
Zurück zum Zitat Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61(4): 410–5PubMedCrossRef Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61(4): 410–5PubMedCrossRef
356.
Zurück zum Zitat Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997; 62(5): 510–7PubMedCrossRef Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997; 62(5): 510–7PubMedCrossRef
357.
Zurück zum Zitat Kremens B, Brendel E, Bald M, et al. Loss of blood pressure control on withdrawal of fluconazole during nifedipine therapy [letter]. Br J Clin Pharmacol 1999; 47(6): 707–8PubMed Kremens B, Brendel E, Bald M, et al. Loss of blood pressure control on withdrawal of fluconazole during nifedipine therapy [letter]. Br J Clin Pharmacol 1999; 47(6): 707–8PubMed
358.
Zurück zum Zitat Tailor SA, Gupta AK, Walker SE, et al. Peripheral edema due to nifedipine-itraconazole interaction: a case report [letter]. Arch Dermatol 1996; 132(3): 350–2PubMedCrossRef Tailor SA, Gupta AK, Walker SE, et al. Peripheral edema due to nifedipine-itraconazole interaction: a case report [letter]. Arch Dermatol 1996; 132(3): 350–2PubMedCrossRef
359.
Zurück zum Zitat Heusner JJ, Dukes GE, Rollins DE, et al. Effect of chronically administered ketoconazole on the elimination of theophylline in man. Drug Intell Clin Pharm 1987; 21(6): 514–7PubMed Heusner JJ, Dukes GE, Rollins DE, et al. Effect of chronically administered ketoconazole on the elimination of theophylline in man. Drug Intell Clin Pharm 1987; 21(6): 514–7PubMed
360.
Zurück zum Zitat Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 1991; 49(4): 420–5PubMedCrossRef Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 1991; 49(4): 420–5PubMedCrossRef
361.
Zurück zum Zitat Luscombe DK, Nicholls PJ. Possible interaction between cephacetrile and frusemide in rabbits and rats. J Antimicrob Chemother 1975; 1(1): 67–77PubMedCrossRef Luscombe DK, Nicholls PJ. Possible interaction between cephacetrile and frusemide in rabbits and rats. J Antimicrob Chemother 1975; 1(1): 67–77PubMedCrossRef
362.
Zurück zum Zitat Norrby R, Stenqvist K, Elgefors B. Interaction between cephaloridine and furosemide in man. Scand J Infect Dis 1976; 8(3): 209–12PubMed Norrby R, Stenqvist K, Elgefors B. Interaction between cephaloridine and furosemide in man. Scand J Infect Dis 1976; 8(3): 209–12PubMed
363.
Zurück zum Zitat Tilstone WJ, Semple PF, Lawson DH, et al. Effects of furosemide on glomerular filtration rate and clearance of practolol, digoxin, cephaloridine, and gentamicin. Clin Pharmacol Ther 1977; 22(4): 389–94PubMed Tilstone WJ, Semple PF, Lawson DH, et al. Effects of furosemide on glomerular filtration rate and clearance of practolol, digoxin, cephaloridine, and gentamicin. Clin Pharmacol Ther 1977; 22(4): 389–94PubMed
364.
Zurück zum Zitat Trollfors B, Norrby R. Effect of frusemide on the elimination of cefuroxime and cefoxitin [letter]. J Antimicrob Chemother 1980; 6(3): 405–7PubMedCrossRef Trollfors B, Norrby R. Effect of frusemide on the elimination of cefuroxime and cefoxitin [letter]. J Antimicrob Chemother 1980; 6(3): 405–7PubMedCrossRef
365.
Zurück zum Zitat Morgant C, Contrepois A, Chau NP, et al. Effects of furosemide, piretanide, and water loading on urinary excretion of cefazolin in humans. Antimicrob Agents Chemother 1984; 25(5): 618–21PubMedCrossRef Morgant C, Contrepois A, Chau NP, et al. Effects of furosemide, piretanide, and water loading on urinary excretion of cefazolin in humans. Antimicrob Agents Chemother 1984; 25(5): 618–21PubMedCrossRef
366.
Zurück zum Zitat Korn A, Eichler HG, Gasic S. A drug interaction study of ceftriaxone and frusemide in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1986; 24(5): 262–4PubMed Korn A, Eichler HG, Gasic S. A drug interaction study of ceftriaxone and frusemide in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1986; 24(5): 262–4PubMed
367.
Zurück zum Zitat Carbon C, Contrepois A, Vigneron AM, et al. Effects of furosemide on extravascular diffusion, protein binding and urinary excretion of cephalosporins and aminoglycosides in rabbits. J Pharmacol Exp Ther 1980; 213(3): 600–6PubMed Carbon C, Contrepois A, Vigneron AM, et al. Effects of furosemide on extravascular diffusion, protein binding and urinary excretion of cephalosporins and aminoglycosides in rabbits. J Pharmacol Exp Ther 1980; 213(3): 600–6PubMed
368.
Zurück zum Zitat Chrysos G, Gargalianos P, Lelekis M, et al. Pharmacokinetic interactions of ceftazidime and frusemide. J Chemother 1995; 7 Suppl. 4: 107–10PubMed Chrysos G, Gargalianos P, Lelekis M, et al. Pharmacokinetic interactions of ceftazidime and frusemide. J Chemother 1995; 7 Suppl. 4: 107–10PubMed
369.
Zurück zum Zitat Gyselynck AM, Forrey A, Cutler R. Pharmacokinetics of gentamicin: distribution and plasma and renal clearance. J Infect Dis 1971; Suppl. 124: 70–6CrossRef Gyselynck AM, Forrey A, Cutler R. Pharmacokinetics of gentamicin: distribution and plasma and renal clearance. J Infect Dis 1971; Suppl. 124: 70–6CrossRef
370.
Zurück zum Zitat Whiting PH, Barber HE, Petersen J. The effect of frusemide and piretanide on the renal clearance of gentamicin in man. Br J Clin Pharmacol 1981; 12(6): 795–9PubMedCrossRef Whiting PH, Barber HE, Petersen J. The effect of frusemide and piretanide on the renal clearance of gentamicin in man. Br J Clin Pharmacol 1981; 12(6): 795–9PubMedCrossRef
371.
Zurück zum Zitat Carbon C, Dromer F, Brion N, et al. Renal disposition of ceftazidime illustrated by interferences by probenecid, furosemide, and indomethacin in rabbits. Antimicrob Agents Chemother 1984; 26(3): 373–7PubMedCrossRef Carbon C, Dromer F, Brion N, et al. Renal disposition of ceftazidime illustrated by interferences by probenecid, furosemide, and indomethacin in rabbits. Antimicrob Agents Chemother 1984; 26(3): 373–7PubMedCrossRef
372.
Zurück zum Zitat Lawson DH, Tilstone WJ, Gray JM, et al. Effect of furosemide on the pharmacokinetics of gentamicin in patients. J Clin Pharmacol 1982; 22(5-6): 254–8PubMed Lawson DH, Tilstone WJ, Gray JM, et al. Effect of furosemide on the pharmacokinetics of gentamicin in patients. J Clin Pharmacol 1982; 22(5-6): 254–8PubMed
373.
Zurück zum Zitat Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 2000; 45(3): 329–35PubMedCrossRef Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 2000; 45(3): 329–35PubMedCrossRef
374.
Zurück zum Zitat Nivoche Y, Contrepois A, Cremieux AC, et al. Vancomycin in rabbits: pharmacokinetics, extravascular diffusion, renal excretion and interactions with furosemide. J Pharmacol Exp Ther 1982; 222(1): 237–40PubMed Nivoche Y, Contrepois A, Cremieux AC, et al. Vancomycin in rabbits: pharmacokinetics, extravascular diffusion, renal excretion and interactions with furosemide. J Pharmacol Exp Ther 1982; 222(1): 237–40PubMed
375.
Zurück zum Zitat Reeves DS, MacGowan AP. Once-daily aminoglycoside dosing [letter]. Lancet 1993; 341(8849): 895–6PubMed Reeves DS, MacGowan AP. Once-daily aminoglycoside dosing [letter]. Lancet 1993; 341(8849): 895–6PubMed
376.
Zurück zum Zitat MacGowan AP. Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 1998; 20(5): 473–7PubMedCrossRef MacGowan AP. Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 1998; 20(5): 473–7PubMedCrossRef
377.
Zurück zum Zitat Begg EJ, Barclay ML, Kirkpatrick CJ. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 1999; 47(1): 23–30PubMedCrossRef Begg EJ, Barclay ML, Kirkpatrick CJ. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 1999; 47(1): 23–30PubMedCrossRef
378.
Zurück zum Zitat Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet 1999; 37(4): 331–41PubMedCrossRef Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet 1999; 37(4): 331–41PubMedCrossRef
379.
Zurück zum Zitat MacGowan AP, White LO, Brown NM, et al. Serum ciprofloxacin concentrations in patients with severe sepsis being treated with ciprofloxacin 200 mg i.V. bd irrespective of renal function. J Antimicrob Chemother 1994; 33(5): 1051–4PubMedCrossRef MacGowan AP, White LO, Brown NM, et al. Serum ciprofloxacin concentrations in patients with severe sepsis being treated with ciprofloxacin 200 mg i.V. bd irrespective of renal function. J Antimicrob Chemother 1994; 33(5): 1051–4PubMedCrossRef
380.
Zurück zum Zitat Mimoz O, Binter V, Jacolot A, et al. Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enterai feeding to critically ill patients. Intensive Care Med 1998; 24(10): 1047–51PubMedCrossRef Mimoz O, Binter V, Jacolot A, et al. Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enterai feeding to critically ill patients. Intensive Care Med 1998; 24(10): 1047–51PubMedCrossRef
381.
Zurück zum Zitat Pea F, Milaneschi R, Baraldo M, et al. Ciprofloxacin disposition in elderly patients with LRTI being treated with sequential therapy (200 mg intravenously twice daily followed by 500 mg per os twice daily): comparative pharmacokinetics and the role of therapeutic drug monitoring. Ther Drug Monit 2000; 22(4): 386–91PubMedCrossRef Pea F, Milaneschi R, Baraldo M, et al. Ciprofloxacin disposition in elderly patients with LRTI being treated with sequential therapy (200 mg intravenously twice daily followed by 500 mg per os twice daily): comparative pharmacokinetics and the role of therapeutic drug monitoring. Ther Drug Monit 2000; 22(4): 386–91PubMedCrossRef
382.
Zurück zum Zitat Reeves DS, MacGowan AP, Holt HA, et al. Therapeutic monitoring of antimicrobials: a summary of the information presented at the UK NEQAS for antibiotic assays meeting for participants, October 1993. J Antimicrob Chemother 1995; 35(1): 213–26PubMedCrossRef Reeves DS, MacGowan AP, Holt HA, et al. Therapeutic monitoring of antimicrobials: a summary of the information presented at the UK NEQAS for antibiotic assays meeting for participants, October 1993. J Antimicrob Chemother 1995; 35(1): 213–26PubMedCrossRef
383.
Zurück zum Zitat Summers KK, Hardin TC, Gore SJ, et al. Therapeutic drug monitoring of systemic antifungal therapy. J Antimicrob Chemother 1997; 40(6): 753–64PubMedCrossRef Summers KK, Hardin TC, Gore SJ, et al. Therapeutic drug monitoring of systemic antifungal therapy. J Antimicrob Chemother 1997; 40(6): 753–64PubMedCrossRef
384.
Zurück zum Zitat Burton ME, Gentle DL, Vasko MR. Evaluation of a Bayesian method for predicting vancomycin dosing. Drug Intell Clin Pharm 1989; 23(4): 294–300 Burton ME, Gentle DL, Vasko MR. Evaluation of a Bayesian method for predicting vancomycin dosing. Drug Intell Clin Pharm 1989; 23(4): 294–300
385.
Zurück zum Zitat Rodvold KA, Pryka RD, Garrison M, et al. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations. Ther Drug Monit 1989; 11(3): 269–75PubMedCrossRef Rodvold KA, Pryka RD, Garrison M, et al. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations. Ther Drug Monit 1989; 11(3): 269–75PubMedCrossRef
386.
Zurück zum Zitat Hurst AK, Yoshinaga MA, Mitani GH, et al. Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrob Agents Chemother 1990; 34(6): 1165–71PubMedCrossRef Hurst AK, Yoshinaga MA, Mitani GH, et al. Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrob Agents Chemother 1990; 34(6): 1165–71PubMedCrossRef
387.
Zurück zum Zitat Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Part IV: vancomycin. Clin Pharmacokinet 1991; 20(6): 463–76PubMedCrossRef Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Part IV: vancomycin. Clin Pharmacokinet 1991; 20(6): 463–76PubMedCrossRef
388.
Zurück zum Zitat Erdman SM, Rodvold KA, Pryka RD. An updated comparison of drug dosing methods. Part III: aminoglycoside antibiotics. Clin Pharmacokinet 1991; 20(5): 374–88PubMedCrossRef Erdman SM, Rodvold KA, Pryka RD. An updated comparison of drug dosing methods. Part III: aminoglycoside antibiotics. Clin Pharmacokinet 1991; 20(5): 374–88PubMedCrossRef
389.
Zurück zum Zitat Jelliffe RW, Iglesias T, Hurst AK, et al. Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies. Clin Pharmacokinet 1991; 21(6): 461–78PubMedCrossRef Jelliffe RW, Iglesias T, Hurst AK, et al. Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies. Clin Pharmacokinet 1991; 21(6): 461–78PubMedCrossRef
390.
Zurück zum Zitat Mohler JL, Barton SD, Blouin RA, et al. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136(2): 366–9PubMed Mohler JL, Barton SD, Blouin RA, et al. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136(2): 366–9PubMed
391.
Zurück zum Zitat Pea F, Furlanut M, Bianchi L. Systemic vancomycin overexposure in a patient with spinal cord injury who had staphylococcal sepsis and Clostridium difficile colitis [letter]. Ther Drug Monit 2000; 22(2): 233–4PubMedCrossRef Pea F, Furlanut M, Bianchi L. Systemic vancomycin overexposure in a patient with spinal cord injury who had staphylococcal sepsis and Clostridium difficile colitis [letter]. Ther Drug Monit 2000; 22(2): 233–4PubMedCrossRef
392.
Zurück zum Zitat Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81PubMedCrossRef Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81PubMedCrossRef
393.
Zurück zum Zitat Schentag JJ. Clinical pharmacology of the fluoroquinolones: studies in human dynamic/kinetic models. Clin Infect Dis 2000; 31 Suppl. 2: S40–4PubMedCrossRef Schentag JJ. Clinical pharmacology of the fluoroquinolones: studies in human dynamic/kinetic models. Clin Infect Dis 2000; 31 Suppl. 2: S40–4PubMedCrossRef
394.
Zurück zum Zitat Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 1995; 22(1-2): 89–96PubMedCrossRef Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 1995; 22(1-2): 89–96PubMedCrossRef
395.
Zurück zum Zitat Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef
396.
Zurück zum Zitat Cars O. Efficacy of beta-lactam antibiotics: integration of pharmacokinetics and pharmacodynamics. Diagn Microbiol Infect Dis 1997; 27(1-2): 29–33PubMedCrossRef Cars O. Efficacy of beta-lactam antibiotics: integration of pharmacokinetics and pharmacodynamics. Diagn Microbiol Infect Dis 1997; 27(1-2): 29–33PubMedCrossRef
397.
Zurück zum Zitat Walson PD. Therapeutic drug monitoring in special populations. Clin Chem 1998; 44(2): 415–9PubMed Walson PD. Therapeutic drug monitoring in special populations. Clin Chem 1998; 44(2): 415–9PubMed
Metadaten
Titel
Pharmacokinetic Aspects of Treating Infections in the Intensive Care Unit
Focus on Drug Interactions
verfasst von
Dr Federico Pea
Mario Furlanut
Publikationsdatum
01.11.2001
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2001
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200140110-00004

Weitere Artikel der Ausgabe 11/2001

Clinical Pharmacokinetics 11/2001 Zur Ausgabe

Current Opinion

Pharmacogenetics