Skip to main content
Erschienen in: Clinical Pharmacokinetics 6/2003

01.05.2003 | Review Article

Pharmacokinetics of the Dietary Supplement Creatine

verfasst von: Dr Adam M. Persky, Gayle A. Brazeau, Günther Hochhaus

Erschienen in: Clinical Pharmacokinetics | Ausgabe 6/2003

Einloggen, um Zugang zu erhalten

Abstract

Creatine is a nonessential dietary component that, when supplemented in the diet, has shown physiological benefits in athletes, in animal-based models of disease and in patients with various muscle, neurological and neuromuscular disease. The clinical relevance of creatine supplementation is based primarily on its role in ATP generation, and cells may be able to better handle rapidly changing energy demands with supplementation.
Although the pharmacological outcome measures of creatine have been investigated, the behaviour of creatine in the blood and muscle is still not fully understood. Creatine is most probably actively absorbed from the gastrointestinal tract in a similar way to amino acids and peptides. The distribution of creatine throughout the body is largely determined by the presence of creatine transporters. These transporters not only serve to distribute creatine but serve as a clearance mechanism because of creatine ‘trapping’ by skeletal muscle. Besides the pseudo-irreversible uptake by skeletal muscle, creatine clearance also depends on renal elimination and degradation to creatinine.
Evidence suggests that creatine pharmacokinetics are nonlinear with respect to dose size and frequency. Skeletal muscle, the largest depot of creatine, has a finite capacity to store creatine. As such, when these stores are saturated, both volume of distribution and clearance can decrease, thus leading to complex pharmacokinetic situations. Additionally, other dietary components such as caffeine and carbohydrate can potentially affect pharmacokinetics by their influence on the creatine transporter. Disease and age may also affect the pharmacokinetics, but more information is needed.
Overall, there are very limited pharmacokinetic data available for creatine, and further studies are needed to define absorption characteristics, clearance kinetics and the effect of multiple doses. Additionally, the relationship between plasma creatine and muscle creatine needs to be elucidated to optimise administration regimens.
Fußnoten
1
Since the time of writing this review, Persky et al., published results from a clinical study that supports many of the hypotheses from this review.
 
Literatur
1.
Zurück zum Zitat Schnirring L. Creatine supplements face scrutiny: will users pay later?. Phys Sportsmed 1998; 26(6): 15–23 Schnirring L. Creatine supplements face scrutiny: will users pay later?. Phys Sportsmed 1998; 26(6): 15–23
2.
Zurück zum Zitat Steenge GR, Lambourne J, Casey A, et al. Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 1998; 275(6 Pt 1): E974–9PubMed Steenge GR, Lambourne J, Casey A, et al. Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 1998; 275(6 Pt 1): E974–9PubMed
3.
Zurück zum Zitat Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol 2000; 89(3): 1165–71PubMed Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol 2000; 89(3): 1165–71PubMed
4.
Zurück zum Zitat Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992; 83(3): 367–74 Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992; 83(3): 367–74
5.
Zurück zum Zitat Schedel JM, Tanaka H, Kiyonaga A, et al. Acute creatine ingestion in human: consequences on serum creatine and creatinine concentrations. Life Sci 1999; 65(23): 2463–70PubMedCrossRef Schedel JM, Tanaka H, Kiyonaga A, et al. Acute creatine ingestion in human: consequences on serum creatine and creatinine concentrations. Life Sci 1999; 65(23): 2463–70PubMedCrossRef
6.
Zurück zum Zitat Vanakoski J, Kosunen V, Meririnne E, et al. Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. Int J Clin Pharmacol Ther 1998; 36(5): 258–62PubMed Vanakoski J, Kosunen V, Meririnne E, et al. Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. Int J Clin Pharmacol Ther 1998; 36(5): 258–62PubMed
7.
Zurück zum Zitat Green AL, Simpson EJ, Littlewood JJ, et al. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand 1996; 158(2): 195–202PubMedCrossRef Green AL, Simpson EJ, Littlewood JJ, et al. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand 1996; 158(2): 195–202PubMedCrossRef
8.
Zurück zum Zitat Fitch CD, Sinton D. A study of creatine metabolism is diseases causing muscle wasting. J Clin Invest 1964; 43(3): 444–52PubMedCrossRef Fitch CD, Sinton D. A study of creatine metabolism is diseases causing muscle wasting. J Clin Invest 1964; 43(3): 444–52PubMedCrossRef
9.
Zurück zum Zitat Rawson ES, Clarkson PM, Price TB, et al. Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol Scand 2002; 174: 57–65PubMedCrossRef Rawson ES, Clarkson PM, Price TB, et al. Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol Scand 2002; 174: 57–65PubMedCrossRef
10.
Zurück zum Zitat Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 1999; 5(3): 347–50PubMedCrossRef Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 1999; 5(3): 347–50PubMedCrossRef
11.
Zurück zum Zitat Mazzini L, Balzarmi C, Colombo R, et al. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J Neurol Sci 2001; 191(1–2): 139–44PubMedCrossRef Mazzini L, Balzarmi C, Colombo R, et al. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J Neurol Sci 2001; 191(1–2): 139–44PubMedCrossRef
12.
Zurück zum Zitat Willer B, Stucki G, Hoppeler H, et al. Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatology (Oxford) 2000; 39(3): 293–8CrossRef Willer B, Stucki G, Hoppeler H, et al. Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatology (Oxford) 2000; 39(3): 293–8CrossRef
13.
Zurück zum Zitat Andrews R, Greenhaff P, Curtis S, et al. The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur Heart J 1998; 19(4): 617–22PubMedCrossRef Andrews R, Greenhaff P, Curtis S, et al. The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur Heart J 1998; 19(4): 617–22PubMedCrossRef
14.
Zurück zum Zitat Field ML. Creatine supplementation in congestive heart failure. Cardiovasc Res 1996; 31(1): 174–6PubMed Field ML. Creatine supplementation in congestive heart failure. Cardiovasc Res 1996; 31(1): 174–6PubMed
15.
Zurück zum Zitat Gordon A, Hultman E, Kaijser L, et al. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res 1995; 30(3): 413–8PubMed Gordon A, Hultman E, Kaijser L, et al. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res 1995; 30(3): 413–8PubMed
16.
Zurück zum Zitat Hespel P, Eijnde BO, Van Leemputte M, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 2001; 536(Pt 2): 625–33PubMedCrossRef Hespel P, Eijnde BO, Van Leemputte M, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 2001; 536(Pt 2): 625–33PubMedCrossRef
17.
Zurück zum Zitat Heinanen K, Nanto-Salonen K, Komu M, et al. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 1999; 29(12): 1060–5PubMedCrossRef Heinanen K, Nanto-Salonen K, Komu M, et al. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 1999; 29(12): 1060–5PubMedCrossRef
18.
Zurück zum Zitat Vannas-Sulonen K, Sipila I, Vannas A, et al. Gyrate atrophy of the choroid and retina: a five-year follow-up of creatine supplementation. Ophthalmology 1985; 92(12): 1719–27PubMed Vannas-Sulonen K, Sipila I, Vannas A, et al. Gyrate atrophy of the choroid and retina: a five-year follow-up of creatine supplementation. Ophthalmology 1985; 92(12): 1719–27PubMed
19.
Zurück zum Zitat Sipila I, Rapola J, Simell O, et al. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 1981; 304(15): 867–70PubMedCrossRef Sipila I, Rapola J, Simell O, et al. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 1981; 304(15): 867–70PubMedCrossRef
20.
Zurück zum Zitat Andreassen OA, Dedeoglu A, Ferrante RJ, et al. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis 2001; 8(3): 479–91PubMedCrossRef Andreassen OA, Dedeoglu A, Ferrante RJ, et al. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis 2001; 8(3): 479–91PubMedCrossRef
21.
Zurück zum Zitat Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 2000; 20(12): 4389–97PubMed Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 2000; 20(12): 4389–97PubMed
22.
Zurück zum Zitat Matthews RT, Yang L, Jenkins BG, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 1998; 18(1): 156–63PubMed Matthews RT, Yang L, Jenkins BG, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 1998; 18(1): 156–63PubMed
23.
Zurück zum Zitat Vorgerd M, Grehl T, Jager M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebocontrolled crossover trial. Arch Neurol 2000; 57(7): 956–63PubMedCrossRef Vorgerd M, Grehl T, Jager M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebocontrolled crossover trial. Arch Neurol 2000; 57(7): 956–63PubMedCrossRef
24.
Zurück zum Zitat Vorgerd M, Zange J, Kley R, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 2002; 59(1): 97–101PubMedCrossRef Vorgerd M, Zange J, Kley R, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 2002; 59(1): 97–101PubMedCrossRef
25.
Zurück zum Zitat Tarnopolsky MA, Martin J. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 1999; 52: 854–7PubMedCrossRef Tarnopolsky MA, Martin J. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 1999; 52: 854–7PubMedCrossRef
26.
Zurück zum Zitat Doherty TJ, Lougheed K, Markez J, et al. Creatine monohydrate does not increase strength in patients with hereditary neuropathy. Neurology 2001; 57(3): 559–60PubMedCrossRef Doherty TJ, Lougheed K, Markez J, et al. Creatine monohydrate does not increase strength in patients with hereditary neuropathy. Neurology 2001; 57(3): 559–60PubMedCrossRef
27.
Zurück zum Zitat Ikeda K, Kinoshita M, Iwasaki Y, et al. Creatine monohydrate increases strength in patients with neuromuscular disease [letter]. Neurology 2000; 54(2): 537PubMedCrossRef Ikeda K, Kinoshita M, Iwasaki Y, et al. Creatine monohydrate increases strength in patients with neuromuscular disease [letter]. Neurology 2000; 54(2): 537PubMedCrossRef
28.
Zurück zum Zitat Klopstock T, Querner V, Schmidt F, et al. A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology 2000; 55(11): 1748–51PubMedCrossRef Klopstock T, Querner V, Schmidt F, et al. A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology 2000; 55(11): 1748–51PubMedCrossRef
29.
Zurück zum Zitat Hagenfeldt L, von Dobeln U, Solders G, et al. Creatine treatment in MELAS [letter]. Muscle Nerve 1994; 17(10): 1236–7PubMed Hagenfeldt L, von Dobeln U, Solders G, et al. Creatine treatment in MELAS [letter]. Muscle Nerve 1994; 17(10): 1236–7PubMed
30.
Zurück zum Zitat Tarnopolsky MA, Roy BD, MacDonald JR. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 1997; 20(12): 1502–9PubMedCrossRef Tarnopolsky MA, Roy BD, MacDonald JR. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 1997; 20(12): 1502–9PubMedCrossRef
31.
Zurück zum Zitat Passaquin AC, Renard M, Kay L, et al. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord 2002; 12(2): 174–82PubMedCrossRef Passaquin AC, Renard M, Kay L, et al. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord 2002; 12(2): 174–82PubMedCrossRef
32.
Zurück zum Zitat Felber S, Skladal D, Wyss M, et al. Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res 2000; 22(2): 145–50PubMed Felber S, Skladal D, Wyss M, et al. Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res 2000; 22(2): 145–50PubMed
33.
Zurück zum Zitat Pulido SM, Passaquin AC, Leijendekker WJ, et al. Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 1998; 439(3): 357–62PubMedCrossRef Pulido SM, Passaquin AC, Leijendekker WJ, et al. Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 1998; 439(3): 357–62PubMedCrossRef
34.
Zurück zum Zitat Walter MC, Lochmuller H, Reilich P, et al. Creatine monohydrate in muscular dystrophies: a double-blind, placebo-controlled clinical study. Neurology 2000; 54(9): 1848–50PubMedCrossRef Walter MC, Lochmuller H, Reilich P, et al. Creatine monohydrate in muscular dystrophies: a double-blind, placebo-controlled clinical study. Neurology 2000; 54(9): 1848–50PubMedCrossRef
35.
Zurück zum Zitat Sullivan PG, Geiger JD, Mattson MP, et al. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 2000; 48(5): 723–9PubMedCrossRef Sullivan PG, Geiger JD, Mattson MP, et al. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 2000; 48(5): 723–9PubMedCrossRef
36.
Zurück zum Zitat Wilken B, Ramirez JM, Probst I, et al. Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation. Arch Dis Child Fetal Neonatal Ed 2000; 82(3): F224–7PubMedCrossRef Wilken B, Ramirez JM, Probst I, et al. Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation. Arch Dis Child Fetal Neonatal Ed 2000; 82(3): F224–7PubMedCrossRef
37.
Zurück zum Zitat Balestrino M, Rebaudo R, Lunardi G. Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 1999; 816: 124–30PubMedCrossRef Balestrino M, Rebaudo R, Lunardi G. Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 1999; 816: 124–30PubMedCrossRef
38.
Zurück zum Zitat Brewer G, Wallimann T. Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 2000; 74: 1968–78PubMedCrossRef Brewer G, Wallimann T. Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 2000; 74: 1968–78PubMedCrossRef
39.
Zurück zum Zitat Kaemmerer WF, Rodrigues CM, Steer CJ, et al. Creatinesupplemented diet extends Purkinje cell survival in spinocerebellar ataxia type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience 2001; 103(3): 713–24PubMedCrossRef Kaemmerer WF, Rodrigues CM, Steer CJ, et al. Creatinesupplemented diet extends Purkinje cell survival in spinocerebellar ataxia type 1 transgenic mice but does not prevent the ataxic phenotype. Neuroscience 2001; 103(3): 713–24PubMedCrossRef
40.
Zurück zum Zitat Malcon C, Kaddurah-Daouk R, Beal M. Neuroprotective effects of creatine administration against NMDA and malonate toxicity. Brain Res 2000; 860: 195–8PubMedCrossRef Malcon C, Kaddurah-Daouk R, Beal M. Neuroprotective effects of creatine administration against NMDA and malonate toxicity. Brain Res 2000; 860: 195–8PubMedCrossRef
41.
Zurück zum Zitat Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 1999; 157(1): 142–9PubMedCrossRef Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 1999; 157(1): 142–9PubMedCrossRef
42.
Zurück zum Zitat Brustovetsky N, Brustovetsky T, Dubinsky JM. On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 2001; 76(2): 425–34PubMedCrossRef Brustovetsky N, Brustovetsky T, Dubinsky JM. On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 2001; 76(2): 425–34PubMedCrossRef
43.
Zurück zum Zitat Persky AM, Brazeau GA. Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 2001; 53(2): 161–76PubMed Persky AM, Brazeau GA. Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 2001; 53(2): 161–76PubMed
44.
Zurück zum Zitat Sahlin K, Tonkonogi M, Söderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162(3): 261–6PubMedCrossRef Sahlin K, Tonkonogi M, Söderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162(3): 261–6PubMedCrossRef
45.
Zurück zum Zitat Hultman E, Söderlund K, Timmons JA, et al. Muscle creatine loading in men. J Appl Physiol 1996; 81(1): 232–7PubMed Hultman E, Söderlund K, Timmons JA, et al. Muscle creatine loading in men. J Appl Physiol 1996; 81(1): 232–7PubMed
46.
Zurück zum Zitat Casey A, Constantin-Teodosiu D, Howell S, et al. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 1996; 271(1 Pt 1): E31–7PubMed Casey A, Constantin-Teodosiu D, Howell S, et al. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 1996; 271(1 Pt 1): E31–7PubMed
47.
Zurück zum Zitat Greenhaff PL, Bodin K, Söderlund K, et al. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 1994; 266(5 Pt 1): E725–30PubMed Greenhaff PL, Bodin K, Söderlund K, et al. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 1994; 266(5 Pt 1): E725–30PubMed
48.
Zurück zum Zitat Green AL, Hultman E, Macdonald IA, et al. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol 1996; 271(5 Pt 1): E821–6PubMed Green AL, Hultman E, Macdonald IA, et al. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol 1996; 271(5 Pt 1): E821–6PubMed
49.
Zurück zum Zitat Balsom PD, Söderlund K, Sjödin B, et al. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 1995; 154(3): 303–10PubMedCrossRef Balsom PD, Söderlund K, Sjödin B, et al. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 1995; 154(3): 303–10PubMedCrossRef
50.
Zurück zum Zitat Dechent P, Pouwels PJ, Wilken B, et al. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 1999; 277(3 Pt 2): R698–704PubMed Dechent P, Pouwels PJ, Wilken B, et al. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 1999; 277(3 Pt 2): R698–704PubMed
51.
Zurück zum Zitat Ipsiroglu OS, Stromberger C, Ilas J, et al. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 2001; 69(15): 1805–15PubMedCrossRef Ipsiroglu OS, Stromberger C, Ilas J, et al. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 2001; 69(15): 1805–15PubMedCrossRef
52.
Zurück zum Zitat Michaelis T, Wick M, Fujimori H, et al. Proton MRS of oral creatine supplementation in rats: cerebral metabolite concentrations and ischemic challenge. NMR Biomed 1999; 12(5): 309–14PubMedCrossRef Michaelis T, Wick M, Fujimori H, et al. Proton MRS of oral creatine supplementation in rats: cerebral metabolite concentrations and ischemic challenge. NMR Biomed 1999; 12(5): 309–14PubMedCrossRef
53.
Zurück zum Zitat Greenhaff PL, Casey A, Short AH, et al. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond) 1993; 84(5): 565–71 Greenhaff PL, Casey A, Short AH, et al. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond) 1993; 84(5): 565–71
54.
Zurück zum Zitat Vandenberghe K, Van Hecke P, Van Leemputte M, et al. Phosphocreatine resynthesis is not affected by creatine loading. Med Sci Sports Exerc 1999; 31(2): 236–42PubMedCrossRef Vandenberghe K, Van Hecke P, Van Leemputte M, et al. Phosphocreatine resynthesis is not affected by creatine loading. Med Sci Sports Exerc 1999; 31(2): 236–42PubMedCrossRef
55.
Zurück zum Zitat Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80(3): 1107–213PubMed Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80(3): 1107–213PubMed
56.
Zurück zum Zitat Walker J. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 1979; 50: 117–242 Walker J. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 1979; 50: 117–242
57.
Zurück zum Zitat Harris RC, Nevill M, Harris DB, et al. Absorption of creatine supplied as a drink, in meat or in solid form. J Sports Sci 2002; 20(2): 147–51PubMedCrossRef Harris RC, Nevill M, Harris DB, et al. Absorption of creatine supplied as a drink, in meat or in solid form. J Sports Sci 2002; 20(2): 147–51PubMedCrossRef
58.
Zurück zum Zitat Stockler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36(3): 409–13PubMedCrossRef Stockler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36(3): 409–13PubMedCrossRef
59.
Zurück zum Zitat Kamber M, Koster M, Kreis R, et al. Creatine supplementation: part I. performance, clinical chemistry, and muscle volume. Med Sci Sports Exerc 1999; 31(12): 1763–9PubMedCrossRef Kamber M, Koster M, Kreis R, et al. Creatine supplementation: part I. performance, clinical chemistry, and muscle volume. Med Sci Sports Exerc 1999; 31(12): 1763–9PubMedCrossRef
60.
Zurück zum Zitat Volek JS, Duncan ND, Mazzetti SA, et al. No effect of heavy resistance training and creatine supplementation on blood lipids. Int J Sport Nutr Exerc Metab 2000; 10(2): 144–56PubMed Volek JS, Duncan ND, Mazzetti SA, et al. No effect of heavy resistance training and creatine supplementation on blood lipids. Int J Sport Nutr Exerc Metab 2000; 10(2): 144–56PubMed
61.
Zurück zum Zitat Mihic S, MacDonald JR, McKenzie S, et al. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 2000; 32(2): 291–6PubMedCrossRef Mihic S, MacDonald JR, McKenzie S, et al. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 2000; 32(2): 291–6PubMedCrossRef
62.
Zurück zum Zitat Poortmans JR, Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc 1999; 31(8): 1108–10PubMedCrossRef Poortmans JR, Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc 1999; 31(8): 1108–10PubMedCrossRef
63.
Zurück zum Zitat Poortmans JR, Auquier H, Renaut V, et al. Effect of short-term creatine supplementation on renal responses in men. Eur J Appl Physiol 1997; 76(6): 566–7CrossRef Poortmans JR, Auquier H, Renaut V, et al. Effect of short-term creatine supplementation on renal responses in men. Eur J Appl Physiol 1997; 76(6): 566–7CrossRef
64.
Zurück zum Zitat Nash SR, Giros B, Kingsmore SF, et al. Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 1994; 2(2): 165–74PubMed Nash SR, Giros B, Kingsmore SF, et al. Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 1994; 2(2): 165–74PubMed
65.
Zurück zum Zitat Dash AK, Miller DW, Huai-Yan H, et al. Evaluation of creatine transport using Caco-2 monolayers as an in vitro model for intestinal absorption. J Pharm Sci 2001; 90(10): 1593–8PubMedCrossRef Dash AK, Miller DW, Huai-Yan H, et al. Evaluation of creatine transport using Caco-2 monolayers as an in vitro model for intestinal absorption. J Pharm Sci 2001; 90(10): 1593–8PubMedCrossRef
66.
Zurück zum Zitat Borsook H, Dubnoff J. The hydrolysis of phosphocreatine and the origin of urinary creatinine. J Biol Chem 1947; 168: 493–511PubMed Borsook H, Dubnoff J. The hydrolysis of phosphocreatine and the origin of urinary creatinine. J Biol Chem 1947; 168: 493–511PubMed
67.
Zurück zum Zitat Cannan R, Shore A. The creatine-creatinine equilibrium: the apparent dissociation constants of creatine and creatinine. Bio-chem J 1928; 22: 921–9 Cannan R, Shore A. The creatine-creatinine equilibrium: the apparent dissociation constants of creatine and creatinine. Bio-chem J 1928; 22: 921–9
68.
Zurück zum Zitat Edgar G, Shiver H. The equilibrium between creatine and creatinine, in aqueous solution: the effect of hydrogen ion. J Am Chem Soc 1925; 47: 1170–88CrossRef Edgar G, Shiver H. The equilibrium between creatine and creatinine, in aqueous solution: the effect of hydrogen ion. J Am Chem Soc 1925; 47: 1170–88CrossRef
69.
Zurück zum Zitat Wixom RL, Davis GE, Flynn MA, et al. Excretion of creatine and creatinine in feces of man. Proc Soc Exp Biol Med 1979; 161(4): 452–7PubMed Wixom RL, Davis GE, Flynn MA, et al. Excretion of creatine and creatinine in feces of man. Proc Soc Exp Biol Med 1979; 161(4): 452–7PubMed
70.
Zurück zum Zitat Twort F, Mellanby E. On creatine-destroying Bacilli in the intestine and their isolation. J Physiol 1912; 44: 43–9PubMed Twort F, Mellanby E. On creatine-destroying Bacilli in the intestine and their isolation. J Physiol 1912; 44: 43–9PubMed
71.
Zurück zum Zitat Persky AM, Hochhaus G, Brazeau GA. Validation of a simple HPLC assay for creatine suitable for pharmacokinetic applications, determination of plasma protein binding and verification of percent labeled claim of various creatine products. J Chromatog B Biomed Appl. In review Persky AM, Hochhaus G, Brazeau GA. Validation of a simple HPLC assay for creatine suitable for pharmacokinetic applications, determination of plasma protein binding and verification of percent labeled claim of various creatine products. J Chromatog B Biomed Appl. In review
72.
Zurück zum Zitat Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem 2001; 224(1–2): 169–81PubMedCrossRef Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem 2001; 224(1–2): 169–81PubMedCrossRef
73.
Zurück zum Zitat Guerrero-Ontiveros ML, Wallimann T. Creatine supplementation in health and disease: effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 1998; 184(1–2): 427–37PubMedCrossRef Guerrero-Ontiveros ML, Wallimann T. Creatine supplementation in health and disease: effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 1998; 184(1–2): 427–37PubMedCrossRef
74.
Zurück zum Zitat Guimbal C, Kilimann MW. A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 1993; 268(12): 8418–21PubMed Guimbal C, Kilimann MW. A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 1993; 268(12): 8418–21PubMed
75.
Zurück zum Zitat Soral, Richman J, Santoro G, et al. The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 1994; 204(1): 419–27CrossRef Soral, Richman J, Santoro G, et al. The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 1994; 204(1): 419–27CrossRef
76.
Zurück zum Zitat Iyer GS, Krahe R, Goodwin LA, et al. Identification of a testisexpressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 1996; 34(1): 143–6PubMedCrossRef Iyer GS, Krahe R, Goodwin LA, et al. Identification of a testisexpressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 1996; 34(1): 143–6PubMedCrossRef
77.
Zurück zum Zitat Neubauer S, Remkes H, Spindler M, et al. Downregulation of the Na+-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 1999; 100(18): 1847–50PubMedCrossRef Neubauer S, Remkes H, Spindler M, et al. Downregulation of the Na+-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 1999; 100(18): 1847–50PubMedCrossRef
78.
Zurück zum Zitat Tarnopolsky MA, Parshad A, Walzel B, et al. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 2001; 24(5): 682–8PubMedCrossRef Tarnopolsky MA, Parshad A, Walzel B, et al. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 2001; 24(5): 682–8PubMedCrossRef
79.
Zurück zum Zitat Dai W, Vinnakota S, Qian X, et al. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys 1999; 361(1): 75–84PubMedCrossRef Dai W, Vinnakota S, Qian X, et al. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys 1999; 361(1): 75–84PubMedCrossRef
80.
Zurück zum Zitat Saltarelli MD, Bauman AL, Moore KR, et al. Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 1996; 18(5-6): 524–34PubMedCrossRef Saltarelli MD, Bauman AL, Moore KR, et al. Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 1996; 18(5-6): 524–34PubMedCrossRef
81.
Zurück zum Zitat Dodd JR, Zheng T, Christie DL. Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim Biophys Acta 1999; 1472(1–2): 128–36PubMedCrossRef Dodd JR, Zheng T, Christie DL. Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim Biophys Acta 1999; 1472(1–2): 128–36PubMedCrossRef
82.
Zurück zum Zitat Ku CP, Passow H. Creatine and creatinine transport in old and young human red blood cells. Biochim Biophys Acta 1980; 600(1): 212–27PubMedCrossRef Ku CP, Passow H. Creatine and creatinine transport in old and young human red blood cells. Biochim Biophys Acta 1980; 600(1): 212–27PubMedCrossRef
83.
Zurück zum Zitat Loike JD, Somes M, Silverstein SC. Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol 1986; 251(1 Pt 1): C128–35PubMed Loike JD, Somes M, Silverstein SC. Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol 1986; 251(1 Pt 1): C128–35PubMed
84.
Zurück zum Zitat Moller A, Hamprecht B. Creatine transport in cultured cells of rat and mouse brain. J Neurochem 1989; 52(2): 544–50PubMedCrossRef Moller A, Hamprecht B. Creatine transport in cultured cells of rat and mouse brain. J Neurochem 1989; 52(2): 544–50PubMedCrossRef
85.
Zurück zum Zitat Schloss P, Mayser W, Betz H. The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 1994; 198(2): 637–45PubMedCrossRef Schloss P, Mayser W, Betz H. The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 1994; 198(2): 637–45PubMedCrossRef
86.
Zurück zum Zitat Willott CA, Young ME, Leighton B, et al. Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin. Acta Physiol Scand 1999; 166(2): 99–104PubMedCrossRef Willott CA, Young ME, Leighton B, et al. Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin. Acta Physiol Scand 1999; 166(2): 99–104PubMedCrossRef
87.
Zurück zum Zitat Marescau B, De Deyn P, Wiechert P, et al. Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J Neurochem 1986; 46: 717–20PubMedCrossRef Marescau B, De Deyn P, Wiechert P, et al. Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J Neurochem 1986; 46: 717–20PubMedCrossRef
88.
Zurück zum Zitat Harris RC, Hultman E, Nordesjo LO. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest: methods and variance of values. Scand J Clin Lab Invest 1974; 33(2): 109–20PubMedCrossRef Harris RC, Hultman E, Nordesjo LO. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest: methods and variance of values. Scand J Clin Lab Invest 1974; 33(2): 109–20PubMedCrossRef
89.
Zurück zum Zitat Meyer RA, Brown TR, Kushmerick MJ. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol 1985; 248(3 Pt 1): C279–87PubMed Meyer RA, Brown TR, Kushmerick MJ. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol 1985; 248(3 Pt 1): C279–87PubMed
90.
Zurück zum Zitat Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A 1992; 89(16): 7521–5PubMedCrossRef Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A 1992; 89(16): 7521–5PubMedCrossRef
91.
Zurück zum Zitat Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 1996; 158(2): 179–88PubMedCrossRef Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 1996; 158(2): 179–88PubMedCrossRef
92.
Zurück zum Zitat Robinson TM, Sewell DA, Hultman E, et al. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol 1999; 87(2): 598–604PubMed Robinson TM, Sewell DA, Hultman E, et al. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol 1999; 87(2): 598–604PubMed
93.
Zurück zum Zitat Thorell A, Hirshman MF, Nygren J, et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol 1999; 277(4 Pt 1): E733–41PubMed Thorell A, Hirshman MF, Nygren J, et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol 1999; 277(4 Pt 1): E733–41PubMed
94.
Zurück zum Zitat Fitch CD, Lucy DD, Bornhofen JH, et al. Creatine metabolism in skeletal muscle: II. creatine kinetics in man. Neurology 1968; 18(1 Pt 1): 32–42PubMedCrossRef Fitch CD, Lucy DD, Bornhofen JH, et al. Creatine metabolism in skeletal muscle: II. creatine kinetics in man. Neurology 1968; 18(1 Pt 1): 32–42PubMedCrossRef
95.
Zurück zum Zitat Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 1996; 28(4): 625–58PubMedCrossRef Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 1996; 28(4): 625–58PubMedCrossRef
96.
Zurück zum Zitat Bermon S, Venembre P, Sachet C, et al. Effects of creatine monohydrate ingestion in sedentary and weight- trained older adults. Acta Physiol Scand 1998; 164(2): 147–55PubMedCrossRef Bermon S, Venembre P, Sachet C, et al. Effects of creatine monohydrate ingestion in sedentary and weight- trained older adults. Acta Physiol Scand 1998; 164(2): 147–55PubMedCrossRef
97.
Zurück zum Zitat Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med 2000; 21(1): 71–5PubMedCrossRef Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med 2000; 21(1): 71–5PubMedCrossRef
98.
Zurück zum Zitat Rawson ES, Wehnert ML, Clarkson PM. Effects of 30 days of creatine ingestion in older men. Eur J Appl Physiol 1999; 80(2): 139–44CrossRef Rawson ES, Wehnert ML, Clarkson PM. Effects of 30 days of creatine ingestion in older men. Eur J Appl Physiol 1999; 80(2): 139–44CrossRef
99.
Zurück zum Zitat Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc 1999; 31(8): 1147–56PubMedCrossRef Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc 1999; 31(8): 1147–56PubMedCrossRef
100.
101.
Zurück zum Zitat Pitts RF. The clearance of creatine in dog and man. Am J Physiol 1934; 109: 532–41 Pitts RF. The clearance of creatine in dog and man. Am J Physiol 1934; 109: 532–41
102.
Zurück zum Zitat Sims E, Seldin D. Reabsorption of creatine and guanidoacetic acid by the renal tubules. Am J Physiol 1949; 157(14): 14–20PubMed Sims E, Seldin D. Reabsorption of creatine and guanidoacetic acid by the renal tubules. Am J Physiol 1949; 157(14): 14–20PubMed
103.
Zurück zum Zitat Vandenberghe K, Goris M, Van Hecke P, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 1997; 83(6): 2055–63PubMed Vandenberghe K, Goris M, Van Hecke P, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 1997; 83(6): 2055–63PubMed
104.
Zurück zum Zitat Pasternack A, Kuhlback B. Diurnal variations of serum and urine creatine and creatinine. Scand J Clin Invest 1971; 27: 1–7PubMedCrossRef Pasternack A, Kuhlback B. Diurnal variations of serum and urine creatine and creatinine. Scand J Clin Invest 1971; 27: 1–7PubMedCrossRef
105.
Zurück zum Zitat Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 1975; 105(4): 428–38PubMed Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 1975; 105(4): 428–38PubMed
106.
Zurück zum Zitat Crim M, Calloway D, Margen S. Creatine metabolism in men: creatine pool size and turnover in relation to creatine intake. J Nutr 1976; 106: 371–81 Crim M, Calloway D, Margen S. Creatine metabolism in men: creatine pool size and turnover in relation to creatine intake. J Nutr 1976; 106: 371–81
107.
Zurück zum Zitat Terjung RL, Clarkson P, Eichner ER, et al. American College of Sports Medicine roundtable: the physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc 2000; 32(3): 706–17PubMedCrossRef Terjung RL, Clarkson P, Eichner ER, et al. American College of Sports Medicine roundtable: the physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc 2000; 32(3): 706–17PubMedCrossRef
108.
Zurück zum Zitat Maganaris CN, Maughan RJ. Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men. Acta Physiol Scand 1998; 163(3): 279–87PubMedCrossRef Maganaris CN, Maughan RJ. Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men. Acta Physiol Scand 1998; 163(3): 279–87PubMedCrossRef
109.
Zurück zum Zitat Boroujerdi M. A nonlinear tissue-binding model for creatine: estimation of creatine turnover time and creatinine production rate. Res Commun Chem Pathol Pharmacol 1986; 53(3): 361–71PubMed Boroujerdi M. A nonlinear tissue-binding model for creatine: estimation of creatine turnover time and creatinine production rate. Res Commun Chem Pathol Pharmacol 1986; 53(3): 361–71PubMed
110.
Zurück zum Zitat Elias E, Gibson GJ, Greenwood LF, et al. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J Physiol 1968; 194(2): 317–26PubMed Elias E, Gibson GJ, Greenwood LF, et al. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J Physiol 1968; 194(2): 317–26PubMed
111.
Zurück zum Zitat Vandenberghe K, Gillis N, Van Leemputte M, et al. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 1996; 80(2): 452–7PubMed Vandenberghe K, Gillis N, Van Leemputte M, et al. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 1996; 80(2): 452–7PubMed
112.
Zurück zum Zitat Chrusch MJ, Chilibeck PD, Chad KE, et al. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 2001; 33(12): 2111–7PubMedCrossRef Chrusch MJ, Chilibeck PD, Chad KE, et al. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 2001; 33(12): 2111–7PubMedCrossRef
113.
Zurück zum Zitat Wiroth JB, Bermon S, Andrei S, et al. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol 2001; 84(6): 533–9PubMedCrossRef Wiroth JB, Bermon S, Andrei S, et al. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol 2001; 84(6): 533–9PubMedCrossRef
Metadaten
Titel
Pharmacokinetics of the Dietary Supplement Creatine
verfasst von
Dr Adam M. Persky
Gayle A. Brazeau
Günther Hochhaus
Publikationsdatum
01.05.2003
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 6/2003
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200342060-00005

Weitere Artikel der Ausgabe 6/2003

Clinical Pharmacokinetics 6/2003 Zur Ausgabe