Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2023

Open Access 01.12.2023 | Review

Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer

verfasst von: Le-Wei Zheng, Cui-Cui Liu, Ke-Da Yu

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2023

insite
INHALT
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Liquid–liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALT
Alternative lengthening of telomeres
ALK
Anaplastic lymphoma kinase
AML
Acute myeloid leukemia
AR
Androgen receptor
AS
Alternatively spliced
APL
Acute promyelocytic leukemia
BMCs
Biomolecular condensates
DDR
DNA damage repair
EBV
Epstein–Barr virus
EMT
Epithelial–mesenchymal transition
FO
Fusion oncoproteins
GLS1
Glutaminase-1
IDR
Intrinsically disordered regions
LCDs
Low-complexity domains
LLPS
Liquid-liquid phase separation
MLOs
Membrane-less organelles
NB
Nuclear body
NF2
Neurofibromin 2
N-WASP
Neural Wiskott—Aldrich Syndrome
PRM
Proline-rich motif
PTM
Post-translational modification
RARA
Retinoic acid receptor α
RBPs
RNA-binding proteins
ROS
Reactive oxygen species
RTKs
Receptor tyrosine kinases
SEs
Super-enhancers
SERBP1
SERPINE1 mRNA-binding protein 1
SG
Stress granule
SPOP
Speckled POZ protein
TF
Transcription factor
UTR
Untranslated region
VEGF
Vascular endothelial growth factor

Background

The spatial and temporal coordination of biochemical reactions is crucial for cellular physiology [1]. While membrane-bound organelles are essential for spatially organized cellular processes, the discovery of membrane-less organelles (MLOs) has shed light on new mechanisms for tightly controlling processes within cells [2]. MLOs, as known as biomolecular condensates (BMCs), include the nucleolus [2], Cajal bodies [3], nucleoli [4], stress granules (SGs) [57], and super-enhancers (SEs)[810] etc. These structures typically range from 0.1 to 3 µm [11]and play key roles in facilitating or modulating specific cellular processes. BMCs and MLOs are both formed by the process of phase separation, and in most scenarios, these two concepts are equivalent.
Until the emergence of the concept of liquid–liquid phase separation (LLPS), the formation and organization of MLOs remained unclear [12]. Thus, LLPS provides a reasonable framework to explain the formation mechanism of MLOs and BMCs. This dynamic process involves the transition of biomolecules from a homogeneous environment to sparse and dense phases [11, 13, 14], aiming to reach the lowest-entropy state. Notably, LLPS occurs when multivalent biopolymers instantaneously interact with each other [1517], forming liquid-like entities such as bodies, puncta, granules, droplets, and condensates [18].
Normal BMCs ensure basic cellular functions, whereas their aberrant forms result in cellular dysfunction and possible tumorigenesis. Studies have demonstrated that LLPS are crucial in the regulation of tumor onset, progression [19], including promoting cancer cells proliferations and metastasis. Further, the hallmarks and enabling characteristics of cancer in the 2022 version provide a framework for further oncological studies[20]. However, understanding of the regarding phase separation processes involved in each hallmark is still limited. Therefore, unveiling a novel dimension of its biological functions is in need.
In this review, we include all cutting-edge and typical articles related to liquid–liquid separation in oncology. Firstly, we describe the methods used to investigate LLPS, followed by their role in promoting the formation of BMCs/MLOs. Subsequently, we examine the current understanding of how LLPS influences tumorigenesis, progression and their emerging role in cancer treatment. Finally, we comprehensively summarize the latest insights into methods to interfere with aberrant forms of BMCs.

Mechanisms and methods associated with the phenomenon of LLPS

Concepts and mechanisms

Phase separation is defined as the spontaneous aggregation of molecules when their concentration exceeds a certain threshold, thus forming a membrane-less compartment [21]. Typically, the interactions between macromolecules in LLPS are typically non-covalent and of low affinity [22, 23]. This process is often driven by the modification of intrinsically disordered regions (IDRs) within proteins [24, 25]. The concept of LLPS was first introduced in the biochemical field of biochemistry in 2009 by Hyman and colleagues with various milestone events followed subsequently (Fig. 1), offering a novel perspective on various MLOs distributed in cells (Fig. 2) [26]. Although several in silico tools help forecast the potential of phase-separated molecules (Table 1), comprehensive summaries of the characteristics and conditions that induce LLPS are limited.
Table 1
Overview of databases related to liquid–liquid phase separation (LLPS)
Category
Database
Availability
Details of databases
References
Prediction of LLPS related proteins
SGnn
Proteins bearing prion-like domains (PrLDs)
[27]
PhaSepDB
Phase-separation related proteins
[28]
D2P2
Phase-separation related proteins
[29]
PLAAC
Prion-Like Amino Acid Composition
[30]
DrLLPS
Proteins in this database are classified as drivers,
regulators and potential Clients
[31]
PhaSePro
A manually curated database of LLPS driver proteins in various organisms, with emphasis on the biophysical properties that govern phase separation.
[32]
BioGRID
Database of Protein, Genetic and Chemical Interactions
[33]
LLPSDB
A database of proteins undergoing LLPS in vitro
[34]
HUMAN CELL MAP
Summarizes for each compartment the enrichment of expected domains and motifs as well as GO-terms
Provides channels to analyze spatiotemporal correlations between proteins in different organelles
[35]
MLOsMetaDB
Unified resource of MLOs and LLPS associated proteins
[36]
catGRANULE
A website good at predicting LLPS propensity of dosage-sensitive proteins
[37]
PScore
A machine learning algorithm that predicts the likelihood of phase separated proteins
[38]
Prediction of LLPS related RNAs
RPS
A comprehensive database of RNAs involved in liquid–liquid phase separation
[39]
RNAPhaSep
A resource of RNAs undergoing phase separation
[40]
RNA granule database
A database containing RNA granules
[41]
Integreation of LLPS related diseases
DisPhaseDB
An integrative database of diseases related variations in liquid–liquid phase separation proteins
[42]
Prediction of specific structures or features of LLPS
IUPred2A
Combination of the iupred database and the ANCHOR database, which can predict the disordered and disordered binding regions of proteins
[43]
PONDR
Predictor of natural disordered regions
[44]
MobiDB
Provides information about intrinsically disordered regions and related features
[45]
CIDER
Calculation of many different parameters associated with disordered protein sequences
[46]
ZipperDB
Predictions of fibril-forming segments within protein
[47]
Metadisorder
Prediction of protein disorder
[48]
DisMeta
Prediction of protein disorder
[49]
Expasy
Computation of the theoretical pI (isoelectric point) and Mw (molecular weight)
[50]
AMYCO
Evaluation of mutation impact on prion-like proteins aggregation propensity
[51]
MFDp2
Accurate sequence-based prediction of protein disorder which also outputs well-described sequence-derived information that allows profiling the predicted disorder
[52]

Structural characteristics and critical components that triggers LLPS

The concept of a driver (or scaffold)/client is widely accepted. Proteins, DNA, and RNA can also be used as scaffolds. With multiple binding sites, these macromolecules facilitate weak interactions and trigger LLPS. The detailed structures are summarized below.

Multi-foldable domains

One of the most common structural features that facilitates LLPS is multivalency, which involves the interaction of various macromolecules (Figs. 3A–C). By using multiple, similar domains to mediate the interactions, these macromolecules effectively trigger LLPS and attract client molecules to form condensates. For example, the proline-rich motif (PRM) domain characteristic of the neural Wiskott-Aldrich syndrome (N-WASP) interacts with the SH3 domain of NCK, thereby inducing LLPS [53]. A similar principle applies to the nephrin/Nck/N-WASP system, wherein the phosphotyrosines of nephrin interact with the SH2 and SH3 domains of NCK to bind to the PRMs (Fig. 3D) [54]. Similarly, higher-order polymerized structures are formed via the tandem dimerization domains of the speckled POZ protein (SPOP) and its interaction with cullin-3-RING ubiquitin ligase and other substrates, promoting its localization in nuclear speckles[55] (Fig. 3E). Dimerization or oligomerization of proteins can also contribute to LLPS. For example, when the dimerization of HP1a is disrupted, the mobility of the droplets increases, hindering the maturation of heterochromatin formations (Fig. 3F)[56].

IDR/low-complexity domains contribute to LLPS

IDRs are distinctive features of certain proteins of the condensates, accounting for 33–55% of eukaryotic proteomes [57, 58]. Like IDRs, low-complexity domains (LCDs) are also distinctive features of proteins comprised by highly biased amino acid compositions [59]. IDRs and LCDs lack stable tertiary structures and have flexible conformations, making them prone to undergo LLPS [11, 6062]. β sheets in TDP34/FUS (Fig. 3G), coiled-coil domains in YAP/TAZ (Fig. 3H) and alpha-helix in TDP43 (Fig. 3I), exemplify the role of LCDs in LLPS [6369]. While IDR interactions involve pi-pi interactions, salt bridges between opposing charge residues, pi-cation interactions, dipole-dipole interactions (Van der Waals forces), and hydrophobic forces (Figs. 3J–N) represent different forms of LLPS [70].

Nucleic acids regulate LLPS

Nucleic acids, especially the single-stranded nucleic acids, tend to aggregate to form droplets, whereas double-stranded nucleic acids tend to form gel-like aggregates [71]. Via electrostatic interactions and the pairing of repeating molecules, certain RNAs achieve polyvalency, effectively inducing LLPS in combination with proteins, as observed in the RG/RGG-rich domains of the SERPINE1 mRNA-binding protein 1 (SERBP1) system [72]. In contrast, the RNA concentration does not show a strong positive correlation with the phase transition ability [73]. RNA modifications and non-coding RNAs can also induce LLPS spontaneously [74] or by attaching to proteins, facilitating clients recruitment for the condensate assembly [7577].

Head-to-tail polymerization

Occasionally, stable structural domains in proteins, such as SAM and DIX, retain their ability to trigger local condensation [78, 79]. Among the dishevelled and axin components of the Wnt signaling, the DIX domain can assemble in a head-to-tail manner and promote Wnt signaling [80, 81]. The SAM domain of the tankyrase protein forms similar puncta in a head-to-tail manner to bind and ribosylate poly ADP AXIN, thus promoting Wnt signaling [82]. These structural conditions facilitate the formation of condensates (Fig. 3O).

Sequence variations at the gene levels

Disease-related genomic changes regulate LLPS. The NUP98 fusion protein in leukemia, carrying IDRs, serves as a good model for gene fusion [83] (Fig. 3P). Similar results have been obtained with anaplastic lymphoma kinase (ALK) and BCR-ABL1 fusions [84, 85]. Linear motifs that modulate ligand recognition within IDRs control the function of alternatively spliced (AS) proteins [86, 87] and modulate their assemblies (Fig. 3Q). On the contrary, repetitive motifs can induce pathogenic repeat expansions (Fig. 3R). Missense mutations in IDRs and polymerization/modular domains may influence the phase transition status bilaterally (Fig. 3S). For instance, F291S and Y283S mutations in the heterogeneous nuclear ribonucleoprotein A2 scarcely affect the aggregation, whereas D290V and P298L mutations improve the condensation [88].

External conditions and physicochemical properties affect LLPS

In this section, we focus on the conditions and the post-translational modifications (PTMs) which play a crucial role in regulating the dynamic transitions of molecules within the cell.
The interplay of various intracellular conditions, such as the concentration of proteins, pH level, and changes of the cellular milieu, alter the strength of polyvalent interactions. These conditions are key regulators of transitions within the cell. Furthermore, the concentrations of macromolecules are critical. When the concentration exceeds a critical threshold, the interaction between these macromolecules outweighs the forces that maintain homogeneity of the system, making the solution susceptible to phase separation. Conversely, when the concentrations are below this threshold, the components remain evenly distributed [89, 90]. The alterations of pH value can significantly impact LLPS by changing the surface charges of amino acids, the α-carbonyl groups, and the α-amino terminal protonation status. pH alterations affect the stability of specific proteins and change the secondary structure from ordered to disordered. Altering the protonation of amino acids directly influences the chemical properties of macromolecules, further altering their intermolecular interactions and triggering LLPS. For example, the decreased cytoplasmic pH, induced by external stimuli, can promote LLPS of naturally disordered proteins, as observed with Sup35 in yeast cells [91]. The increase in salt concentration and the addition of substances such as PEG3000 and glycerol can also modulate LLPS [73, 92]. Additionally, weak electrostatic interactions, driven by IDRs, are highly sensitive to changes in pH and ionic strength, potentially explaining LLPS induction due to environmental changes [17, 93]. In addition, temperature and stress levels can also trigger or disrupt LLPS by affecting the solubility of macromolecules [11]. Moreover, prion-like domains in proteins can sense pressure, influencing the solubility and phase behavior [94, 95].
The PTMs are crucial in the regulation of phase transitions by altering molecular interactions or directly modifying the potency of BMCs [9698]. PTMs can induce changes of biomolecules in the spatial structures and state of proteins [96, 99]. PTMs of RNA-binding proteins (RBPs) can directly weaken or enhance the interactions between components, contributing to the formation of RNP granules, serving as an example of an MLO that is composed of RBP and RNA [96]. PTMs can promote or inhibit polyvalent interactions by influencing the condition of proteins, thus affecting the occurrence of LLPS [100]. Notably, the Lys residues within the IDRs are particularly prone to get SUMOylation, a modification that significantly contributes to the formation of the promyelocytic leukemia nuclear bodies (NBs). De-SUMOylation can lead to the release of a constituent protein and the separation of NBs during mitosis [101, 102].
Given the complexity of physicochemical conditions, the manipulation of PTMs is an intriguing approach to influence LLPS. Thus, it is pivotal to understand the possible mechanisms in cancer-related PTMs associated with LLPS (Table 2).
Table 2
Summary of cancer-related PTMs involved in LLPS
PTM
Disease association
Participants
Biological role
Regulation of LLPS
References
Ubiquitination
Non-small-cell lung cancer
USP42
Drives nuclear speckle mrna splicing and promote tumorigenesis
Promotion
[8]
Multiple cancer types
p62
Promotes tumor cell survival by upregulating p62 liquid droplet formation and degradation
Promotion
[103]
Multiple cancer types
SPOP/DAXX
Co-localizes with DAXX in Liquid Nuclear Organelles and facilitates DAXX Ubiquitination
Promotion
[104]
Phosphorylation
Multiple cancer types
TAZ
Formation of transcription compartment to promote gene expression
Promotion
[68]
Methylation
Leukaemia
YTHDC1-m6A condensates
Facilitates a phase-separated nuclear body and suppresses myeloid leukemica differentiation
Promotion
[105]
Multiple cancer types
UTX (namely KDM6A)
Involved in chromatin-regulatory activity in tumour suppression
Promotion
[106]
Sumoylation
Colon cancer
RNF168
Genomic instability and DNA damage repair
Promotion
[107]
Acetylation
Multiple cancer types
KAT8-IRF1
KAT8-IRF1 condensate formation boosts PD-L1 transcription
Promotion
[108]
Neddylation
Acute promyelocytic leukemia (APL)
PML/RARa
Induce abberent LLPS and disrupt function of PML nuclear bodies to drive APL
Inhibition
[109]

Deregulated phase separation in cancer

Emerging evidence has robustly revealed that aberrant BMCs are involved in various biochemical processes in human diseases and various oncogenic signaling pathways [19] (Table 3). Next, we review the role of LLPS in tumors based on several hallmarks (Fig. 4).
Table 3
Oncogenic signaling assosciated condensates that were involved in LLPS
Signaling Pathway
Cancer type
Biomolecule/ condensate
Biological role
Ref
EGFR/RAS signaling
Lung cancer
EGFR condensates
Regulating pro-tumor activation of Ras
[110, 111]
KRAS signaling
Lung cancer
EML4-ALK condensates
Modulating the KRAS signaling pathway, amplifying the oncogenic potential of this cascade, ultimately leading to dysregu- lated cellular proliferation and survival
[112, 113]
JAK-STAT3 signaling
Lung cancer
EZH2/STAT3
Myristoylation modification of EZH2 enables its phase separation, compartmentalize STAT3 within the condensates and leads to the sustained activation and enhanced transcriptional activity of STAT3
[113]
PI3K-AKT-mTOR signaling pathway
Lung cancer
stress granule
dynamically interacting with a key component of lung oncogenic pathway, mTOR and its regulators, influencing its localization, activity, and downstream signaling
[114]
Hippo signaling pathway
Pan-cancer
YAP, TAZ, TEAD
Undergoing LLPS, accumulating in the nucleus coregulator with increased activity in various cancers
[68, 115]
Hepatocellular carcinoma
G6PC (glycogen compartments)
YAP signaling activation
[116]
Hepatocellular carcinoma
YAP/TEAD transcriptional condensates
Acting as signaling hubs for the tumor microenvironment
[117]
Hepatocellular carcinoma
Laforin-Mst1/2 condensates
Increasing hepatocarcinogenesis
[116]
p53 signaling
Pan-cancer
p53, 53BP1
53BP1 can form phase separation droplets, which enrich tumor suppressor protein p53. Cancer-associated mutation of p53 can accelerate the protein aggregation and amyloid formation by destroying the folding of p53 core domain
[118, 119]
Wnt/β-catenin signaling
Breast and prostate cancer
DACT1
WNT signaling inhibition
[120]
TGF-β signaling
Colorectal cancer
SMAD3
forming nuclear foci when the signaling pathway is activated
[121]
cAMP/PKA signaling
Atypical liver cancer fibrolamellar carcinoma
DnaJB1-PKAcat fusion
Tumorigenic cAMP signaling
[122]
Hepatocellular carcinoma
RIα condensates
Promoting cell proliferation and transformation
[122]
RAS signaling
Pan-cancer
EML4-ALK fusion
RAS signaling overactivation
[123, 124]
Pan-cancer
CCDC6-RET fusion
RAS signaling overactivation
[123, 124]
Pan-cancer
LAT, GRB2, SOS
Activating Ras in tumour development
[125]
MAPK signaling
RTK-driven human cancer
SHP2
Stimulation of downstream MAPK signaling pathways and ERK1/2 activation
[126]
Wnt/β-Catenin signaling
Colorectal cancer
Destruction complex
Regulating development and stemness
[127]
NRF2/NF-κB signaling
Lung cancer
p62 bodies
Accelerating cancer development
[128]
NF-κB pathway signaling
Virus-associated cancer
p65/inclusion body
The trapped p65 (subunit of NF-κB) by phase separation of viral replication machinery cannot translocate into the nucleus to activate the downstream transcription of proinflammatory cytokine genes and other antiviral genes
[129]
cGAS-STING signaling
Pan-cancer
NF2m-IRF3 condensates
Regulating tumor immunity
[130, 131]
IL-6/STAT3 signaling
Hepatocellular carcinoma
Paraspeckles
IL-6/STAT3 signaling promotes paraspeckles formation, which favors overactivation of STAT3
[132]

LLPS promotes the proliferation of cancer cells

Cancer cells can undergo unrestricted division [20, 133136], which can occur through gene mutations that activate oncogenic receptor tyrosine kinases (RTKs) and the downstream MAPK signaling involving RAS proteins.
Adaptor proteins involved in RTK and RAS signaling, such as LAT, GRB2 and SOS, undergo phase separation during RTK activation [137]. This phenomenon increases the interaction time between SOS and RTK/RAS, providing a mechanism for kinetic proofreading during RTK activation [125, 138] and preventing the spontaneous membrane localization of SOS, and the downstream activation of RAS. Interestingly, carcinogenic RTK mutations resulting from chromosomal rearrangements cause the loss of membrane localization but not its ability to stimulate downstream pathways. Mechanically, these condensates can assemble the RAS-activating complex GRB2/SOS1, which activates the RAS-MAPK signaling in a membrane-independent manner [123]. Moreover, RTK fusion oncoprotein granules enable the activation of RTK signaling [123, 139]. The close binding to RTK oncoprotein condensates allows GRB2 to concentrate key downstream molecules, achieving the constitutive activation of RAS-MAPK signaling in cancer cells (Fig. 4A). Therefore, BMCs provide a new method for modulating cancer-promoting signaling in a spatially restricted manner.

LLPS promotes the metastasis of tumors

The ability to invade and metastasize allows the tumors to develop distantly, and the epithelial–mesenchymal transition (EMT) programs are commonly involved [140]. Activated by EMT, the transcription coactivators YAP and TAZ facilitate metastasis [141, 142]. Hu et al. found that YAP fusion proteins undergo LLPS in the nucleus and that the IDR provided by the partner of YAP is required for assembly. This aggregation promotes the YAP/TAZ-specific transcriptions and attenuates metastasis [68]. Similarly, another study revealed that the phase separation of DDX21 activates MCM5, thus triggering EMT signaling and modulating the colon cancer metastasis (Fig. 4B)[143]. Besides, SGs are also involved in malignant invasion and metastasis. EMT markers Cadherin, Vimentin, Snail and Slug are suppressed under SG core component G3BP1 depletion, implying the role of G3BP1 in tumor metastasis [144]. Moreover, G3BP modulates mRNA stability under stress conditions and facilitates the invasion of cancer cells [145]. These carcinogenic mechanisms provide new explanations for tumor metastasis, as well as the inspiring ideas for models of cancer progression regulation by the BMCs.

LLPS helps evade tumor growth suppression, regulate the aging process, and achieve replicative immortality of tumor cells

Cancer cells not only promote their growth but also modify tumor-suppression pathways [20]. By inhibiting tumor suppressors such as SPOP, p53, and RB1 [146148], cancer cells escape intrinsic growth limitations. P53, one of the most well-known tumor suppressors, inhibits tumorigenesis via transcriptional activation, which leads to the disorders of apoptosis, cell cycle, and cell senescence. Tumor-associated stress significantly triggers p53 aggregation [149154]. These findings demonstrate that the disruption of particular BMCs may cause cancer (Fig. 4C). Further studies are needed to validate this approach with other tumor suppressors and to test its potential applications.
Cellular senescence is considered an anticancer mechanism that maintain homeostasis and is associated with cell cycle arrest. The initiation and maintenance of cellular senescence rely on the frequent damage to the P53/Rb signaling pathway. Increased accumulation of 53BP1 in the nuclear foci after DNA damage can activate p53 and has recently been shown to regulate the cellular senescence via LLPS (Fig. 4D) [155].
Cancer cells can overcome the cell senescence and death via telomerase or alternative methods for lengthening telomeres (ALT) [156158]. Multivalent interactions between SUMO and SUMO-interacting motifs were observed in the formation of ALT-associated PML bodies on telomeres in cancer stem cells (Fig. 4E) [159]. The fusion of PML bodies enables the clustering of telomere elements and the recruitment of DNA helicases, and other molecular machinery to extend the length of telomeres [160]. This finding suggests that cancer stem cells achieve replicative immortality through the unchecked cell division, and that this process is associated with LLPS.

LLPS modulates epigenetic reprogramming of various BMCs

Common epigenetic modifications include histone modifications, DNA methylation, and RNA interference [161, 162]. Interactions between epigenetic modifications and their corresponding reader proteins also exhibit polyvalent interactions. M6A, known as the most common mRNA modification [163], alters the mRNA structure and interacts with multiple other mRNA modifications and proteins. This modification facilitates YTHDF protein phase separation, further contributing to the forming of various RNA–protein granules, including P bodies and SGs [74, 164]. In addition, YTHDC1 can undergo LLPS in the nucleus by interacting with m6A-modified mRNAs. This interaction results in the formation of nuclear YTHDC1-m6A condensates (nYACs), which are significantly enhanced in acute myeloid leukemia (AML) cells (Fig. 4F) [105].

LLPS helps cancer cells escape immune destruction and participate in tumor-associated inflammation

The immune system employs the RLR-MAVS and cGAS-STING signaling pathways for protection against microbial invasion and support tumor immune surveillance [165167]. However, tumors often escape immune clearance surveillance. Recent findings by Meng et al. revealed that neurofibromin 2 (NF2) facilitates innate immunity by eliminating tank-binding kinase 1 (TBK1) activation. It is the missense mutations in the FERM domain of NF2 (NF2m) that robustly inhibit the STING-initiated antitumor immunity via the NF2m-IRF3 condensates formations (Fig. 4G), suppressing the TBK1 activation [130]. This offers novel insights into NF2-related cancer treatments.
Notably, inflammation often plays a dual role in cancer. Overproduced in various inflammatory tissues, the reactive oxygen species (ROS) may accelerate the genetic mutations of cells, making them more aggressive and malignant [168]. However, recent research indicates that the PML NB may function as a sensor for ROS in two ways: protecting cancer cells from excessive ROS or promoting ROS-induced apoptosis (Fig. 4H). Given the lack of in-depth research in this field, further tumor microenvironment exploration is required to understand these processes fully.
Tumor-associated viruses, such as human papillomavirus, Kaposi sarcoma herpesvirus, and Epstein–Barr virus (EBV), influence tumor progression through LLPS [169171]. In EBV proteins such as EBNA2 and EBNALP, LLPS regulates host gene expression, forming biomolecule condensates at Runx3 and MYC SE sites to regulate viral and cellular gene transcription (Fig. 4I). Further, the LLPS of EBNA2 can influence the alternative splicing of the pre-MPPE1 gene in cancer [170].

LLPS induce vasculature of the tumors

Vascularization, also known as angiogenesis, is crucial for supplying tumors with nutrients and oxygen for growth. Vascular endothelial growth factor (VEGF) is the leading factor responsible for rapid nutrient supply. Mounting evidence has indicated a correlation between BMC formation and angiogenesis. For example, the constitutive expression of the transcription factor (TF) MYC in metastasizing cells can lead to VEGF transcription by potentially forming phase-separated transcription condensates, promoting promotes angiogenesis [172]. Similarly, the use of 1,6-hexanediol, an inhibitor of LLPS, has recently been shown to regulate angiogenesis by inhibiting cyclin A1-related endothelial functions as well as condensates with BRD4, indicating that targeting condensates can block critical reactions (Fig. 4J) [173, 174].

Genomic arrangements initiate LLPS

Genomic instability contributes to tumor progression. Genomic translocations and rearrangements can lead to the fusion between the IDR of one protein and the DNA- or chromatin-binding domain of another [175]. This fusion acts as a TF, eliciting LLPS and attracting additional partners to initiate transcriptional programs that ultimately contribute to tumorigenesis. A typical example is the NUP98 fusion oncoprotein (FO), which occurs in 50% of patients with chemotherapy-resistant AML [176179]. FOs demonstrate that malignancies establish cancerous TF condensates [83, 180, 181] and attenuate aberrant chromatin organization (Fig. 4K).

LLPS of SGs assist in avoiding cell death of cancer cells under the stress

Cancer cells can escape apoptosis by forming SGs (a form of MLOs) when exposed to extreme conditions, such as high temperatures, toxins, mechanical damage, or other stresses. For example, the Y-box binding protein 1 (YB-1) interacts with the 5'-untranslated region (UTR) of G3BP1[182], leading to the increased expression of G3BP1 and SGs, which is elevated in human sarcomas [183185]. Consequently, these cancer cells survive hyperproliferation, chemotherapy and other various stressful conditions. Additional studies on prostate cancer have demonstrated that the m6A-modified androgen receptor (AR) mRNA phase separated with YTHDF3, while the unmodified AR mRNA phase separated with G3BP1 to survive AR pathway inhibition stress (Fig. 4L)[186]. Collectively, SGs may serve as novel targets for cancer biology investigations.

LLPS regulates cellular metabolisms of cancer cells

Malignant cells undergo metabolic reprogramming [187], thereby attracting considerable interest in tumor-related research in the past decades [188]. For example, the reduction of glutaminase-1 (GLS1) enables cancer cells to survive under prolonged glutamine deprivation stress [189, 190]. Wang et al. reported that the lncRNA GIRGL promotes the LLPS of GIRGL-CAPRIN1-GLS1 mRNA to suppress GLS1 translation, thus adapting to an adverse glutamine-deficient environment (Fig. 4M)[191]. CAPRIN1, an RNA-binding protein involved in the SG formation via LLPS, plays a role in this metabolic adaptation. Therefore, alteration of cell adaptation to an adverse metabolic environment is possible by targeting condensates.

Potential role of LLPS in the phenotypic plasticity of tumorigenesis

Tumor cells often exhibit phenotypic plasticity to evade terminal differentiation. This plasticity includes the dedifferentiation, the differentiation inhibition, and the transdifferentiation [20]. During dedifferentiation, specific malignant cells become sensitized to ferroptosis [192194], a form of cell death. Nakamura et al. [195] first demonstrated that the novel FSP1 inhibitor, icFSP1 impairs cell proliferation and induces FSP1 condensation to trigger ferroptosis in cancer cells (Fig. 4N). This highlights the role of iron in tumor progression and the dependence of cancer cells on iron in drug-resistant states.

Clinical applications of LLPS in oncologic fields

Potential of LLPS in cancer treatments

Considering that various regulatory mechanisms of LLPS are closely associated with tumorigenesis, it is imperative to explore therapeutic approaches against abnormal LLPS. These strategies can be categorized into three main approaches (Table 4).
Table 4
Summary of strategies and drugs that use phase separation to intervene in tumorigenesis and progression
Targeting strategy
Drug/molecules
Tumor types
Associated protein/condensate
Mechanism of action
References
Disruptions of the BMCs’ formations
IIA4B20, IIA6B17, mycmycin-1/2
Pan-cancer
Myc
Preventing the Myc/Max dimerization inhibit Myc-induced malignant transformation
[196]
YK-4–279
EWS
EWS-FLI1 fusion
Binding to the IDR of the oncogenic transcription factor EWS-FLI1 and prevents the interaction between EWS-FLI1 and RNA helicase A, thereby slowing down EWS cell growth
[197]
elvitegravir
Lung cancer
SRC1
Directly binding to the highly disordered SRC1 and effectively inhibit YAP oncogene transfer by disrupting liquid–liquid separation in SRC1/YAP/TEAD condensates
[117]
C108
Breast cancer
G3BP2 (SG core component)
Diminishing the role of SG core component G3BP2 in breast cancer initiation and improve the efficacy of chemotherapy drugs
[198]
2142–R8 peptide
Pan-cancer
KAT8–IRF1 condensates
disrupt the formation of KAT8–IRF1 condensates, subsequently suppressing PD-L1 expression and enhancing antitumor immunity in vitro and in vivo
[198]
BAY 249716
Pan-cancer
p53
Inducing condensate formation of DNA-binding defective mutants; dissolve nuclear condensates of structural mutants; covalent binders
[199]
BAY 1892005
Avrainvillamide
Aml
NPM1
Restoring nucleolar localization of cytoplasmic NPM1 mutant; covalent binder
[200]
SHP099
RTK-driven human cancer
SHP2
Stabilizing SHP2 in an auto-inhibited conformation and suppressing RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells
[201]
ET070
RTK-driven human cancer
SHP2
Inhibiting the phase separation ability of SHP2 mutants by locking SHP2 in the “off” conformation
[126]
JQ1
Breast cancer and colon cancer
BET family of bromodomain proteins
Partitions into transcriptional condensates; dissolving MED1 nuclear condensates
[202]
EPI-001
Prostate cancer
Androgen receptor
Dissolving androgen receptor-rich transcriptional condensates
[203]
Leptomycin B
Leukemia
CRM1
Inhibiting formation of aberrant NUP98–HOXA9 transcriptional condensates
[204]
Ribavirin
Prostate cancer
OCT4/AR/FOXA1, OCT4/NRF1
Inhibiting the formation of OCT4-AR axis by modulating OCT4 condensates in the nucleus
[205]
Tin (IV) oxochloride-derived cluster
Pan-cancer
IDR of TAF2 in TFIID
Disrupting transcription initiation by selectively impairing the function of TFIID
[206]
PRIMA-1; ReACp53
Ovarian carcinoma
p53 mutants
Induction of cell cycle arrest in cancer cells with mutant p53 by restoring the native conformation of aggregated mutant p53 proteins
[207]
PCG
Breast cancer
IDR of BRD4
Suppression of BRD4-dependent gene transcription
[208]
bis-ANS
Colon cancer
LCD of TDP-43
high concentrations of bis-ANS inhibit TDP-43 condensate assembly, whereas low concentrations facilitate the formation of liquid droplets
[209]
Modifications of PTMs and physicochemical conditions
SI-2
Multiple myeloma
SRC3/NSD2 condensate
Phase separation of SRC3 mediated by histone methyltransferase NSD2 leads to resistance to bleitinib in multiple myeloma, whereas the inhibitor SI-2 Inhibits formation of drug-resistant SRC3/NSD2 condensates and improves the therapeutic efficacy of bleitinib
[210]
Olaparib
Pan-cancer
PARP1/2 DNA repair condensate
Inhibiting PARP1/2 and thus interferes with the formation of PARylation related DNA repair condensates
[211]
GSK-J4
Osteosarcoma
HOXB8/FOSL1 CRC
The H3K27 demethylase inhibitor GSK-J4, inhibits the CRC phase separation and results in metastasis suppression and re-sensitivity to chemotherapy drugs
[212]
icFSP1
Melanoma and lung cancer
hFSP1
Inducing phase separation of myristoylated hFSP1, thus promoting ferroptosis and inhibit tumor proliferations
[195]
GSK-626616
Pan-cancer
DYRK3
Inhibit PRAS40 phosphorylation and restrain
mTORC1 signaling in SGs
[213]
JQ1
AML
BRD4
Release the Mediator complex from SEs
[214]
SGC0946
MLL leukemia
DOT1L
Inhibit histone H3K79 methylation and histone H4 acetylation
[215]
THZ1
Pan-cancer
CDK7
Inhibit RNAPII phosphorylation
[216]
THZ531
Pan-cancer
CDK12 and CDK13
Inhibit RNAPII phosphorylation
[217]
Drug interventions and distributions of the dynamics of condensates
Cisplatin
Breast cancer and colon cancer
MED1 transcriptional condensates
Partitions into transcriptional condensates; dissolves MED1 and BRD4 nuclear condensates
[202]
Tamoxifen
breast cancer and colon cancer
Estrogen receptor
Seletively partitions into transcriptional condensates
[202]
mitoxantrone
breast cancer and colon cancer
Estrogen receptor
Seletively partitions into transcriptional condensates
[202]
PML-retinoic acid receptor α
APL
PML bodies
Hindering the assembly of PML bodies and result in the suppression of differentiation genes. Successful APL treatment involves the restoration of PML nuclear bodies using empirically discovered drugs
[109]
BMC, biomolecular condensate; EWS, Ewing sarcoma; IDR, intrinsically disordered region; SG, stress granule, RTK, receptor-tyrosine-kinase; CRC, core regulatory circuitry; MLL, mixed lineage leukemia; PML, Promyelocytic leukemia protein; APL, acute promyelocytic leukemia

Disruptions of the formation of BMCs

The direct disruption of the driving force behind LLPS offers a straightforward approach (Fig. 5A). For example, certain drugs can intervene in the LLPS process by targeting IDRs of proteins. Notably, the anti-HIV drug elvitegravir directly binds to the highly disordered steroid receptor coactivator 1, effectively inhibiting oncogene YAP transcription by disrupting SRC1/YAP/TEAD condensates (Table 4) [117]. Similarly, Yu et al. reported that the nuclear translocation of YAP and LLPS are affected by IFN treatment in cancer cells. Therefore, interrupting the LLPS of YAP can inhibit cancer cell proliferation and enhance the immune response, indicating its potential as a predictive biomarker in immune checkpoint blockade [67]. Further, altering interactions between LCDs indirectly modulates the transcriptional subunits, thus offering a promising approach for targeting disease-causing TFs.

Modifications of PTMs and physicochemical conditions

As previously mentioned, certain post-transitional modifications and physiochemical conditions contribute to LLP dynamics (Fig. 5B). For example, nYACs protect mRNAs from degradation and strengthen the role of YTHDC1 in leukemogenesis, which inspires us to disrupt m6A to violate deleterious condensates[105]. Further, studies have reported that modulating PTMs in LLPS proteins is also significant [25, 96, 102, 218221]. In the case of colon cancer, SENP1 has been reported to decrease RNF168 SUMOylation, inhibit nuclear condensate formation, and promote DNA damage repair (DDR) and drug resistance. Given these observations, strategies to curb the harmful effects of protein aggregation by influencing protein modifications warrant further investigation.

Drug interventions of the dynamics of condensates

Drugs can significantly influence the dynamics of the condensates, affecting their anticancer effects and potentially leading to drug resistance (Fig. 5C). For example, in luminal breast cancer, tamoxifen accumulates in MED1 condensates, preventing the incorporation of ERα into these condensates, partially inhibiting cancer progression. However, when MED1 is overexpressed, larger condensates dilute the drug concentration, ultimately leading to the development of resistance [202]. Several drugs, such as cisplatin, mitoxantrone, and THZ1, selectively partition into BMCs formed by MED1 (Table 4). Drug resistance can occur via selective partitioning into BMCs or changes in properties. Notably, cisplatin exerts its anticancer activity by dissolving SEs, indicating that changes in the condensate properties may improve therapeutic outcomes[202]. This finding highlights the potential of altering the properties of condensates to improve therapeutic outcomes. In some cases, promoting the formation of BMCs may have therapeutic effects. For example, in APL, fusion proteins of PML-retinoic acid receptor α (RARA) hinder the assembly of PML bodies and result in the suppression of differentiation genes. Successful APL treatment involves the restoration of PML nuclear bodies using empirically discovered drugs (Table 4) [222].

Roles of LLPS in vesicular trafficking and drugs’ delivery

Although LLPS and traditional vesicles are two different concepts with distinctive definitions, the vesicular trafficking role of LLPS is still rarely described and attractive. Conventional approaches typically utilize nanoscale carriers that are confined within the compartments of the intranuclear body. Nevertheless, recent findings have demonstrated that micron-scale polypeptide clusters, formed through phase separation, possess the ability to traverse the cell membrane via a non-canonical endocytic pathway. These clusters undergo glutathione-induced release of their cargo and exhibit the capacity to rapidly incorporate various macromolecules into microdroplets, such as RNA, small peptides and enzymes [223]. Loaded with polysomes, they can provide new approaches for vaccine carriers based on mRNAs and intracellular transportations for cancer treatments.
Likewise, as previously mentioned, droplets of drugs formed by LLPS can unexpectedly raise the inner drug concentration up to 600 times higher than that outside the condensate [202]. Furthermore, MED1 predominantly acts on oncogene promoters, thereby enabling cisplatin to ultimately target the corresponding DNA through its toxic platinum atoms, effectively assaulting the vital components of the cancer cells. Besides, the phosphopeptide KYp has been observed to induce LLPS level at the cell membrane, thus enhancing the permeation and internalization of the peptide drug [224]. KYp has the ability to interact with alkaline phosphatase, resulting in the dephosphorylation and in situ self-assembly at the cell membrane [224]. The process induces the aggregation of alkaline phosphatase and the separation of proteolipid phases at the membrane, ultimately enhancing membrane leakage and facilitating the entry of the peptide drug. These great discoveries provide inspirations for designing drug delivery systems and more similar ideas are worth exploring.

Conclusions and future perspectives

In the past decades, crucial advances have been made in figuring out the role of LLPS in a variety of cellular processes and biological functions. Since the update of the new version of “Hallmarks of cancer 2022”, cancer hallmarks and their enabling characteristics help distill the oncogenic complexity into an evidently logical science, which have been gradually proven to be closely associated with LLPS. In this review, we summarize the mechanism of LLPS formations, recent discoveries and the individual role of LLPS in oncology. These findings collectively reveal its vital role in solving undruggable targets and multiple clinical problems.
The role of specific proteins and post-translational mechanisms in the formation and regulation of LLPS are being investigated. These efforts aim to identify abnormal conditions and gain insights into the mechanisms regulating the formation of the condensates. These studies have already begun to help find new strategies for targeting disease-related condensates. Notably, while previous drugs were designed to inhibit each protein directly, LLPS offers a novel and unexpected possibility of interfering with the pathological process and does not necessitate targeting each protein individually. This approach achieves disruption of the condensates formed by IDRs of TFs.
Despite the steady progress in targeting BMCs using LLPS, several fundamental questions need to be answered. For example, what are the functional differences between LLPS-formed assemblies and typical protein complexes? What factors contribute to dynamic condensation and decondensation, and how do different BMCs communicate in vitro and in vivo? Moreover, the role of PTMs in tumorigenesis requires further exploration (Table 5). Clarifying these aspects will improve our understanding of the conversion of physiological into pathological condensates in cancer. Future research will require collaborative efforts, innovative approaches, and a holistic approach to studying cancer-associated LLPS, which may lead to novel anti-tumor therapies directly targeting BMCs.
Table 5
Outlook and reflection on the future of the field
Critical issues in the current development of oncogenic LLPS
Outlook and reflection on the future/ possible solutions to the questions
What are the functional differences between LLPS-formed assemblies and typical protein complexes?
What factors contribute to dynamic condensation and decondensation, and how do different BMCs communicate in vitro and in vivo?
The target protein molecules and signaling pathways discovered through LLPS method are a class of molecules that can form condensates spontaneously due to their own unique properties or under different environmental conditions. LLPS is essentially an energy saving process in the organisms. Further functional differences between LLPS‐formed assemblies and canonical protein complexes deserve investigations
Is there other function of PTMs in tumorigenesis and tumor progressions?
Further studies on phase separation on the basis of proteomics and PTMs are needed
Detections of BMCs/ MLOs in tumor samples and clinicopathologic associations with cancer patients are deficient
Clinicopathologic tests should be involved in further studies
How do environment conditions inducing condensate assemblies being applied to clinical practice?
Perhaps changing the environment conditions can dynamically alter the condensation and decondensation of the BMC, which will make sense in drug deliveries. A greater understanding of the opportunities for targeting LLPS condensates in the pharmaceutical intervention should be obtained
Is there any new convenient method to probe and control (induce, dissolve, or tune) the endogenous condensates?
The partitioning of anticancer drugs in subcellular condensates is also dominant for drug efficacy. According to this characteristic, we can detect the distribution of drugs in cells or by linking drugs to molecules that can specifically aggregate in liquid droplets
How to make use of LLPS to enhance the efficiency of drugs in clinical practice?

Acknowledgements

The figures are created with Biorender.com.

Declarations

Not applicable.
Not applicable.

Competing Interests

The authors declare no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
insite
INHALT
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS. RNA controls PolyQ protein phase transitions. Mol Cell. 2015;60:220–30.PubMedPubMedCentralCrossRef Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS. RNA controls PolyQ protein phase transitions. Mol Cell. 2015;60:220–30.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Pederson T The nucleolus, Cold Spring Harb Perspect Biol, 3 (2011) Pederson T The nucleolus, Cold Spring Harb Perspect Biol, 3 (2011)
3.
Zurück zum Zitat Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. Nucleation landscape of biomolecular condensates. Nature. 2021;599:503–6.PubMedCrossRef Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. Nucleation landscape of biomolecular condensates. Nature. 2021;599:503–6.PubMedCrossRef
4.
Zurück zum Zitat Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22:165–82.PubMedCrossRef Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22:165–82.PubMedCrossRef
6.
Zurück zum Zitat Wang M, Tao X, Jacob MD, Bennett CA, Ho JJD, Gonzalgo ML, Audas TE, Lee S. Stress-induced low complexity RNA activates physiological amyloidogenesis. Cell Rep. 2018;24:1713-1721.e1714.PubMedPubMedCentralCrossRef Wang M, Tao X, Jacob MD, Bennett CA, Ho JJD, Gonzalgo ML, Audas TE, Lee S. Stress-induced low complexity RNA activates physiological amyloidogenesis. Cell Rep. 2018;24:1713-1721.e1714.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Gui X, Luo F, Li Y, Zhou H, Qin Z, Liu Z, Gu J, Xie M, Zhao K, Dai B, Shin WS, He J, He L, Jiang L, Zhao M, Sun B, Li X, Liu C, Li D. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun. 2019;10:2006.PubMedPubMedCentralCrossRef Gui X, Luo F, Li Y, Zhou H, Qin Z, Liu Z, Gu J, Xie M, Zhao K, Dai B, Shin WS, He J, He L, Jiang L, Zhao M, Sun B, Li X, Liu C, Li D. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun. 2019;10:2006.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Liu S, Wang T, Shi Y, Bai L, Wang S, Guo D, Zhang Y, Qi Y, Chen C, Zhang J, Zhang Y, Liu Q, Yang Q, Wang Y, Liu H. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 2021;28:2482–98.PubMedPubMedCentralCrossRef Liu S, Wang T, Shi Y, Bai L, Wang S, Guo D, Zhang Y, Qi Y, Chen C, Zhang J, Zhang Y, Liu Q, Yang Q, Wang Y, Liu H. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 2021;28:2482–98.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 2021;49:636–45.PubMedCrossRef Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res. 2021;49:636–45.PubMedCrossRef
10.
Zurück zum Zitat Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543–8.PubMedPubMedCentralCrossRef Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543–8.PubMedPubMedCentralCrossRef
11.
12.
Zurück zum Zitat Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–58.PubMedCrossRef Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–58.PubMedCrossRef
13.
Zurück zum Zitat Xiao Q, McAtee CK, Su X. Phase separation in immune signalling. Nat Rev Immunol. 2022;22:188–99.PubMedCrossRef Xiao Q, McAtee CK, Su X. Phase separation in immune signalling. Nat Rev Immunol. 2022;22:188–99.PubMedCrossRef
14.
Zurück zum Zitat Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382.PubMedCrossRef Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382.PubMedCrossRef
15.
Zurück zum Zitat Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22:183–95.PubMedCrossRef Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22:183–95.PubMedCrossRef
16.
Zurück zum Zitat Langdon EM, Gladfelter AS. A new lens for RNA localization: liquid-liquid phase separation. Annu Rev Microbiol. 2018;72:255–71.PubMedCrossRef Langdon EM, Gladfelter AS. A new lens for RNA localization: liquid-liquid phase separation. Annu Rev Microbiol. 2018;72:255–71.PubMedCrossRef
18.
Zurück zum Zitat Wang B, Zhang L, Dai T, Qin Z, Lu H, Zhang L, Zhou F. Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther. 2021;6:290.PubMedPubMedCentralCrossRef Wang B, Zhang L, Dai T, Qin Z, Lu H, Zhang L, Zhou F. Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther. 2021;6:290.PubMedPubMedCentralCrossRef
19.
21.
22.
Zurück zum Zitat Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N. Nuclear microenvironment in cancer: control through liquid-liquid phase separation. Cancer Sci. 2020;111:3155–63.PubMedPubMedCentralCrossRef Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N. Nuclear microenvironment in cancer: control through liquid-liquid phase separation. Cancer Sci. 2020;111:3155–63.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol. 2017;44:18–30.PubMedCrossRef Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol. 2017;44:18–30.PubMedCrossRef
24.
Zurück zum Zitat Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018;28:420–35.PubMedPubMedCentralCrossRef Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018;28:420–35.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32.PubMedCrossRef Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32.PubMedCrossRef
27.
Zurück zum Zitat Iglesias V, Santos J, Santos-Suárez J, Pintado-Grima C, Ventura S. SGnn: a web server for the prediction of prion-like domains recruitment to stress granules upon heat stress. Front Mol Biosci. 2021;8: 718301.PubMedPubMedCentralCrossRef Iglesias V, Santos J, Santos-Suárez J, Pintado-Grima C, Ventura S. SGnn: a web server for the prediction of prion-like domains recruitment to stress granules upon heat stress. Front Mol Biosci. 2021;8: 718301.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Hou C, Wang X, Xie H, Chen T, Zhu P, Xu X, You K, Li T. PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Res. 2022;51(2023):D460-d465.PubMedCentral Hou C, Wang X, Xie H, Chen T, Zhu P, Xu X, You K, Li T. PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Res. 2022;51(2023):D460-d465.PubMedCentral
29.
Zurück zum Zitat Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J. D2P2: database of disordered protein predictions. Nucleic Acids Res. 2013;41:D508-516.PubMedCrossRef Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J. D2P2: database of disordered protein predictions. Nucleic Acids Res. 2013;41:D508-516.PubMedCrossRef
30.
Zurück zum Zitat Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics. 2014;30:2501–2.PubMedPubMedCentralCrossRef Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics. 2014;30:2501–2.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ning W, Guo Y, Lin S, Mei B, Wu Y, Jiang P, Tan X, Zhang W, Chen G, Peng D, Chu L, Xue Y. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res. 2020;48:D288-d295.PubMedCrossRef Ning W, Guo Y, Lin S, Mei B, Wu Y, Jiang P, Tan X, Zhang W, Chen G, Peng D, Chu L, Xue Y. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res. 2020;48:D288-d295.PubMedCrossRef
32.
Zurück zum Zitat Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, Tosatto SCE, Tompa P, Dosztányi Z, Pancsa R. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res. 2020;48:D360-d367.PubMed Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, Tosatto SCE, Tompa P, Dosztányi Z, Pancsa R. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res. 2020;48:D360-d367.PubMed
33.
Zurück zum Zitat Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.PubMedCrossRef Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.PubMedCrossRef
34.
Zurück zum Zitat Li Q, Peng X, Li Y, Tang W, Zhu J, Huang J, Qi Y, Zhang Z. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res. 2020;48:D320-d327.PubMedCrossRef Li Q, Peng X, Li Y, Tang W, Zhu J, Huang J, Qi Y, Zhang Z. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res. 2020;48:D320-d327.PubMedCrossRef
35.
Zurück zum Zitat Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY, Samavarchi-Tehrani P, Zhang H, Zhu LY, Popiel E, Lambert JP, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H, Pelletier L, Palazzo AF, Shoubridge EA, Raught B, Gingras AC. A proximity-dependent biotinylation map of a human cell. Nature. 2021;595:120–4.PubMedCrossRef Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY, Samavarchi-Tehrani P, Zhang H, Zhu LY, Popiel E, Lambert JP, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H, Pelletier L, Palazzo AF, Shoubridge EA, Raught B, Gingras AC. A proximity-dependent biotinylation map of a human cell. Nature. 2021;595:120–4.PubMedCrossRef
36.
Zurück zum Zitat Orti F, Fernández ML, Marino-Buslje C MLOsMetaDB, a meta-database to centralize the information on Liquid-liquid phase separation proteins and Membraneless organelles, bioRxiv, (2023) Orti F, Fernández ML, Marino-Buslje C MLOsMetaDB, a meta-database to centralize the information on Liquid-liquid phase separation proteins and Membraneless organelles, bioRxiv, (2023)
37.
Zurück zum Zitat Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 2016;16:222–31.PubMedPubMedCentralCrossRef Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 2016;16:222–31.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife. 2018;7:e31486.PubMedPubMedCentralCrossRef Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife. 2018;7:e31486.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Liu M, Li H, Luo X, Cai J, Chen T, Xie Y, Ren J, Zuo Z. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation. Nucleic Acids Res. 2022;50:D347-d355.PubMedCrossRef Liu M, Li H, Luo X, Cai J, Chen T, Xie Y, Ren J, Zuo Z. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation. Nucleic Acids Res. 2022;50:D347-d355.PubMedCrossRef
40.
Zurück zum Zitat Zhu H, Fu H, Cui T, Ning L, Shao H, Guo Y, Ke Y, Zheng J, Lin H, Wu X, Liu G, He J, Han X, Li W, Zhao X, Lu H, Wang D, Hu K, Shen X. RNAPhaSep: a resource of RNAs undergoing phase separation. Nucleic Acids Res. 2022;50:D340-d346.PubMedCrossRef Zhu H, Fu H, Cui T, Ning L, Shao H, Guo Y, Ke Y, Zheng J, Lin H, Wu X, Liu G, He J, Han X, Li W, Zhao X, Lu H, Wang D, Hu K, Shen X. RNAPhaSep: a resource of RNAs undergoing phase separation. Nucleic Acids Res. 2022;50:D340-d346.PubMedCrossRef
41.
Zurück zum Zitat Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD, Gingras AC. Properties of stress granule and P-body proteomes. Mol Cell. 2019;76:286–94.PubMedCrossRef Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD, Gingras AC. Properties of stress granule and P-body proteomes. Mol Cell. 2019;76:286–94.PubMedCrossRef
42.
Zurück zum Zitat Navarro AM, Orti F, Martínez-Pérez E, Alonso M, Simonetti FL, Iserte JA, Marino-Buslje C. DisPhaseDB: an integrative database of diseases related variations in liquid-liquid phase separation proteins. Comput Struct Biotechnol J. 2022;20:2551–7.PubMedPubMedCentralCrossRef Navarro AM, Orti F, Martínez-Pérez E, Alonso M, Simonetti FL, Iserte JA, Marino-Buslje C. DisPhaseDB: an integrative database of diseases related variations in liquid-liquid phase separation proteins. Comput Struct Biotechnol J. 2022;20:2551–7.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Mészáros B, Erdos G, Dosztányi Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46:W329-w337.PubMedPubMedCentralCrossRef Mészáros B, Erdos G, Dosztányi Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46:W329-w337.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 1804;2010:996–1010. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 1804;2010:996–1010.
45.
Zurück zum Zitat Piovesan D, Del Conte A, Clementel D, Monzon AM, Bevilacqua M, Aspromonte MC, Iserte JA, Orti FE, Marino-Buslje C, Tosatto SCE. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 2023;51:D438-d444.PubMedCrossRef Piovesan D, Del Conte A, Clementel D, Monzon AM, Bevilacqua M, Aspromonte MC, Iserte JA, Orti FE, Marino-Buslje C, Tosatto SCE. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 2023;51:D438-d444.PubMedCrossRef
46.
Zurück zum Zitat Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J. 2017;112:16–21.PubMedPubMedCentralCrossRef Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J. 2017;112:16–21.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A. 2006;103:4074–8.PubMedPubMedCentralCrossRef Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A. 2006;103:4074–8.PubMedPubMedCentralCrossRef
48.
50.
Zurück zum Zitat Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49:W216-w227.PubMedPubMedCentralCrossRef Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49:W216-w227.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Nastou KC, Nasi GI, Tsiolaki PL, Litou ZI, Iconomidou VA. AmyCo: the amyloidoses collection. Amyloid. 2019;26:112–7.PubMedCrossRef Nastou KC, Nasi GI, Tsiolaki PL, Litou ZI, Iconomidou VA. AmyCo: the amyloidoses collection. Amyloid. 2019;26:112–7.PubMedCrossRef
52.
Zurück zum Zitat Mizianty MJ, Uversky V, Kurgan L. Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol. 2014;1137:147–62.PubMedCrossRef Mizianty MJ, Uversky V, Kurgan L. Prediction of intrinsic disorder in proteins using MFDp2. Methods Mol Biol. 2014;1137:147–62.PubMedCrossRef
53.
Zurück zum Zitat Case LB, Zhang X, Ditlev JA, Rosen MK. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science. 2019;363:1093–7.PubMedPubMedCentralCrossRef Case LB, Zhang X, Ditlev JA, Rosen MK. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science. 2019;363:1093–7.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336–40.PubMedPubMedCentralCrossRef Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336–40.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361:2555.CrossRef Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. 2018;361:2555.CrossRef
56.
Zurück zum Zitat Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, Griffin PR, Gross JD, Narlikar GJ. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575:390–4.PubMedPubMedCentralCrossRef Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, Griffin PR, Gross JD, Narlikar GJ. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575:390–4.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn. 2012;30:137–49.PubMedCrossRef Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn. 2012;30:137–49.PubMedCrossRef
58.
Zurück zum Zitat Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem. 2014;83:553–84.PubMedCrossRef Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem. 2014;83:553–84.PubMedCrossRef
59.
Zurück zum Zitat Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d’Adda di Fagagna F. DNA damage triggers a new phase in neurodegeneration. Trends Genet. 2021;37:337–54.PubMedCrossRef Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d’Adda di Fagagna F. DNA damage triggers a new phase in neurodegeneration. Trends Genet. 2021;37:337–54.PubMedCrossRef
60.
Zurück zum Zitat Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol. 2021;67:41–50.PubMedCrossRef Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol. 2021;67:41–50.PubMedCrossRef
61.
Zurück zum Zitat Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem. 2017;292:19110–20.PubMedPubMedCentralCrossRef Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem. 2017;292:19110–20.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174:688-699.e616.PubMedPubMedCentralCrossRef Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174:688-699.e616.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hughes MP, Goldschmidt L, Eisenberg DS. Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. J Biol Chem. 2021;297: 101194.PubMedPubMedCentralCrossRef Hughes MP, Goldschmidt L, Eisenberg DS. Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. J Biol Chem. 2021;297: 101194.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother. 2021;138: 111520.PubMedCrossRef Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother. 2021;138: 111520.PubMedCrossRef
65.
Zurück zum Zitat Hughes MP, Sawaya MR, Boyer DR, Goldschmidt L, Rodriguez JA, Cascio D, Chong L, Gonen T, Eisenberg DS. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science. 2018;359:698–701.PubMedPubMedCentralCrossRef Hughes MP, Sawaya MR, Boyer DR, Goldschmidt L, Rodriguez JA, Cascio D, Chong L, Gonen T, Eisenberg DS. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science. 2018;359:698–701.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Barrio M, Huguet J, Robert B, Rietveld IB, Céolin R, Tamarit JL. Pressure-temperature phase diagram of the dimorphism of the anti-inflammatory drug nimesulide. Int J Pharm. 2017;525:54–9.PubMedCrossRef Barrio M, Huguet J, Robert B, Rietveld IB, Céolin R, Tamarit JL. Pressure-temperature phase diagram of the dimorphism of the anti-inflammatory drug nimesulide. Int J Pharm. 2017;525:54–9.PubMedCrossRef
67.
Zurück zum Zitat Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang C, Lin J, Dong T, Wang L, Li S, Yang Y, Xu S, Guo W, Zhang X, Shi M, Peng H, Luo X, Zhang H, Zhang L, Li Y, Yang XP, Sun S. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell. 2021;81:1216-1230.e1219.PubMedCrossRef Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang C, Lin J, Dong T, Wang L, Li S, Yang Y, Xu S, Guo W, Zhang X, Shi M, Peng H, Luo X, Zhang H, Zhang L, Li Y, Yang XP, Sun S. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell. 2021;81:1216-1230.e1219.PubMedCrossRef
68.
Zurück zum Zitat Lu Y, Wu T, Gutman O, Lu H, Zhou Q, Henis YI, Luo K. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol. 2020;22:453–64.PubMedCrossRef Lu Y, Wu T, Gutman O, Lu H, Zhou Q, Henis YI, Luo K. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol. 2020;22:453–64.PubMedCrossRef
69.
Zurück zum Zitat Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24:1537–49.PubMedPubMedCentralCrossRef Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure. 2016;24:1537–49.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Lin Y, Fichou Y, Longhini AP, Llanes LC, Yin P, Bazan GC, Kosik KS, Han S. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J Mol Biol. 2021;433: 166731.PubMedCrossRef Lin Y, Fichou Y, Longhini AP, Llanes LC, Yin P, Bazan GC, Kosik KS, Han S. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J Mol Biol. 2021;433: 166731.PubMedCrossRef
71.
Zurück zum Zitat Vieregg JR, Lueckheide M, Marciel AB, Leon L, Bologna AJ, Rivera JR, Tirrell MV. Oligonucleotide-peptide complexes: phase control by hybridization. J Am Chem Soc. 2018;140:1632–8.PubMedCrossRef Vieregg JR, Lueckheide M, Marciel AB, Leon L, Bologna AJ, Rivera JR, Tirrell MV. Oligonucleotide-peptide complexes: phase control by hybridization. J Am Chem Soc. 2018;140:1632–8.PubMedCrossRef
73.
Zurück zum Zitat Baudin A, Moreno-Romero AK, Xu X, Selig EE, Penalva LOF, Libich DS. Structural characterization of the RNA-binding protein SERBP1 reveals intrinsic disorder and atypical RNA binding modes. Front Mol Biosci. 2021;8: 744707.PubMedPubMedCentralCrossRef Baudin A, Moreno-Romero AK, Xu X, Selig EE, Penalva LOF, Libich DS. Structural characterization of the RNA-binding protein SERBP1 reveals intrinsic disorder and atypical RNA binding modes. Front Mol Biosci. 2021;8: 744707.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH, Jaffrey SR. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571:424–8.PubMedPubMedCentralCrossRef Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH, Jaffrey SR. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571:424–8.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–67.PubMedPubMedCentralCrossRef Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–67.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Fox AH, Nakagawa S, Hirose T, Bond CS. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci. 2018;43:124–35.PubMedCrossRef Fox AH, Nakagawa S, Hirose T, Bond CS. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci. 2018;43:124–35.PubMedCrossRef
77.
Zurück zum Zitat Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79:1285–92.PubMedCrossRef Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79:1285–92.PubMedCrossRef
78.
Zurück zum Zitat Bienz M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell. 2020;182:799–811.PubMedCrossRef Bienz M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell. 2020;182:799–811.PubMedCrossRef
79.
Zurück zum Zitat Bienz M. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem Sci. 2014;39:487–95.PubMedCrossRef Bienz M. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem Sci. 2014;39:487–95.PubMedCrossRef
80.
Zurück zum Zitat Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci. 2005;118:5269–77.PubMedCrossRef Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci. 2005;118:5269–77.PubMedCrossRef
81.
Zurück zum Zitat Gammons M, Bienz M. Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol. 2018;51:42–9.PubMedCrossRef Gammons M, Bienz M. Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol. 2018;51:42–9.PubMedCrossRef
82.
Zurück zum Zitat Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.PubMedCrossRef Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.PubMedCrossRef
83.
Zurück zum Zitat Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, Park CG, Wu H, Pounds S, Medyukhina A, Khairy K, Gao Q, Qu C, Abdelhamed S, Gorman SD, Bawa S, Maslanka C, Kinger S, Dogra P, Ferrolino MC, Di Giacomo D, Mecucci C, Klco JM, Mullighan CG, Kriwacki RW. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov. 2022;12:1152–69.PubMedCrossRef Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, Park CG, Wu H, Pounds S, Medyukhina A, Khairy K, Gao Q, Qu C, Abdelhamed S, Gorman SD, Bawa S, Maslanka C, Kinger S, Dogra P, Ferrolino MC, Di Giacomo D, Mecucci C, Klco JM, Mullighan CG, Kriwacki RW. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov. 2022;12:1152–69.PubMedCrossRef
84.
Zurück zum Zitat Qin Z, Sun H, Yue M, Pan X, Chen L, Feng X, Yan X, Zhu X, Ji H. Phase separation of EML4-ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov. 2021;7:33.PubMedPubMedCentralCrossRef Qin Z, Sun H, Yue M, Pan X, Chen L, Feng X, Yan X, Zhu X, Ji H. Phase separation of EML4-ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov. 2021;7:33.PubMedPubMedCentralCrossRef
85.
86.
Zurück zum Zitat Weatheritt RJ, Luck K, Petsalaki E, Davey NE, Gibson TJ. The identification of short linear motif-mediated interfaces within the human interactome. Bioinformatics. 2012;28:976–82.PubMedPubMedCentralCrossRef Weatheritt RJ, Luck K, Petsalaki E, Davey NE, Gibson TJ. The identification of short linear motif-mediated interfaces within the human interactome. Bioinformatics. 2012;28:976–82.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Tompa P, Fuxreiter M, Oldfield CJ, Simon I, Dunker AK, Uversky VN. Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays. 2009;31:328–35.PubMedCrossRef Tompa P, Fuxreiter M, Oldfield CJ, Simon I, Dunker AK, Uversky VN. Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays. 2009;31:328–35.PubMedCrossRef
88.
Zurück zum Zitat Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell. 2015;163:829–39.PubMedPubMedCentralCrossRef Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, Yu Y, McKnight SL. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell. 2015;163:829–39.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Hancock R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol. 2004;146:281–90.PubMedCrossRef Hancock R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol. 2004;146:281–90.PubMedCrossRef
90.
91.
Zurück zum Zitat Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S. Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359:5654.CrossRef Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S. Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359:5654.CrossRef
92.
Zurück zum Zitat Wang Y, Annunziata O. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J Phys Chem B. 2007;111:1222–30.PubMedCrossRef Wang Y, Annunziata O. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J Phys Chem B. 2007;111:1222–30.PubMedCrossRef
93.
Zurück zum Zitat Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–34.PubMedPubMedCentralCrossRef Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–34.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Yamaguchi A, Kitajo K. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS ONE. 2012;7: e49267.PubMedPubMedCentralCrossRef Yamaguchi A, Kitajo K. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS ONE. 2012;7: e49267.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, Zhu H. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging. 2011;32(2323):e2327-2340. Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, Zhu H. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging. 2011;32(2323):e2327-2340.
96.
Zurück zum Zitat Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem. 2019;294:7137–50.PubMedCrossRef Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem. 2019;294:7137–50.PubMedCrossRef
97.
Zurück zum Zitat Tanikawa C, Ueda K, Suzuki A, Iida A, Nakamura R, Atsuta N, Tohnai G, Sobue G, Saichi N, Momozawa Y, Kamatani Y, Kubo M, Yamamoto K, Nakamura Y, Matsuda K. Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep. 2018;22:1473–83.PubMedCrossRef Tanikawa C, Ueda K, Suzuki A, Iida A, Nakamura R, Atsuta N, Tohnai G, Sobue G, Saichi N, Momozawa Y, Kamatani Y, Kubo M, Yamamoto K, Nakamura Y, Matsuda K. Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep. 2018;22:1473–83.PubMedCrossRef
98.
Zurück zum Zitat Bah A, Forman-Kay JD. Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem. 2016;291:6696–705.PubMedPubMedCentralCrossRef Bah A, Forman-Kay JD. Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem. 2016;291:6696–705.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK. Compositional control of phase-separated cellular bodies. Cell. 2016;166:651–63.PubMedPubMedCentralCrossRef Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK. Compositional control of phase-separated cellular bodies. Cell. 2016;166:651–63.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017;24:325–36.PubMedCrossRef Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017;24:325–36.PubMedCrossRef
101.
Zurück zum Zitat Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF 3rd, Maul GG. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999;147:221–34.PubMedPubMedCentralCrossRef Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF 3rd, Maul GG. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999;147:221–34.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;57:936–47.PubMedPubMedCentralCrossRef Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;57:936–47.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Xia Q, Li Y, Xu W, Wu C, Zheng H, Liu L, Dong L. Enhanced liquidity of p62 droplets mediated by Smurf1 links Nrf2 activation and autophagy. Cell Biosci. 2023;13:37.PubMedPubMedCentralCrossRef Xia Q, Li Y, Xu W, Wu C, Zheng H, Liu L, Dong L. Enhanced liquidity of p62 droplets mediated by Smurf1 links Nrf2 activation and autophagy. Cell Biosci. 2023;13:37.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell. 2018;72:19-36.e18.PubMedPubMedCentralCrossRef Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell. 2018;72:19-36.e18.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Cheng Y, Xie W, Pickering BF, Chu KL, Savino AM, Yang X, Luo H, Nguyen DT, Mo S, Barin E, Velleca A, Rohwetter TM, Patel DJ, Jaffrey SR, Kharas MG. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39:958-972.e958.PubMedPubMedCentralCrossRef Cheng Y, Xie W, Pickering BF, Chu KL, Savino AM, Yang X, Luo H, Nguyen DT, Mo S, Barin E, Velleca A, Rohwetter TM, Patel DJ, Jaffrey SR, Kharas MG. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39:958-972.e958.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Shi B, Li W, Song Y, Wang Z, Ju R, Ulman A, Hu J, Palomba F, Zhao Y, Le JP, Jarrard W, Dimoff D, Digman MA, Gratton E, Zang C, Jiang H. UTX condensation underlies its tumour-suppressive activity. Nature. 2021;597:726–31.PubMedPubMedCentralCrossRef Shi B, Li W, Song Y, Wang Z, Ju R, Ulman A, Hu J, Palomba F, Zhao Y, Le JP, Jarrard W, Dimoff D, Digman MA, Gratton E, Zang C, Jiang H. UTX condensation underlies its tumour-suppressive activity. Nature. 2021;597:726–31.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Wei M, Huang X, Liao L, Tian Y, Zheng X. SENP1 decreases RNF168 phase separation to promote DNA damage repair and drug resistance in colon cancer. Cancer Res. 2023;83(17):2908–23.PubMedCrossRef Wei M, Huang X, Liao L, Tian Y, Zheng X. SENP1 decreases RNF168 phase separation to promote DNA damage repair and drug resistance in colon cancer. Cancer Res. 2023;83(17):2908–23.PubMedCrossRef
108.
Zurück zum Zitat Wu Y, Zhou L, Zou Y, Zhang Y, Zhang M, Xu L, Zheng L, He W, Yu K, Li T, Zhang X, Chen Z, Zhang R, Zhou P, Zhang N, Zheng L, Kang T. Disrupting the phase separation of KAT8-IRF1 diminishes PD-L1 expression and promotes antitumor immunity. Nat Cancer. 2023;4:382–400.PubMedPubMedCentralCrossRef Wu Y, Zhou L, Zou Y, Zhang Y, Zhang M, Xu L, Zheng L, He W, Yu K, Li T, Zhang X, Chen Z, Zhang R, Zhou P, Zhang N, Zheng L, Kang T. Disrupting the phase separation of KAT8-IRF1 diminishes PD-L1 expression and promotes antitumor immunity. Nat Cancer. 2023;4:382–400.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Shao X, Chen Y, Xu A, Xiang D, Wang W, Du W, Huang Y, Zhang X, Cai M, Xia Z, Wang Y, Cao J, Zhang Y, Yang B, He Q, Ying M. Deneddylation of PML/RARα reconstructs functional PML nuclear bodies via orchestrating phase separation to eradicate APL. Cell Death Differ. 2022;29:1654–68.PubMedPubMedCentralCrossRef Shao X, Chen Y, Xu A, Xiang D, Wang W, Du W, Huang Y, Zhang X, Cai M, Xia Z, Wang Y, Cao J, Zhang Y, Yang B, He Q, Ying M. Deneddylation of PML/RARα reconstructs functional PML nuclear bodies via orchestrating phase separation to eradicate APL. Cell Death Differ. 2022;29:1654–68.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Martinelli E, Morgillo F, Troiani T, Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev. 2017;53:61–9.PubMedCrossRef Martinelli E, Morgillo F, Troiani T, Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev. 2017;53:61–9.PubMedCrossRef
111.
Zurück zum Zitat Liang SI, van Lengerich B, Eichel K, Cha M, Patterson DM, Yoon TY, von Zastrow M, Jura N, Gartner ZJ. Phosphorylated EGFR dimers are not sufficient to activate ras. Cell Rep. 2018;22:2593–600.PubMedPubMedCentralCrossRef Liang SI, van Lengerich B, Eichel K, Cha M, Patterson DM, Yoon TY, von Zastrow M, Jura N, Gartner ZJ. Phosphorylated EGFR dimers are not sufficient to activate ras. Cell Rep. 2018;22:2593–600.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res. 2012;2:249–68.PubMedPubMedCentral Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res. 2012;2:249–68.PubMedPubMedCentral
113.
Zurück zum Zitat Zhang J, Zeng Y, Xing Y, Li X, Zhou L, Hu L, Chin YE, Wu M. Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett. 2021;516:84–98.PubMedCrossRef Zhang J, Zeng Y, Xing Y, Li X, Zhou L, Hu L, Chin YE, Wu M. Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett. 2021;516:84–98.PubMedCrossRef
115.
Zurück zum Zitat Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ mechanotransduction in spaceflight-induced liver dysfunction. Int J Mol Sci. 2023;24(3):2197.PubMedPubMedCentralCrossRef Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ mechanotransduction in spaceflight-induced liver dysfunction. Int J Mol Sci. 2023;24(3):2197.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, Shao H, Zhao H, Chen Q, Li Y, Geng J, Hong L, Lin S, Wu Q, Deng X, Ke R, Ding J, Johnson RL, Liu X, Chen L, Zhou D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184:5559-5576.e5519.PubMedCrossRef Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, Shao H, Zhao H, Chen Q, Li Y, Geng J, Hong L, Lin S, Wu Q, Deng X, Ke R, Ding J, Johnson RL, Liu X, Chen L, Zhou D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184:5559-5576.e5519.PubMedCrossRef
117.
Zurück zum Zitat Zhu G, Xie J, Fu Z, Wang M, Zhang Q, He H, Chen Z, Guo X, Zhu J. Pharmacological inhibition of SRC-1 phase separation suppresses YAP oncogenic transcription activity. Cell Res. 2021;31:1028–31.PubMedPubMedCentralCrossRef Zhu G, Xie J, Fu Z, Wang M, Zhang Q, He H, Chen Z, Guo X, Zhu J. Pharmacological inhibition of SRC-1 phase separation suppresses YAP oncogenic transcription activity. Cell Res. 2021;31:1028–31.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep. 2020;10:580.PubMedPubMedCentralCrossRef Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep. 2020;10:580.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. Embo j. 2019;38: e101379.PubMedPubMedCentralCrossRef Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. Embo j. 2019;38: e101379.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Esposito M, Fang C, Cook KC, Park N, Wei Y, Spadazzi C, Bracha D, Gunaratna RT, Laevsky G, DeCoste CJ, Slabodkin H, Brangwynne CP, Cristea IM, Kang Y. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol. 2021;23:257–67.PubMedPubMedCentralCrossRef Esposito M, Fang C, Cook KC, Park N, Wei Y, Spadazzi C, Bracha D, Gunaratna RT, Laevsky G, DeCoste CJ, Slabodkin H, Brangwynne CP, Cristea IM, Kang Y. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol. 2021;23:257–67.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Zamudio AV, Dall’Agnese A, Henninger JE, Manteiga JC, Afeyan LK, Hannett NM, Coffey EL, Li CH, Oksuz O, Sabari BR, Boija A, Klein IA, Hawken SW, Spille JH, Decker TM, Cisse BJ II, Abraham TI, Lee DJ, Taatjes J, Schuijers RA. Young, mediator condensates localize signaling factors to key cell identity genes. Mol Cell. 2019;76:753–66.PubMedPubMedCentralCrossRef Zamudio AV, Dall’Agnese A, Henninger JE, Manteiga JC, Afeyan LK, Hannett NM, Coffey EL, Li CH, Oksuz O, Sabari BR, Boija A, Klein IA, Hawken SW, Spille JH, Decker TM, Cisse BJ II, Abraham TI, Lee DJ, Taatjes J, Schuijers RA. Young, mediator condensates localize signaling factors to key cell identity genes. Mol Cell. 2019;76:753–66.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J. Phase Separation of a PKA regulatory subunit controls camp compartmentation and oncogenic signaling. Cell. 2020;182:1531-1544.e1515.PubMedPubMedCentralCrossRef Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J. Phase Separation of a PKA regulatory subunit controls camp compartmentation and oncogenic signaling. Cell. 2020;182:1531-1544.e1515.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, Menon S, Nguyen TA, Debnath J, Ramirez AD, Shi X, Yang B, Feng S, Makhija S, Huang B, Bivona TG. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell. 2021;184:2649-2664.e2618.PubMedPubMedCentralCrossRef Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, Menon S, Nguyen TA, Debnath J, Ramirez AD, Shi X, Yang B, Feng S, Makhija S, Huang B, Bivona TG. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell. 2021;184:2649-2664.e2618.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Sampson J, Richards MW, Choi J, Fry AM, Bayliss R. Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep. 2021;22: e53693.PubMedPubMedCentralCrossRef Sampson J, Richards MW, Choi J, Fry AM, Bayliss R. Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep. 2021;22: e53693.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science. 2019;363:1098–103.PubMedPubMedCentralCrossRef Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science. 2019;363:1098–103.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell. 2020;183:490-502.e418.PubMedPubMedCentralCrossRef Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell. 2020;183:490-502.e418.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Cloer EW, Siesser PF, Cousins EM, Goldfarb D, Mowrey DD, Harrison JS, Weir SJ, Dokholyan NV, Major MB. p62-Dependent Phase Separation of Patient-Derived KEAP1 Mutations and NRF2. Mol Cell Biol. 2018;38(22):00644–717.CrossRef Cloer EW, Siesser PF, Cousins EM, Goldfarb D, Mowrey DD, Harrison JS, Weir SJ, Dokholyan NV, Major MB. p62-Dependent Phase Separation of Patient-Derived KEAP1 Mutations and NRF2. Mol Cell Biol. 2018;38(22):00644–717.CrossRef
129.
Zurück zum Zitat Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory syncytial virus sequesters NF-κB subunit p65 to cytoplasmic inclusion bodies to inhibit innate immune signaling. J Virol. 2020;94(22):10–1128.CrossRef Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory syncytial virus sequesters NF-κB subunit p65 to cytoplasmic inclusion bodies to inhibit innate immune signaling. J Virol. 2020;94(22):10–1128.CrossRef
130.
Zurück zum Zitat Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, Wu Q, Zhang Q, Liu S, Venkat Ramani MK, Yang B, Ba XQ, Zhang J, Huang J, Bai X, Qin J, Feng XH, Ouyang S, Zhang YJ, Liang T, Xu P. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81:4147–64.PubMedCrossRef Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, Wu Q, Zhang Q, Liu S, Venkat Ramani MK, Yang B, Ba XQ, Zhang J, Huang J, Bai X, Qin J, Feng XH, Ouyang S, Zhang YJ, Liang T, Xu P. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81:4147–64.PubMedCrossRef
131.
Zurück zum Zitat Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, Fagman JB, Browne CD, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J, Karin M. Stress-activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell. 2017;32:824-839.e828.PubMedPubMedCentralCrossRef Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, Fagman JB, Browne CD, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J, Karin M. Stress-activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell. 2017;32:824-839.e828.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Wang S, Zhang Q, Wang Q, Shen Q, Chen X, Li Z, Zhou Y, Hou J, Xu B, Li N, Cao X. NEAT1 paraspeckle promotes human hepatocellular carcinoma progression by strengthening IL-6/STAT3 signaling. Oncoimmunology. 2018;7: e1503913.PubMedPubMedCentralCrossRef Wang S, Zhang Q, Wang Q, Shen Q, Chen X, Li Z, Zhou Y, Hou J, Xu B, Li N, Cao X. NEAT1 paraspeckle promotes human hepatocellular carcinoma progression by strengthening IL-6/STAT3 signaling. Oncoimmunology. 2018;7: e1503913.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79:7837–41.PubMedPubMedCentralCrossRef Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79:7837–41.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science. 1983;219:963–7.PubMedCrossRef Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science. 1983;219:963–7.PubMedCrossRef
135.
Zurück zum Zitat Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH. Mechanism of activation of a human oncogene. Nature. 1982;300:143–9.PubMedCrossRef Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH. Mechanism of activation of a human oncogene. Nature. 1982;300:143–9.PubMedCrossRef
137.
Zurück zum Zitat Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352:595–9.PubMedPubMedCentralCrossRef Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352:595–9.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Huang WY, Yan Q, Lin WC, Chung JK, Hansen SD, Christensen SM, Tu HL, Kuriyan J, Groves JT. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proc Natl Acad Sci U S A. 2016;113:8218–23.PubMedPubMedCentralCrossRef Huang WY, Yan Q, Lin WC, Chung JK, Hansen SD, Christensen SM, Tu HL, Kuriyan J, Groves JT. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proc Natl Acad Sci U S A. 2016;113:8218–23.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci. 2002;115:1791–802.PubMedCrossRef Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci. 2002;115:1791–802.PubMedCrossRef
141.
Zurück zum Zitat Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.PubMedCrossRef Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.PubMedCrossRef
143.
Zurück zum Zitat Gao H, Wei H, Yang Y, Li H, Liang J, Ye J, Zhang F, Wang L, Shi H, Wang J, Han A. Phase separation of DDX21 promotes colorectal cancer metastasis via MCM5-dependent EMT pathway. Oncogene. 2023;42:1704–15.PubMedPubMedCentralCrossRef Gao H, Wei H, Yang Y, Li H, Liang J, Ye J, Zhang F, Wang L, Shi H, Wang J, Han A. Phase separation of DDX21 promotes colorectal cancer metastasis via MCM5-dependent EMT pathway. Oncogene. 2023;42:1704–15.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Wang Y, Fu D, Chen Y, Su J, Wang Y, Li X, Zhai W, Niu Y, Yue D, Geng H. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis. 2018;9:501.PubMedPubMedCentralCrossRef Wang Y, Fu D, Chen Y, Su J, Wang Y, Li X, Zhai W, Niu Y, Yue D, Geng H. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis. 2018;9:501.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Taniuchi K, Nishimori I, Hollingsworth MA. The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART. Mol Cancer Res. 2011;9:856–66.PubMedCrossRef Taniuchi K, Nishimori I, Hollingsworth MA. The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART. Mol Cancer Res. 2011;9:856–66.PubMedCrossRef
147.
Zurück zum Zitat Ghodke I, Remisova M, Furst A, Kilic S, Reina-San-Martin B, Poetsch AR, Altmeyer M, Soutoglou E. AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Mol Cell. 2021;81:2596-2610.e2597.PubMedPubMedCentralCrossRef Ghodke I, Remisova M, Furst A, Kilic S, Reina-San-Martin B, Poetsch AR, Altmeyer M, Soutoglou E. AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Mol Cell. 2021;81:2596-2610.e2597.PubMedPubMedCentralCrossRef
149.
150.
Zurück zum Zitat Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA, Gava LM, Ramos CH, Cepeda AO, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012;287:28152–62.PubMedPubMedCentralCrossRef Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA, Gava LM, Ramos CH, Cepeda AO, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012;287:28152–62.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7:285–95.PubMedCrossRef Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7:285–95.PubMedCrossRef
152.
Zurück zum Zitat Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry. 2006;45:1608–19.PubMedCrossRef Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry. 2006;45:1608–19.PubMedCrossRef
153.
Zurück zum Zitat Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmüller G, Foguel D, Silva JL. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 2003;42:9022–7.PubMedCrossRef Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmüller G, Foguel D, Silva JL. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 2003;42:9022–7.PubMedCrossRef
154.
Zurück zum Zitat De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D’Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol. 2017;242:24–38.PubMedCrossRef De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D’Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol. 2017;242:24–38.PubMedCrossRef
155.
Zurück zum Zitat Oda T, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Sasaki N. DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif. 2023;56: e13398.PubMedPubMedCentralCrossRef Oda T, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Sasaki N. DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif. 2023;56: e13398.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRef Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRef
159.
Zurück zum Zitat Zhang H, Zhao R, Tones J, Liu M, Dilley RL, Chenoweth DM, Greenberg RA, Lampson MA. Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol Biol Cell. 2020;31:2048–56.PubMedPubMedCentralCrossRef Zhang H, Zhao R, Tones J, Liu M, Dilley RL, Chenoweth DM, Greenberg RA, Lampson MA. Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol Biol Cell. 2020;31:2048–56.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Min J, Wright WE, Shay JW. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 2019;33:814–27.PubMedPubMedCentralCrossRef Min J, Wright WE, Shay JW. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 2019;33:814–27.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 2017;547:236–40.PubMedPubMedCentralCrossRef Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 2017;547:236–40.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Wang L, Gao Y, Zheng X, Liu C, Dong S, Li R, Zhang G, Wei Y, Qu H, Li Y, Allis CD, Li G, Li H, Li P. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell. 2019;76:646-659.e646.PubMedCrossRef Wang L, Gao Y, Zheng X, Liu C, Dong S, Li R, Zhang G, Wei Y, Qu H, Li Y, Allis CD, Li G, Li H, Li P. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell. 2019;76:646-659.e646.PubMedCrossRef
163.
Zurück zum Zitat Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12:121.PubMedPubMedCentralCrossRef Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12:121.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC, Li P. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 2019;29:767–9.PubMedPubMedCentralCrossRef Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC, Li P. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 2019;29:767–9.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.PubMedPubMedCentralCrossRef Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.PubMedPubMedCentralCrossRef Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the nk cell response. Immunity. 2018;49:754-763.e754.PubMedPubMedCentralCrossRef Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the nk cell response. Immunity. 2018;49:754-763.e754.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Vladimirova O, De Leo A, Deng Z, Wiedmer A, Hayden J, Lieberman PM. Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation. PLoS Pathog. 2021;17: e1009231.PubMedPubMedCentralCrossRef Vladimirova O, De Leo A, Deng Z, Wiedmer A, Hayden J, Lieberman PM. Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation. PLoS Pathog. 2021;17: e1009231.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Peng Q, Wang L, Qin Z, Wang J, Zheng X, Wei L, Zhang X, Zhang X, Liu C, Li Z, Wu Y, Li G, Yan Q, Ma J. Phase separation of epstein-barr virus EBNA2 and its coactivator EBNALP controls gene expression. J Virol. 2020;94(7):10–1128.CrossRef Peng Q, Wang L, Qin Z, Wang J, Zheng X, Wei L, Zhang X, Zhang X, Liu C, Li Z, Wu Y, Li G, Yan Q, Ma J. Phase separation of epstein-barr virus EBNA2 and its coactivator EBNALP controls gene expression. J Virol. 2020;94(7):10–1128.CrossRef
171.
Zurück zum Zitat Peng Q, Wang L, Wang J, Liu C, Zheng X, Zhang X, Wei L, Li Z, Wu Y, Wen Y, Cao P, Liao Q, Yan Q, Ma J. Epstein-Barr virus EBNA2 phase separation regulates cancer-associated alternative RNA splicing patterns. Clin Transl Med. 2021;11: e504.PubMedPubMedCentralCrossRef Peng Q, Wang L, Wang J, Liu C, Zheng X, Zhang X, Wei L, Li Z, Wu Y, Wen Y, Cao P, Liao Q, Yan Q, Ma J. Epstein-Barr virus EBNA2 phase separation regulates cancer-associated alternative RNA splicing patterns. Clin Transl Med. 2021;11: e504.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002;16:2530–43.PubMedPubMedCentralCrossRef Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002;16:2530–43.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Jiang Y, Lei G, Lin T, Zhou N, Wu J, Wang Z, Fan Y, Sheng H, Mao R. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biol. 2023;21:75.PubMedPubMedCentralCrossRef Jiang Y, Lei G, Lin T, Zhou N, Wu J, Wang Z, Fan Y, Sheng H, Mao R. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biol. 2023;21:75.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Shi Y, Liao Y, Liu Q, Ni Z, Zhang Z, Shi M, Li P, Li H, Rao Y. BRD4-targeting PROTAC as a unique tool to study biomolecular condensates. Cell Discov. 2023;9:47.PubMedPubMedCentralCrossRef Shi Y, Liao Y, Liu Q, Ni Z, Zhang Z, Shi M, Li P, Li H, Rao Y. BRD4-targeting PROTAC as a unique tool to study biomolecular condensates. Cell Discov. 2023;9:47.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular condensates and their links to cancer progression. Trends Biochem Sci. 2021;46:535–49.PubMedCrossRef Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular condensates and their links to cancer progression. Trends Biochem Sci. 2021;46:535–49.PubMedCrossRef
176.
Zurück zum Zitat Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, Zhou X, Li Y, Rusch MC, Easton J, Huether R, Gonzalez-Pena V, Wilkinson MR, Hermida LC, Davis S, Sioson E, Pounds S, Cao X, Ries RE, Wang Z, Chen X, Dong L, Diskin SJ, Smith MA, Guidry Auvil JM, Meltzer PS, Lau CC, Perlman EJ, Maris JM, Meshinchi S, Hunger SP, Gerhard DS, Zhang J. Pan-cancer genome and transcriptome analyses of 1699 paediatric leukaemias and solid tumours. Nature. 2018;555:371–6.PubMedPubMedCentralCrossRef Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, Zhou X, Li Y, Rusch MC, Easton J, Huether R, Gonzalez-Pena V, Wilkinson MR, Hermida LC, Davis S, Sioson E, Pounds S, Cao X, Ries RE, Wang Z, Chen X, Dong L, Diskin SJ, Smith MA, Guidry Auvil JM, Meltzer PS, Lau CC, Perlman EJ, Maris JM, Meshinchi S, Hunger SP, Gerhard DS, Zhang J. Pan-cancer genome and transcriptome analyses of 1699 paediatric leukaemias and solid tumours. Nature. 2018;555:371–6.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, Zhang J, Ma X, Liu Y, Liu Y, Auvil JMG, Davidsen TM, Gesuwan P, Hermida LC, Salhia B, Capone S, Ramsingh G, Zwaan CM, Noort S, Piccolo SR, Kolb EA, Gamis AS, Smith MA, Gerhard DS, Meshinchi S. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.PubMedCrossRef Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, Zhang J, Ma X, Liu Y, Liu Y, Auvil JMG, Davidsen TM, Gesuwan P, Hermida LC, Salhia B, Capone S, Ramsingh G, Zwaan CM, Noort S, Piccolo SR, Kolb EA, Gamis AS, Smith MA, Gerhard DS, Meshinchi S. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.PubMedCrossRef
178.
Zurück zum Zitat Struski S, Lagarde S, Bories P, Puiseux C, Prade N, Cuccuini W, Pages MP, Bidet A, Gervais C, Lafage-Pochitaloff M, Roche-Lestienne C, Barin C, Penther D, Nadal N, Radford-Weiss I, Collonge-Rame MA, Gaillard B, Mugneret F, Lefebvre C, Bart-Delabesse E, Petit A, Leverger G, Broccardo C, Luquet I, Pasquet M, Delabesse E. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia. 2017;31:565–72.PubMedCrossRef Struski S, Lagarde S, Bories P, Puiseux C, Prade N, Cuccuini W, Pages MP, Bidet A, Gervais C, Lafage-Pochitaloff M, Roche-Lestienne C, Barin C, Penther D, Nadal N, Radford-Weiss I, Collonge-Rame MA, Gaillard B, Mugneret F, Lefebvre C, Bart-Delabesse E, Petit A, Leverger G, Broccardo C, Luquet I, Pasquet M, Delabesse E. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia. 2017;31:565–72.PubMedCrossRef
179.
Zurück zum Zitat McNeer NA, Philip J, Geiger H, Ries RE, Lavallée VP, Walsh M, Shah M, Arora K, Emde AK, Robine N, Alonzo TA, Kolb EA, Gamis AS, Smith M, Gerhard DS, Guidry-Auvil J, Meshinchi S, Kentsis A. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia. 2019;33:1934–43.PubMedPubMedCentralCrossRef McNeer NA, Philip J, Geiger H, Ries RE, Lavallée VP, Walsh M, Shah M, Arora K, Emde AK, Robine N, Alonzo TA, Kolb EA, Gamis AS, Smith M, Gerhard DS, Guidry-Auvil J, Meshinchi S, Kentsis A. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia. 2019;33:1934–43.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19:764–76.PubMedPubMedCentralCrossRef Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19:764–76.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007;9:804–12.PubMedCrossRef Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007;9:804–12.PubMedCrossRef
182.
Zurück zum Zitat Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O, Evdokimova V, Wang Y, Gleave M, Sorensen PH. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 2015;208:913–29.PubMedPubMedCentralCrossRef Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O, Evdokimova V, Wang Y, Gleave M, Sorensen PH. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 2015;208:913–29.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Oda Y, Sakamoto A, Shinohara N, Ohga T, Uchiumi T, Kohno K, Tsuneyoshi M, Kuwano M, Iwamoto Y. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human osteosarcoma. Clin Cancer Res. 1998;4:2273–7.PubMed Oda Y, Sakamoto A, Shinohara N, Ohga T, Uchiumi T, Kohno K, Tsuneyoshi M, Kuwano M, Iwamoto Y. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human osteosarcoma. Clin Cancer Res. 1998;4:2273–7.PubMed
184.
Zurück zum Zitat Oda Y, Kohashi K, Yamamoto H, Tamiya S, Kohno K, Kuwano M, Iwamoto Y, Tajiri T, Taguchi T, Tsuneyoshi M. Different expression profiles of Y-box-binding protein-1 and multidrug resistance-associated proteins between alveolar and embryonal rhabdomyosarcoma. Cancer Sci. 2008;99:726–32.PubMedCrossRef Oda Y, Kohashi K, Yamamoto H, Tamiya S, Kohno K, Kuwano M, Iwamoto Y, Tajiri T, Taguchi T, Tsuneyoshi M. Different expression profiles of Y-box-binding protein-1 and multidrug resistance-associated proteins between alveolar and embryonal rhabdomyosarcoma. Cancer Sci. 2008;99:726–32.PubMedCrossRef
185.
Zurück zum Zitat Fujiwara-Okada Y, Matsumoto Y, Fukushi J, Setsu N, Matsuura S, Kamura S, Fujiwara T, Iida K, Hatano M, Nabeshima A, Yamada H, Ono M, Oda Y, Iwamoto Y. Y-box binding protein-1 regulates cell proliferation and is associated with clinical outcomes of osteosarcoma. Br J Cancer. 2013;108:836–47.PubMedPubMedCentralCrossRef Fujiwara-Okada Y, Matsumoto Y, Fukushi J, Setsu N, Matsuura S, Kamura S, Fujiwara T, Iida K, Hatano M, Nabeshima A, Yamada H, Ono M, Oda Y, Iwamoto Y. Y-box binding protein-1 regulates cell proliferation and is associated with clinical outcomes of osteosarcoma. Br J Cancer. 2013;108:836–47.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang JN, Gentle C, Fazli L, Thi M, Sorensen PH, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res. 2022;50:1069–91.PubMedCrossRef Somasekharan SP, Saxena N, Zhang F, Beraldi E, Huang JN, Gentle C, Fazli L, Thi M, Sorensen PH, Gleave M. Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Res. 2022;50:1069–91.PubMedCrossRef
187.
Zurück zum Zitat Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA, Xavier JB. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934–9.PubMedPubMedCentralCrossRef Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA, Xavier JB. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934–9.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018;28:721-736.e726.PubMedPubMedCentralCrossRef Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018;28:721-736.e726.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105.PubMedPubMedCentralCrossRef Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105.PubMedPubMedCentralCrossRef
190.
191.
Zurück zum Zitat Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, Zhang L, Wu M. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021;7:eabe5708.PubMedPubMedCentralCrossRef Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, Zhang L, Wu M. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021;7:eabe5708.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.PubMedPubMedCentralCrossRef Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.PubMedPubMedCentralCrossRef Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Nakamura T, Hipp C, Mourão ASD, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, Proneth B, Sattler M, Conrad M. Phase separation of FSP1 promotes ferroptosis. Nature. 2023;619:371–7.PubMedPubMedCentralCrossRef Nakamura T, Hipp C, Mourão ASD, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, Proneth B, Sattler M, Conrad M. Phase separation of FSP1 promotes ferroptosis. Nature. 2023;619:371–7.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL, Vogt PK. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99:3830–5.PubMedPubMedCentralCrossRef Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL, Vogt PK. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99:3830–5.PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou TH, Dakshanamurthy S, Brown ML, Uren A, Toretsky JA. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.PubMedPubMedCentralCrossRef Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou TH, Dakshanamurthy S, Brown ML, Uren A, Toretsky JA. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, Jain RK, Garkavtsev I. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci U S A. 2017;114:1033–8.PubMedPubMedCentralCrossRef Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, Jain RK, Garkavtsev I. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci U S A. 2017;114:1033–8.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Lemos C, Schulze L, Weiske J, Meyer H, Braeuer N, Barak N, Eberspächer U, Werbeck N, Stresemann C, Lange M, Lesche R, Zablowsky N, Juenemann K, Kamburov A, Luh LM, Leissing TM, Mortier J, Steckel M, Steuber H, Eis K, Eheim A, Steigemann P. Identification of small molecules that modulate mutant p53 condensation. Science. 2020;23:101517. Lemos C, Schulze L, Weiske J, Meyer H, Braeuer N, Barak N, Eberspächer U, Werbeck N, Stresemann C, Lange M, Lesche R, Zablowsky N, Juenemann K, Kamburov A, Luh LM, Leissing TM, Mortier J, Steckel M, Steuber H, Eis K, Eheim A, Steigemann P. Identification of small molecules that modulate mutant p53 condensation. Science. 2020;23:101517.
200.
Zurück zum Zitat Mukherjee H, Chan KP, Andresen V, Hanley ML, Gjertsen BT, Myers AG. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 Mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem Biol. 2015;10:855–63.PubMedPubMedCentralCrossRef Mukherjee H, Chan KP, Andresen V, Hanley ML, Gjertsen BT, Myers AG. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 Mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem Biol. 2015;10:855–63.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148–52.PubMedCrossRef Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148–52.PubMedCrossRef
202.
Zurück zum Zitat Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall’Agnese A, Oksuz O, Henninger JE, Shrinivas K, Sabari BR, Sagi I, Clark VE, Platt JM, Kar M, McCall PM, Zamudio AV, Manteiga JC, Coffey EL, Li CH, Hannett NM, Guo YE, Decker TM, Lee TI, Zhang T, Weng JK, Taatjes DJ, Chakraborty A, Sharp PA, Chang YT, Hyman AA, Gray NS, Young RA. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386–92.PubMedPubMedCentralCrossRef Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall’Agnese A, Oksuz O, Henninger JE, Shrinivas K, Sabari BR, Sagi I, Clark VE, Platt JM, Kar M, McCall PM, Zamudio AV, Manteiga JC, Coffey EL, Li CH, Hannett NM, Guo YE, Decker TM, Lee TI, Zhang T, Weng JK, Taatjes DJ, Chakraborty A, Sharp PA, Chang YT, Hyman AA, Gray NS, Young RA. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386–92.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Zhang F, Biswas M, Massah S, Lee J, Lingadahalli S, Wong S, Wells C, Foo J, Khan N, Morin H, Saxena N, Kung SHY, Sun B, Parra Nuñez AK, Sanchez C, Chan N, Ung L, Altıntaş UB, Bui JM, Wang Y, Fazli L, Oo HZ, Rennie PS, Lack NA, Cherkasov A, Gleave ME, Gsponer J, Lallous N. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 2023;51:99–116.PubMedCrossRef Zhang F, Biswas M, Massah S, Lee J, Lingadahalli S, Wong S, Wells C, Foo J, Khan N, Morin H, Saxena N, Kung SHY, Sun B, Parra Nuñez AK, Sanchez C, Chan N, Ung L, Altıntaş UB, Bui JM, Wang Y, Fazli L, Oo HZ, Rennie PS, Lack NA, Cherkasov A, Gleave ME, Gsponer J, Lallous N. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 2023;51:99–116.PubMedCrossRef
204.
Zurück zum Zitat Oka M, Mura S, Yamada K, Sangel P, Hirata S, Maehara K, Kawakami K, Tachibana T, Ohkawa Y, Kimura H, Yoneda Y. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes. Elife. 2016;5: e09540.PubMedPubMedCentralCrossRef Oka M, Mura S, Yamada K, Sangel P, Hirata S, Maehara K, Kawakami K, Tachibana T, Ohkawa Y, Kimura H, Yoneda Y. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes. Elife. 2016;5: e09540.PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Takayama KI, Kosaka T, Suzuki T, Hongo H, Oya M, Fujimura T, Suzuki Y, Inoue S. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nat Commun. 2021;12:3766.PubMedPubMedCentralCrossRef Takayama KI, Kosaka T, Suzuki T, Hongo H, Oya M, Fujimura T, Suzuki Y, Inoue S. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nat Commun. 2021;12:3766.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Zhang Z, Boskovic Z, Hussain MM, Hu W, Inouye C, Kim HJ, Abole AK, Doud MK, Lewis TA, Koehler AN, Schreiber SL, Tjian R. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. Elife. 2015;4:e07777.PubMedPubMedCentralCrossRef Zhang Z, Boskovic Z, Hussain MM, Hu W, Inouye C, Kim HJ, Abole AK, Doud MK, Lewis TA, Koehler AN, Schreiber SL, Tjian R. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. Elife. 2015;4:e07777.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Rangel LP, Ferretti GDS, Costa CL, Andrade S, Carvalho RS, Costa DCF, Silva JL. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem. 2019;294:3670–82.PubMedPubMedCentralCrossRef Rangel LP, Ferretti GDS, Costa CL, Andrade S, Carvalho RS, Costa DCF, Silva JL. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem. 2019;294:3670–82.PubMedPubMedCentralCrossRef
208.
Zurück zum Zitat Wang C, Lu H, Liu X, Gao X, Tian W, Chen H, Xue Y, Zhou Q. A natural product targets BRD4 to inhibit phase separation and gene transcription. iScience. 2022;25:103719.PubMedCrossRef Wang C, Lu H, Liu X, Gao X, Tian W, Chen H, Xue Y, Zhou Q. A natural product targets BRD4 to inhibit phase separation and gene transcription. iScience. 2022;25:103719.PubMedCrossRef
209.
Zurück zum Zitat Babinchak WM, Dumm BK, Venus S, Boyko S, Putnam AA, Jankowsky E, Surewicz WK. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat Commun. 2020;11:5574.PubMedPubMedCentralCrossRef Babinchak WM, Dumm BK, Venus S, Boyko S, Putnam AA, Jankowsky E, Surewicz WK. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat Commun. 2020;11:5574.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Liu J, Xie Y, Guo J, Li X, Wang J, Jiang H, Peng Z, Wang J, Wang S, Li Q, Ye L, Zhong Y, Zhang Q, Liu X, Lonard DM, Wang J, O’Malley BW, Liu Z. Targeting NSD2-mediated SRC-3 liquid-liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nat Commun. 2021;12:1022.PubMedPubMedCentralCrossRef Liu J, Xie Y, Guo J, Li X, Wang J, Jiang H, Peng Z, Wang J, Wang S, Li Q, Ye L, Zhong Y, Zhang Q, Liu X, Lonard DM, Wang J, O’Malley BW, Liu Z. Targeting NSD2-mediated SRC-3 liquid-liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nat Commun. 2021;12:1022.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, Pastré D. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 2019;27:1809-1821.e1805.PubMedCrossRef Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, Pastré D. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 2019;27:1809-1821.e1805.PubMedCrossRef
212.
Zurück zum Zitat Lu B, Zou C, Yang M, He Y, He J, Zhang C, Chen S, Yu J, Liu KY, Cao Q, Zhao W. Pharmacological inhibition of core regulatory circuitry liquid-liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma. Adv Sci (Weinh). 2021;8: e2101895.PubMedCrossRef Lu B, Zou C, Yang M, He Y, He J, Zhang C, Chen S, Yu J, Liu KY, Cao Q, Zhao W. Pharmacological inhibition of core regulatory circuitry liquid-liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma. Adv Sci (Weinh). 2021;8: e2101895.PubMedCrossRef
213.
Zurück zum Zitat Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell. 2013;152:791–805.PubMedCrossRef Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell. 2013;152:791–805.PubMedCrossRef
214.
Zurück zum Zitat Bhagwat AS, Roe JS, Mok BYL, Hohmann AF, Shi J, Vakoc CR. BET bromodomain inhibition releases the mediator complex from select cis-regulatory elements. Cell Rep. 2016;15:519–30.PubMedPubMedCentralCrossRef Bhagwat AS, Roe JS, Mok BYL, Hohmann AF, Shi J, Vakoc CR. BET bromodomain inhibition releases the mediator complex from select cis-regulatory elements. Cell Rep. 2016;15:519–30.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Gilan O, Lam EY, Becher I, Lugo D, Cannizzaro E, Joberty G, Ward A, Wiese M, Fong CY, Ftouni S, Tyler D, Stanley K, MacPherson L, Weng CF, Chan YC, Ghisi M, Smil D, Carpenter C, Brown P, Garton N, Blewitt ME, Bannister AJ, Kouzarides T, Huntly BJ, Johnstone RW, Drewes G, Dawson SJ, Arrowsmith CH, Grandi P, Prinjha RK, Dawson MA. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat Struct Mol Biol. 2016;23:673–81.PubMedCrossRef Gilan O, Lam EY, Becher I, Lugo D, Cannizzaro E, Joberty G, Ward A, Wiese M, Fong CY, Ftouni S, Tyler D, Stanley K, MacPherson L, Weng CF, Chan YC, Ghisi M, Smil D, Carpenter C, Brown P, Garton N, Blewitt ME, Bannister AJ, Kouzarides T, Huntly BJ, Johnstone RW, Drewes G, Dawson SJ, Arrowsmith CH, Grandi P, Prinjha RK, Dawson MA. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat Struct Mol Biol. 2016;23:673–81.PubMedCrossRef
216.
Zurück zum Zitat Nilson KA, Guo J, Turek ME, Brogie JE, Delaney E, Luse DS, Price DH. THZ1 Reveals roles for Cdk7 in Co-transcriptional capping and pausing. Mol Cell. 2015;59:576–87.PubMedPubMedCentralCrossRef Nilson KA, Guo J, Turek ME, Brogie JE, Delaney E, Luse DS, Price DH. THZ1 Reveals roles for Cdk7 in Co-transcriptional capping and pausing. Mol Cell. 2015;59:576–87.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM, Manz T, Hao M, Bartkowiak B, Greenleaf AL, Marto JA, Geyer M, Bullock AN, Young RA, Gray NS. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12:876–84.PubMedPubMedCentralCrossRef Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM, Manz T, Hao M, Bartkowiak B, Greenleaf AL, Marto JA, Geyer M, Bullock AN, Young RA, Gray NS. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12:876–84.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Wheeler RJ. Therapeutics-how to treat phase separation-associated diseases, Emerg Top. Life Sci. 2020;4:307–18. Wheeler RJ. Therapeutics-how to treat phase separation-associated diseases, Emerg Top. Life Sci. 2020;4:307–18.
219.
Zurück zum Zitat Luo YY, Wu JJ, Li YM. Regulation of liquid-liquid phase separation with focus on post-translational modifications. Chem Commun (Camb). 2021;57:13275–87.PubMedCrossRef Luo YY, Wu JJ, Li YM. Regulation of liquid-liquid phase separation with focus on post-translational modifications. Chem Commun (Camb). 2021;57:13275–87.PubMedCrossRef
220.
Zurück zum Zitat Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif regions in RNA binding and phase separation. J Mol Biol. 2018;430:4650–65.PubMedCrossRef Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif regions in RNA binding and phase separation. J Mol Biol. 2018;430:4650–65.PubMedCrossRef
221.
Zurück zum Zitat Dao TP, Kolaitis RM, Kim HJ, O’Donovan K, Martyniak B, Colicino E, Hehnly H, Taylor JP, Castañeda CA. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell. 2018;69:965-978.e966.PubMedPubMedCentralCrossRef Dao TP, Kolaitis RM, Kim HJ, O’Donovan K, Martyniak B, Colicino E, Hehnly H, Taylor JP, Castañeda CA. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell. 2018;69:965-978.e966.PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552–60.PubMedCrossRef de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552–60.PubMedCrossRef
223.
Zurück zum Zitat Sun Y, Lau SY, Lim ZW, Chang SC, Ghadessy F, Partridge A, Miserez A. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat Chem. 2022;14:274–83.PubMedCrossRef Sun Y, Lau SY, Lim ZW, Chang SC, Ghadessy F, Partridge A, Miserez A. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat Chem. 2022;14:274–83.PubMedCrossRef
224.
Zurück zum Zitat Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew Chem Int Ed Engl. 2021;60:25128–34.PubMedCrossRef Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew Chem Int Ed Engl. 2021;60:25128–34.PubMedCrossRef
Metadaten
Titel
Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer
verfasst von
Le-Wei Zheng
Cui-Cui Liu
Ke-Da Yu
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2023
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01522-5

Weitere Artikel der Ausgabe 1/2023

Journal of Hematology & Oncology 1/2023 Zur Ausgabe

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.