Skip to main content
Erschienen in: Inflammation 2/2018

07.12.2017 | ORIGINAL ARTICLE

PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level

verfasst von: Jixian Luo

Erschienen in: Inflammation | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are adhesion molecules which induce similar physiological events. Our previous paper showed that phosphatidylinositol 3-kinase (PI3K) played a crucial role in L-selectin- and PSGL-1-mediated F-actin redistribution and assembly during neutrophil rolling on E-selectin. However, it is not clear whether L-selectin and PSGL-1 induce other similar physiology events by PI3K. Here, we investigated the possibility of PI3K linking the signaling pathways of L-selectin and PSGL-1 to IL-18 transcription. We first demonstrated that L-selectin and PSGL-1 stimulation upregulated IL-18 transcription level in Jurkat cells. Then we found that PI3K inhibitor LY294002 reduced L-selectin- and PSGL-1-induced mRNA upregulation of IL-18 in Jurkat cells. Transfection of phosphatase and tensin homolog expressing plasmid inhibited the transcription level of IL-18. Therefore, PI3K is a signal linker between L-selectin and PSGL-1 in IL-18 transcriptional activation at the promoter level. To our knowledge, this is the first time to directly link PI3K to L-selectin- and PSGL-1-mediated IL-18 transcription, providing a foundation for intervention of PI3K-related inflammation.
Literatur
1.
Zurück zum Zitat van Buul, J.D., and P.L. Hordijk. 2004. Signaling in leukocyte transendothelial migration. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (5): 824–833.CrossRefPubMed van Buul, J.D., and P.L. Hordijk. 2004. Signaling in leukocyte transendothelial migration. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (5): 824–833.CrossRefPubMed
2.
Zurück zum Zitat Alon, R., and M.L. Dustin. 2007. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26 (1): 17–27.CrossRefPubMed Alon, R., and M.L. Dustin. 2007. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26 (1): 17–27.CrossRefPubMed
3.
Zurück zum Zitat Bruehl, R.E., K.L. Moore, D.E. Lorant, N. Borregaard, G.A. Zimmerman, R.P. McEver, and D.F. Bainton. 1997. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. Journal of Leukocyte Biology 61 (4): 489–499.CrossRefPubMed Bruehl, R.E., K.L. Moore, D.E. Lorant, N. Borregaard, G.A. Zimmerman, R.P. McEver, and D.F. Bainton. 1997. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. Journal of Leukocyte Biology 61 (4): 489–499.CrossRefPubMed
4.
Zurück zum Zitat Abbal, C., M. Lambelet, D. Bertaggia, C. Gerbex, M. Martinez, A. Arcaro, M. Schapira, and O. Spertini. 2006. Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions. Blood 108 (10): 3352–3359.CrossRefPubMed Abbal, C., M. Lambelet, D. Bertaggia, C. Gerbex, M. Martinez, A. Arcaro, M. Schapira, and O. Spertini. 2006. Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions. Blood 108 (10): 3352–3359.CrossRefPubMed
5.
Zurück zum Zitat Urzainqui, A., J.M. Serrador, F. Viedma, M. Yanez-Mo, A. Rodriguez, A.L. Corbi, J.L. Alonso-Lebrero, A. Luque, M. Deckert, J. Vazquez, et al. 2002. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 17 (4): 401–412.CrossRefPubMed Urzainqui, A., J.M. Serrador, F. Viedma, M. Yanez-Mo, A. Rodriguez, A.L. Corbi, J.L. Alonso-Lebrero, A. Luque, M. Deckert, J. Vazquez, et al. 2002. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 17 (4): 401–412.CrossRefPubMed
6.
Zurück zum Zitat Ivetic, A., J. Deka, A. Ridley, and A. Ager. 2002. The cytoplasmic tail of L-selectin interacts with members of the ezrin-radixin-moesin (ERM) family of proteins: cell activation-dependent binding of moesin but not ezrin. The Journal of Biological Chemistry 277 (3): 2321–2329.CrossRefPubMed Ivetic, A., J. Deka, A. Ridley, and A. Ager. 2002. The cytoplasmic tail of L-selectin interacts with members of the ezrin-radixin-moesin (ERM) family of proteins: cell activation-dependent binding of moesin but not ezrin. The Journal of Biological Chemistry 277 (3): 2321–2329.CrossRefPubMed
7.
Zurück zum Zitat Ivetic, A., O. Florey, J. Deka, D.O. Haskard, A. Ager, and A.J. Ridley. 2004. Mutagenesis of the ezrin-radixin-moesin binding domain of L-selectin tail affects shedding, microvillar positioning, and leukocyte tethering. The Journal of Biological Chemistry 279 (32): 33263–33272.CrossRefPubMed Ivetic, A., O. Florey, J. Deka, D.O. Haskard, A. Ager, and A.J. Ridley. 2004. Mutagenesis of the ezrin-radixin-moesin binding domain of L-selectin tail affects shedding, microvillar positioning, and leukocyte tethering. The Journal of Biological Chemistry 279 (32): 33263–33272.CrossRefPubMed
8.
Zurück zum Zitat Chen, C., X. Shang, T. Xu, L. Cui, J. Luo, X. Ba, S. Hao, and X. Zeng. 2007. c-Abl is required for the signaling transduction induced by L-selectin ligation. European Journal of Immunology 37 (11): 3246–3258.CrossRefPubMed Chen, C., X. Shang, T. Xu, L. Cui, J. Luo, X. Ba, S. Hao, and X. Zeng. 2007. c-Abl is required for the signaling transduction induced by L-selectin ligation. European Journal of Immunology 37 (11): 3246–3258.CrossRefPubMed
9.
Zurück zum Zitat Chen, C., X. Shang, L. Cui, T. Xu, J. Luo, X. Ba, and X. Zeng. 2008. L-selectin ligation-induced CSF-1 gene transcription is regulated by AP-1 in a c-Abl kinase-dependent manner. Human Immunology 69 (8): 501–509.CrossRefPubMed Chen, C., X. Shang, L. Cui, T. Xu, J. Luo, X. Ba, and X. Zeng. 2008. L-selectin ligation-induced CSF-1 gene transcription is regulated by AP-1 in a c-Abl kinase-dependent manner. Human Immunology 69 (8): 501–509.CrossRefPubMed
10.
Zurück zum Zitat Luo, J., T. Xu, X. Wang, X. Ba, X. Feng, V. Deepak, and X. Zeng. 2010. PI3K is involved in L-selectin- and PSGL-1-mediated neutrophil rolling on E-selectin via F-actin redistribution and assembly. Journal of Cellular Biochemistry 110 (4): 910–919.CrossRefPubMed Luo, J., T. Xu, X. Wang, X. Ba, X. Feng, V. Deepak, and X. Zeng. 2010. PI3K is involved in L-selectin- and PSGL-1-mediated neutrophil rolling on E-selectin via F-actin redistribution and assembly. Journal of Cellular Biochemistry 110 (4): 910–919.CrossRefPubMed
11.
Zurück zum Zitat Kalesnikoff, J., L.M. Sly, M.R. Hughes, T. Buchse, M.J. Rauh, L.P. Cao, V. Lam, A. Mui, M. Huber, and G. Krystal. 2003. The role of SHIP in cytokine-induced signaling. Reviews of Physiology, Biochemistry and Pharmacology 149: 87–103.CrossRefPubMed Kalesnikoff, J., L.M. Sly, M.R. Hughes, T. Buchse, M.J. Rauh, L.P. Cao, V. Lam, A. Mui, M. Huber, and G. Krystal. 2003. The role of SHIP in cytokine-induced signaling. Reviews of Physiology, Biochemistry and Pharmacology 149: 87–103.CrossRefPubMed
12.
Zurück zum Zitat Kisseleva, M.V., M.P. Wilson, and P.W. Majerus. 2000. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. The Journal of Biological Chemistry 275 (26): 20110–20116.CrossRefPubMed Kisseleva, M.V., M.P. Wilson, and P.W. Majerus. 2000. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. The Journal of Biological Chemistry 275 (26): 20110–20116.CrossRefPubMed
13.
Zurück zum Zitat Rohrschneider, L.R., J.F. Fuller, I. Wolf, Y. Liu, and D.M. Lucas. 2000. Structure, function, and biology of SHIP proteins. Genes & Development 14 (5): 505–520. Rohrschneider, L.R., J.F. Fuller, I. Wolf, Y. Liu, and D.M. Lucas. 2000. Structure, function, and biology of SHIP proteins. Genes & Development 14 (5): 505–520.
14.
Zurück zum Zitat Stambolic, V., A. Suzuki, J.L. de la Pompa, G.M. Brothers, C. Mirtsos, T. Sasaki, J. Ruland, J.M. Penninger, D.P. Siderovski, and T.W. Mak. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95 (1): 29–39.CrossRefPubMed Stambolic, V., A. Suzuki, J.L. de la Pompa, G.M. Brothers, C. Mirtsos, T. Sasaki, J. Ruland, J.M. Penninger, D.P. Siderovski, and T.W. Mak. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95 (1): 29–39.CrossRefPubMed
15.
Zurück zum Zitat Micallef, M.J., T. Ohtsuki, K. Kohno, F. Tanabe, S. Ushio, M. Namba, T. Tanimoto, K. Torigoe, M. Fujii, M. Ikeda, et al. 1996. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. European Journal of Immunology 26 (7): 1647–1651.CrossRefPubMed Micallef, M.J., T. Ohtsuki, K. Kohno, F. Tanabe, S. Ushio, M. Namba, T. Tanimoto, K. Torigoe, M. Fujii, M. Ikeda, et al. 1996. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. European Journal of Immunology 26 (7): 1647–1651.CrossRefPubMed
16.
Zurück zum Zitat Ushio, S., M. Namba, T. Okura, K. Hattori, Y. Nukada, K. Akita, F. Tanabe, K. Konishi, M. Micallef, M. Fujii, et al. 1996. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. Journal of Immunology 156 (11): 4274–4279. Ushio, S., M. Namba, T. Okura, K. Hattori, Y. Nukada, K. Akita, F. Tanabe, K. Konishi, M. Micallef, M. Fujii, et al. 1996. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. Journal of Immunology 156 (11): 4274–4279.
17.
Zurück zum Zitat Hunter, C.A., J. Timans, P. Pisacane, S. Menon, G. Cai, W. Walker, M. Aste-Amezaga, R. Chizzonite, J.F. Bazan, and R.A. Kastelein. 1997. Comparison of the effects of interleukin-1 alpha, interleukin-1 beta and interferon-gamma-inducing factor on the production of interferon-gamma by natural killer. European Journal of Immunology 27 (11): 2787–2792.CrossRefPubMed Hunter, C.A., J. Timans, P. Pisacane, S. Menon, G. Cai, W. Walker, M. Aste-Amezaga, R. Chizzonite, J.F. Bazan, and R.A. Kastelein. 1997. Comparison of the effects of interleukin-1 alpha, interleukin-1 beta and interferon-gamma-inducing factor on the production of interferon-gamma by natural killer. European Journal of Immunology 27 (11): 2787–2792.CrossRefPubMed
18.
Zurück zum Zitat Zhu, Q., and T.D. Kanneganti. 2017. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1beta. Journal of Immunology 198 (11): 4210–4215.CrossRef Zhu, Q., and T.D. Kanneganti. 2017. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1beta. Journal of Immunology 198 (11): 4210–4215.CrossRef
19.
Zurück zum Zitat Wang, H., M. Hua, S. Wang, J. Yu, C. Chen, X. Zhao, C. Zhang, C. Zhong, R. Wang, N. He, et al. 2017. Genetic polymorphisms of IL-18 rs1946518 and IL-1beta rs16944 are associated with prognosis and survival of acute myeloid leukemia. Inflammation Research 66 (3): 249–258.CrossRefPubMed Wang, H., M. Hua, S. Wang, J. Yu, C. Chen, X. Zhao, C. Zhang, C. Zhong, R. Wang, N. He, et al. 2017. Genetic polymorphisms of IL-18 rs1946518 and IL-1beta rs16944 are associated with prognosis and survival of acute myeloid leukemia. Inflammation Research 66 (3): 249–258.CrossRefPubMed
20.
Zurück zum Zitat Pui, C.H., M.V. Relling, and J.R. Downing. 2004. Acute lymphoblastic leukemia. The New England Journal of Medicine 350 (15): 1535–1548.CrossRefPubMed Pui, C.H., M.V. Relling, and J.R. Downing. 2004. Acute lymphoblastic leukemia. The New England Journal of Medicine 350 (15): 1535–1548.CrossRefPubMed
21.
Zurück zum Zitat Alexandrakis, M.G., F.H. Passam, K. Sfiridaki, J. Moschandrea, C. Pappa, D. Liapi, E. Petreli, P. Roussou, and D.S. Kyriakou. 2004. Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leukemia Research 28 (3): 259–266.CrossRefPubMed Alexandrakis, M.G., F.H. Passam, K. Sfiridaki, J. Moschandrea, C. Pappa, D. Liapi, E. Petreli, P. Roussou, and D.S. Kyriakou. 2004. Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leukemia Research 28 (3): 259–266.CrossRefPubMed
22.
Zurück zum Zitat Liu, Y., Z.P. Han, S.S. Zhang, Y.Y. Jing, Bu XX, C.Y. Wang, K. Sun, G.C. Jiang, X. Zhao, R. Li, et al. 2011. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. The Journal of Biological Chemistry 286 (28): 25007–25015.CrossRefPubMedPubMedCentral Liu, Y., Z.P. Han, S.S. Zhang, Y.Y. Jing, Bu XX, C.Y. Wang, K. Sun, G.C. Jiang, X. Zhao, R. Li, et al. 2011. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. The Journal of Biological Chemistry 286 (28): 25007–25015.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Reynaud, D., E. Pietras, K. Barry-Holson, A. Mir, M. Binnewies, M. Jeanne, O. Sala-Torra, J.P. Radich, and E. Passegue. 2011. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20 (5): 661–673.CrossRefPubMedPubMedCentral Reynaud, D., E. Pietras, K. Barry-Holson, A. Mir, M. Binnewies, M. Jeanne, O. Sala-Torra, J.P. Radich, and E. Passegue. 2011. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20 (5): 661–673.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Uzan, B., S. Poglio, B. Gerby, C.L. Wu, J. Gross, F. Armstrong, J. Calvo, X. Cahu, C. Deswarte, F. Dumont, et al. 2014. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Molecular Medicine 6 (6): 821–834.PubMedPubMedCentral Uzan, B., S. Poglio, B. Gerby, C.L. Wu, J. Gross, F. Armstrong, J. Calvo, X. Cahu, C. Deswarte, F. Dumont, et al. 2014. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Molecular Medicine 6 (6): 821–834.PubMedPubMedCentral
25.
Zurück zum Zitat Ahn, I.E., Ju JH, S.Y. Lee, J.S. Park, Oh. HJ, H.R. Kim, S.H. Lee, S.H. Park, H.Y. Kim, and M.L. Cho. 2012. Upregulation of stromal cell-derived factor by IL-17 and IL-18 via a phosphatidylinositol 3-kinase-dependent pathway. Scandinavian Journal of Immunology 76 (4): 433–439.CrossRefPubMed Ahn, I.E., Ju JH, S.Y. Lee, J.S. Park, Oh. HJ, H.R. Kim, S.H. Lee, S.H. Park, H.Y. Kim, and M.L. Cho. 2012. Upregulation of stromal cell-derived factor by IL-17 and IL-18 via a phosphatidylinositol 3-kinase-dependent pathway. Scandinavian Journal of Immunology 76 (4): 433–439.CrossRefPubMed
Metadaten
Titel
PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level
verfasst von
Jixian Luo
Publikationsdatum
07.12.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0711-5

Weitere Artikel der Ausgabe 2/2018

Inflammation 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.