Skip to main content
Erschienen in: Tumor Biology 12/2015

01.12.2015 | Research Article

Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression

verfasst von: Cheng Yang, Regina Fischer-Kešo, Tanja Schlechter, Philipp Ströbel, Alexander Marx, Ilse Hofmann

Erschienen in: Tumor Biology | Ausgabe 12/2015

Einloggen, um Zugang zu erhalten

Abstract

Plakophilin (PKP) 1 is frequently downregulated in prostate cancer and therefore may play a tumor-suppressive role. In the present study, we stably knocked down PKP1 in the non-neoplastic, prostatic BPH-1 cell line. In the PKP1-deficient cells, the expression of keratin 14 was lost, and the apoptosis rate was significantly reduced indicating that the cells acquired new biological capabilities. Moreover, we analyzed the gene expression profile of the PKP1-deficient BPH-1 cells. Among the genes that were significantly altered upon PKP1 knockdown, we noticed several extracellular matrix (ECM)-related genes and identified sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1/testican-1) as a gene of interest. SPOCK1 is a component of the ECM and belongs to a matricellular protein family named secreted protein, acidic, cysteine-rich (SPARC). The role of SPOCK1 in prostate cancer has not been clearly elucidated. We analyzed SPOCK1 mRNA expression levels in different cancer databases and characterized its expression in 136 prostatic adenocarcinomas by immunohistochemistry and western blot. SPOCK1 revealed a cytoplasmic localization in the glandular epithelium of the prostate and showed a significant upregulation of mRNA and protein in prostate tumor samples. Our findings support the hypothesis that PKP1 may have a tumor-suppressive function and suggest an important role of SPOCK1 in prostate tumor progression. Collectively, altered expression of PKP1 and SPOCK1 appears to be a frequent and critical event in prostate cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92.CrossRefPubMed Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92.CrossRefPubMed
2.
Zurück zum Zitat Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell. 1994;76(5):789–91.CrossRefPubMed Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell. 1994;76(5):789–91.CrossRefPubMed
3.
Zurück zum Zitat Neuber S, Muhmer M, Wratten D, Koch PJ, Moll R, Schmidt A. The desmosomal plaque proteins of the plakophilin family. Dermatol Res Pract. 2010;2010:101452.PubMedPubMedCentral Neuber S, Muhmer M, Wratten D, Koch PJ, Moll R, Schmidt A. The desmosomal plaque proteins of the plakophilin family. Dermatol Res Pract. 2010;2010:101452.PubMedPubMedCentral
4.
Zurück zum Zitat Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta. 2008;1778(3):572–87.CrossRefPubMed Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta. 2008;1778(3):572–87.CrossRefPubMed
5.
Zurück zum Zitat Bass-Zubek AE, Godsel LM, Delmar M, Green KJ. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol. 2009;21(5):708–16.CrossRefPubMedPubMedCentral Bass-Zubek AE, Godsel LM, Delmar M, Green KJ. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol. 2009;21(5):708–16.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wolf A, Krause-Gruszczynska M, Birkenmeier O, Ostareck-Lederer A, Huttelmaier S, Hatzfeld M. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J Cell Biol. 2010;188(4):463–71.CrossRefPubMedPubMedCentral Wolf A, Krause-Gruszczynska M, Birkenmeier O, Ostareck-Lederer A, Huttelmaier S, Hatzfeld M. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J Cell Biol. 2010;188(4):463–71.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Fischer-Keso R, Breuninger S, Hofmann S, Henn M, Rohrig T, Strobel P, et al. Plakophilins 1 and 3 bind to FXR1 and thereby influence the mRNA stability of desmosomal proteins. Mol Cell Biol. 2014;34(23):4244–56.CrossRefPubMedPubMedCentral Fischer-Keso R, Breuninger S, Hofmann S, Henn M, Rohrig T, Strobel P, et al. Plakophilins 1 and 3 bind to FXR1 and thereby influence the mRNA stability of desmosomal proteins. Mol Cell Biol. 2014;34(23):4244–56.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Sobolik-Delmaire T, Katafiasz D, Keim SA, Mahoney MG, Wahl 3rd JK. Decreased plakophilin-1 expression promotes increased motility in head and neck squamous cell carcinoma cells. Cell Commun Adhes. 2007;14(2–3):99–109.CrossRefPubMed Sobolik-Delmaire T, Katafiasz D, Keim SA, Mahoney MG, Wahl 3rd JK. Decreased plakophilin-1 expression promotes increased motility in head and neck squamous cell carcinoma cells. Cell Commun Adhes. 2007;14(2–3):99–109.CrossRefPubMed
9.
Zurück zum Zitat Papagerakis S, Shabana AH, Depondt J, Gehanno P, Forest N. Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum Pathol. 2003;34(6):565–72.CrossRefPubMed Papagerakis S, Shabana AH, Depondt J, Gehanno P, Forest N. Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum Pathol. 2003;34(6):565–72.CrossRefPubMed
10.
Zurück zum Zitat Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE, Upton MP, et al. Aberrantly methylated PKP1 in the progression of Barrett’s esophagus to esophageal adenocarcinoma. Gene Chrom Cancer. 2012;51(4):384–93.CrossRef Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE, Upton MP, et al. Aberrantly methylated PKP1 in the progression of Barrett’s esophagus to esophageal adenocarcinoma. Gene Chrom Cancer. 2012;51(4):384–93.CrossRef
11.
Zurück zum Zitat Schwarz J, Ayim A, Schmidt A, Jager S, Koch S, Baumann R, et al. Differential expression of desmosomal plakophilins in various types of carcinomas: correlation with cell type and differentiation. Hum Pathol. 2006;37(5):613–22.CrossRefPubMed Schwarz J, Ayim A, Schmidt A, Jager S, Koch S, Baumann R, et al. Differential expression of desmosomal plakophilins in various types of carcinomas: correlation with cell type and differentiation. Hum Pathol. 2006;37(5):613–22.CrossRefPubMed
12.
Zurück zum Zitat Moll I, Kurzen H, Langbein L, Franke WW. The distribution of the desmosomal protein, plakophilin 1, in human skin and skin tumors. J Invest Dermatol. 1997;108(2):139–46.CrossRefPubMed Moll I, Kurzen H, Langbein L, Franke WW. The distribution of the desmosomal protein, plakophilin 1, in human skin and skin tumors. J Invest Dermatol. 1997;108(2):139–46.CrossRefPubMed
13.
Zurück zum Zitat Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T, Tsuchiya E, et al. Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res. 2005;65(16):7102–10.CrossRefPubMed Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T, Tsuchiya E, et al. Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res. 2005;65(16):7102–10.CrossRefPubMed
14.
Zurück zum Zitat Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, et al. The transcription factor ZEB1 (deltaEF1) represses plakophilin 3 during human cancer progression. FEBS Lett. 2007;581(8):1617–24.CrossRefPubMedPubMedCentral Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, et al. The transcription factor ZEB1 (deltaEF1) represses plakophilin 3 during human cancer progression. FEBS Lett. 2007;581(8):1617–24.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Valladares-Ayerbes M, Diaz-Prado S, Reboredo M, Medina V, Lorenzo-Patino MJ, Iglesias-Diaz P, et al. Evaluation of plakophilin-3 mRNA as a biomarker for detection of circulating tumor cells in gastrointestinal cancer patients. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1432–40.CrossRefPubMed Valladares-Ayerbes M, Diaz-Prado S, Reboredo M, Medina V, Lorenzo-Patino MJ, Iglesias-Diaz P, et al. Evaluation of plakophilin-3 mRNA as a biomarker for detection of circulating tumor cells in gastrointestinal cancer patients. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1432–40.CrossRefPubMed
16.
Zurück zum Zitat Demirag GG, Sullu Y, Gurgenyatagi D, Okumus NO, Yucel I. Expression of plakophilins (PKP1, PKP2, and PKP3) in gastric cancers. Diagn Pathol. 2011;6:1.CrossRefPubMedPubMedCentral Demirag GG, Sullu Y, Gurgenyatagi D, Okumus NO, Yucel I. Expression of plakophilins (PKP1, PKP2, and PKP3) in gastric cancers. Diagn Pathol. 2011;6:1.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Demirag GG, Sullu Y, Yucel I. Expression of plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med Oncol. 2012;29(3):1518–22.CrossRefPubMed Demirag GG, Sullu Y, Yucel I. Expression of plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med Oncol. 2012;29(3):1518–22.CrossRefPubMed
18.
Zurück zum Zitat Takahashi H, Nakatsuji H, Takahashi M, Avirmed S, Fukawa T, Takemura M, et al. Up-regulation of plakophilin-2 and down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer. Urology. 2012;79(1):240. e1–8.CrossRefPubMed Takahashi H, Nakatsuji H, Takahashi M, Avirmed S, Fukawa T, Takemura M, et al. Up-regulation of plakophilin-2 and down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer. Urology. 2012;79(1):240. e1–8.CrossRefPubMed
19.
Zurück zum Zitat Yang C, Strobel P, Marx A, Hofmann I. Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch. 2013;463(3):379–90.CrossRefPubMed Yang C, Strobel P, Marx A, Hofmann I. Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch. 2013;463(3):379–90.CrossRefPubMed
20.
Zurück zum Zitat Breuninger S, Reidenbach S, Sauer CG, Strobel P, Pfitzenmaier J, Trojan L, et al. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am J Pathol. 2010;176(5):2509–19.CrossRefPubMedPubMedCentral Breuninger S, Reidenbach S, Sauer CG, Strobel P, Pfitzenmaier J, Trojan L, et al. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am J Pathol. 2010;176(5):2509–19.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339(1):237–46.CrossRefPubMed Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339(1):237–46.CrossRefPubMed
22.
Zurück zum Zitat Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61(2):198–223.CrossRefPubMedPubMedCentral Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61(2):198–223.CrossRefPubMedPubMedCentral
23.
25.
Zurück zum Zitat Bode W, Huber R. Proteinase-protein inhibitor interaction. In: Sies H, Flohé L, Zimmer G, editors. Molecular aspects of inflammation. Colloquium der gesellschaft für biologische chemie 11–13 April 1991 in Mosbach/Baden. Heidelberg: Springer Berlin; 1991. p. 103–15. Bode W, Huber R. Proteinase-protein inhibitor interaction. In: Sies H, Flohé L, Zimmer G, editors. Molecular aspects of inflammation. Colloquium der gesellschaft für biologische chemie 11–13 April 1991 in Mosbach/Baden. Heidelberg: Springer Berlin; 1991. p. 103–15.
28.
Zurück zum Zitat Tai IT, Tang MJ. SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat. 2008;11(6):231–46.CrossRefPubMed Tai IT, Tang MJ. SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat. 2008;11(6):231–46.CrossRefPubMed
29.
Zurück zum Zitat Li Y, Chen L, Chan TH, Liu M, Kong KL, Qiu JL, et al. SPOCK1 is regulated by CHD1L and blocks apoptosis and promotes HCC cell invasiveness and metastasis in mice. Gastroenterology. 2013;144(1):179–91. e4.CrossRefPubMed Li Y, Chen L, Chan TH, Liu M, Kong KL, Qiu JL, et al. SPOCK1 is regulated by CHD1L and blocks apoptosis and promotes HCC cell invasiveness and metastasis in mice. Gastroenterology. 2013;144(1):179–91. e4.CrossRefPubMed
30.
Zurück zum Zitat Leja J, Essaghir A, Essand M, Wester K, Oberg K, Totterman TH, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009;22(2):261–72.CrossRefPubMed Leja J, Essaghir A, Essand M, Wester K, Oberg K, Totterman TH, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009;22(2):261–72.CrossRefPubMed
31.
Zurück zum Zitat Kim HP, Han SW, Song SH, Jeong EG, Lee MY, Hwang D, et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene. 2014;33(25):3334–41.CrossRefPubMed Kim HP, Han SW, Song SH, Jeong EG, Lee MY, Hwang D, et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene. 2014;33(25):3334–41.CrossRefPubMed
32.
Zurück zum Zitat Wlazlinski A, Engers R, Hoffmann MJ, Hader C, Jung V, Muller M, et al. Downregulation of several fibulin genes in prostate cancer. Prostate. 2007;67(16):1770–80.CrossRefPubMed Wlazlinski A, Engers R, Hoffmann MJ, Hader C, Jung V, Muller M, et al. Downregulation of several fibulin genes in prostate cancer. Prostate. 2007;67(16):1770–80.CrossRefPubMed
33.
Zurück zum Zitat Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29(9):1228–42.CrossRefPubMed Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29(9):1228–42.CrossRefPubMed
34.
Zurück zum Zitat Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P. Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol Anim. 1995;31(1):14–24.CrossRefPubMed Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P. Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol Anim. 1995;31(1):14–24.CrossRefPubMed
35.
Zurück zum Zitat Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.CrossRef
36.
Zurück zum Zitat Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMed Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMed
37.
Zurück zum Zitat Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature. 2002;416(6879):455–9.CrossRefPubMed Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature. 2002;416(6879):455–9.CrossRefPubMed
38.
Zurück zum Zitat Clements J, Hooper J, Dong Y, Harvey T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem. 2001;382(1):5–14.CrossRefPubMed Clements J, Hooper J, Dong Y, Harvey T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem. 2001;382(1):5–14.CrossRefPubMed
40.
Zurück zum Zitat Bobek LA, Levine MJ. Cystatins—inhibitors of cysteine proteinases. Crit Rev Oral Biol Med. 1992;3(4):307–32.CrossRefPubMed Bobek LA, Levine MJ. Cystatins—inhibitors of cysteine proteinases. Crit Rev Oral Biol Med. 1992;3(4):307–32.CrossRefPubMed
41.
42.
Zurück zum Zitat Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed
43.
Zurück zum Zitat Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.CrossRefPubMedPubMedCentral Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9(2):166–80.CrossRefPubMedPubMedCentral Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9(2):166–80.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.CrossRefPubMedPubMedCentral Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004;101(3):811–6.CrossRefPubMedPubMedCentral Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004;101(3):811–6.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMed
48.
Zurück zum Zitat Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. J Invest Dermatol. 2007;127(11):2499–515.CrossRefPubMed Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. J Invest Dermatol. 2007;127(11):2499–515.CrossRefPubMed
51.
Zurück zum Zitat van Leenders GJ, Aalders TW, de Kaa CA H-v, Ruiter DJ, Schalken JA. Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol. 2001;195(5):563–70.CrossRefPubMed van Leenders GJ, Aalders TW, de Kaa CA H-v, Ruiter DJ, Schalken JA. Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol. 2001;195(5):563–70.CrossRefPubMed
52.
Zurück zum Zitat Okada H, Tsubura A, Okamura A, Senzaki H, Naka Y, Komatz Y, et al. Keratin profiles in normal/hyperplastic prostates and prostate carcinoma. Virchows Arch A Pathol Anat Histopathol. 1992;421(2):157–61.CrossRefPubMed Okada H, Tsubura A, Okamura A, Senzaki H, Naka Y, Komatz Y, et al. Keratin profiles in normal/hyperplastic prostates and prostate carcinoma. Virchows Arch A Pathol Anat Histopathol. 1992;421(2):157–61.CrossRefPubMed
53.
Zurück zum Zitat Ke XS, Li WC, Hovland R, Qu Y, Liu RH, McCormack E, et al. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model. Exp Cell Res. 2011;317(2):234–47.CrossRefPubMed Ke XS, Li WC, Hovland R, Qu Y, Liu RH, McCormack E, et al. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model. Exp Cell Res. 2011;317(2):234–47.CrossRefPubMed
55.
Zurück zum Zitat Alliel PM, Perin JP, Jolles P, Bonnet FJ. Testican, a multidomain testicular proteoglycan resembling modulators of cell social behaviour. Eur J Biochem. 1993;214(1):347–50.CrossRefPubMed Alliel PM, Perin JP, Jolles P, Bonnet FJ. Testican, a multidomain testicular proteoglycan resembling modulators of cell social behaviour. Eur J Biochem. 1993;214(1):347–50.CrossRefPubMed
56.
Zurück zum Zitat Wight TN, Kinsella MG, Qwarnstrom EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992;4(5):793–801.CrossRefPubMed Wight TN, Kinsella MG, Qwarnstrom EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992;4(5):793–801.CrossRefPubMed
57.
Zurück zum Zitat Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 2010;277(19):3876–89.CrossRefPubMed Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 2010;277(19):3876–89.CrossRefPubMed
58.
Zurück zum Zitat Edgell CJ, BaSalamah MA, Marr HS. Testican-1: a differentially expressed proteoglycan with protease inhibiting activities. Int Rev Cytol. 2004;236:101–22.CrossRefPubMed Edgell CJ, BaSalamah MA, Marr HS. Testican-1: a differentially expressed proteoglycan with protease inhibiting activities. Int Rev Cytol. 2004;236:101–22.CrossRefPubMed
59.
Zurück zum Zitat Bocock JP, Edgell CJ, Marr HS, Erickson AH. Human proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. Eur J Biochem. 2003;270(19):4008–15.CrossRefPubMed Bocock JP, Edgell CJ, Marr HS, Erickson AH. Human proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. Eur J Biochem. 2003;270(19):4008–15.CrossRefPubMed
60.
Zurück zum Zitat Marr HS, Edgell CJ. Testican-1 inhibits attachment of Neuro-2a cells. Matrix Biol. 2003;22(3):259–66.CrossRefPubMed Marr HS, Edgell CJ. Testican-1 inhibits attachment of Neuro-2a cells. Matrix Biol. 2003;22(3):259–66.CrossRefPubMed
61.
Zurück zum Zitat Miao L, Wang Y, Xia H, Yao C, Cai H, Song Y. SPOCK1 is a novel transforming growth factor-β target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2013;440(4):792–7.CrossRefPubMed Miao L, Wang Y, Xia H, Yao C, Cai H, Song Y. SPOCK1 is a novel transforming growth factor-β target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2013;440(4):792–7.CrossRefPubMed
62.
Zurück zum Zitat Pieters T, van Roy F, van Hengel J. Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling. Front Biosci. 2012;17:1669–94.CrossRef Pieters T, van Roy F, van Hengel J. Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling. Front Biosci. 2012;17:1669–94.CrossRef
64.
Zurück zum Zitat De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.CrossRefPubMed De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.CrossRefPubMed
65.
Zurück zum Zitat Aparicio LA, Abella V, Valladares M, Figueroa A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci. 2013;70(23):4463–77.CrossRefPubMedPubMedCentral Aparicio LA, Abella V, Valladares M, Figueroa A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci. 2013;70(23):4463–77.CrossRefPubMedPubMedCentral
Metadaten
Titel
Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression
verfasst von
Cheng Yang
Regina Fischer-Kešo
Tanja Schlechter
Philipp Ströbel
Alexander Marx
Ilse Hofmann
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3628-3

Weitere Artikel der Ausgabe 12/2015

Tumor Biology 12/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.