Skip to main content
Erschienen in: BMC Women's Health 1/2022

Open Access 01.12.2022 | Research

Polymorphisms of TNF-alpha (− 308), IL-1beta (+ 3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: a case control study

verfasst von: Jennifer Mier-Cabrera, Oliver Cruz-Orozco, Julio de la Jara-Díaz, Oscar Galicia-Castillo, Mario Buenrostro-Jáuregui, Alicia Parra-Carriedo, César Hernández-Guerrero

Erschienen in: BMC Women's Health | Ausgabe 1/2022

Abstract

Background

Endometriosis is an estrogen-dependent and chronic inflammatory disease affecting up to 10% of women. It is the result of a combined interaction of genetic, epigenetic, environmental, lifestyle, reproductive and local inflammatory factors. In this study, we investigated whether single nucleotide polymorphisms (SNPs) mapping to TNF-alpha (TNF, rs1800629) and IL-1beta (IL1B, rs1143634) and variable number tandem repeat polymorphism mapping to IL1-Ra (IL1RN intron 2, rs2234663) genetic loci are associated with risk for endometriosis in a Mexican mestizo population.

Methods

This study included 183 women with confirmed endometriosis (ENDO) diagnosed after surgical laparoscopy and 186 women with satisfied parity and without endometriosis as controls (CTR). PCR/RFLP technique was used for genotyping SNPs (rs1800629 and rs1143634); PCR for genotyping rs2234663.

Results

We found no statistical differences in age between groups nor among stages of endometriosis and the CTR group. We observed no difference in genotype and allele frequencies, nor carriage rate between groups in none of the three studied polymorphisms. The prevalence of TNF*2-allele heterozygotes (p = 0.025; OR 3.8), TNF*2-allele (p = 0.029; OR 3.4), IL1B*2-allele heterozygotes (p = 0.044; OR 2.69) and its carriage rate (p = 0.041; OR 2.64) in endometriosis stage IV was higher than the CTR group. Surprisingly, the carriage rate of IL1RN*2-allele (ENDO: p = 0.0004; OR 0.4; stage I: p = 0.002, OR 0.38; stage II: p = 0.002, OR 0.35; stage III: p = 0.003, OR 0.33), as well as the IL1RN*2-allele frequencies (ENDO: p = 0.0008, OR 0.55; I: p = 0.037, OR 0.60; II: p = 0.002, OR 0.41; III: p = 0.003, OR 0.38) were lower than the CTR group. Women with endometriosis stage IV (severe) had frequencies more alike to the CTR group in the IL1RN*2 allele frequency (31.2% vs. 27.2%) and carriage rate (37.5% vs. 41.9%).

Conclusion

Although these polymorphisms are not associated with the risk of endometriosis, Mexican mestizo women with severe stage of endometriosis have higher frequencies of TNF*2-, IL1B*2- and IL1RN*2-alleles, which may explain a possible correlation with disease severity rather than predisposition or risk.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CTR
Control group
CI
Confidence interval
ENDO
Endometriosis group
IL-1β
Interleukin-1beta
IL1B*1
IL-1β wild-type allele
IL1B*2
IL-1β mutated allele
IL-1Ra
Interleukin-1 receptor antagonist
IL1RN*1
IL-1Ra allele 1
IL1RN*2
IL-1Ra allele 2
IL1RN*3
IL-1Ra allele 3
IL1RN*4
IL-1Ra allele 4
IL1RN*5
IL-1Ra allele 5
INPer
Instituto Nacional de Perinatología
OR
Odds ratio
rASRM
Revised American Society of Reproductive Medicine
SNP
Single nucleotide polymorphisms
TNF-α
Tumor necrosis factor-alpha
TNF*1
TNF-α wild-type allele
TNF*2
TNF-α mutated allele
VNTR
Variable number tandem repeat

Background

Endometriosis is recognized as an estrogen-dependent and chronic inflammatory gynecological disease characterized by the presence and growth of endometrial-like tissue outside the uterine cavity. It affects at least 10% of women of reproductive age, leading to infertility and symptoms such as chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, dyschezia and fatigue [1]. Although several hypothesis and multiple factors have been proposed trying to explain its origin, the etiopathogenesis of endometriosis is still unknown. Being such a complex gynecological disease [2] different new theories have been proposed trying to explain its physiopathology nature. The “bacterial contamination theory” [3] suggests that recognition of bacteria could elicit the immune response (inflammation and dysregulation), playing a key role in its pathogenesis as endometriosis appears to be associated with elevated levels of different pathogenic species. The genetic-epigenetic (G/E) theory [4] proposes that after the accumulation of several cellular G/E events, the cell crosses a limit threshold which gives arise to a number of alterations. Epigenetics changes have been reported in ectopic endometrium related to inflammation, estrogen and progesterone receptors.
In this respect, non-immune and immune cells in the peritoneal microenvironment have been identified as the main source of estrogens, prostaglandins, and pro-inflammatory cytokines [59]. Hence, local inflammatory cytokine and prostaglandin production, immune cell infiltration, estrogen dominance, progesterone resistance, chronic local inflammation and oxidative stress are correlated and contribute to the central processes leading to pain, remodeling of neighboring tissues, fibrosis, adhesion formation, and infertility. Also, an aberrant immune system seems to play a key role, as it appears that women with endometriosis are more susceptible to autoimmune disorders (systemic lupus erythematous, Sjögren syndrome, rheumatoid arthritis, celiac disease, multiple sclerosis and inflammatory bowel disease) [10, 11] compared to general female population.
Inflammation is influenced by genetic susceptibility. Inflammatory cytokine genes polymorphisms have been subject of study trying to explain the etiology of gynecological (leiomyomas) [12, 13] and non-gynecological pathologies [1416]. Although the contribution of genetics is well supported by many studies, they have not provided a simple and unambiguous answer to the etiology of endometriosis [17, 18].
Different gene loci have been identified as risk factors in endometriosis, including those related to growth factors, matrix remodeling, hormone receptors and metabolism, adhesion molecules, oxidative stress, cytokines, and inflammation [19]. The frequency distribution of gene polymorphisms varies according to the ethnic component of each human subpopulation, which partly explains the predisposition to disease and/or response to nutrients/pharmacological treatment [20, 21]. Tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) are the first cytokines synthesized during the inflammatory process, while interleukin-1 Receptor antagonist (IL-1Ra) modulates and inhibits IL-1β activity [22].
The TNF-α gene (TNFA; 6p21.31) displays several single nucleotide polymorphisms (SNP) [23]. Specifically, the SNP in the promoter region (position G-308A) has been identified with an increased synthesis of TNF-α by carriers of the mutated allele (TNF*2) [24, 25]. The IL-1β gene (IL1B; 2q12.21) displays SNPs in the promoter region (T-31C, C-511 T) [26] and in the exon 5 (C+3954T) [27]. The latter has been identified with an increased production of this cytokine [28, 29], and it is associated with inflammatory diseases [30, 31]. The IL-1RA gene (IL1RN; 2q14.21) displays a variable number tandem repeat (VNTR) polymorphism in the intron 2 caused by 86 bp. There are six alleles according to the number of the 86-bp repeats: allele 1 (IL1RN*1) is the most common and has four repeats followed by allele 2 (IL1RN*2) with two repeats and three non-common alleles that have three (IL1RN*3), five (IL1RN*4) and six (IL1RN*5) repeats, respectively [32].
Data reported in the literature have associated endometriosis with several cytokine genes displaying both positive and negative associations [19, 33, 34]. Women with endometriosis might have a particular profile of cytokine polymorphisms, which might well determine them to respond with a greater inflammatory intensity, being this directly responsible of the biological alterations and symptoms suffered by this group of women. The aim of this study was to investigate the association of TNF-α (G-308 A), IL-1β (C+3954T) and IL1-Ra intron 2 VNTR polymorphisms with the risk of endometriosis in Mexican mestizo women.

Methods

Study design and patient population

In this case control study, we enrolled 369 adult women from a tertiary hospital in Mexico City. All women with infertility who attended the Department of Infertility and Sterility at the Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” (INPer) were considered eligible. The case group, called “endometriosis group” (ENDO), included 183 women diagnosed with endometriosis after undergoing laparoscopic surgery. Endometriosis staging was done according to the revised American Society for Reproductive Medicine (r-ASRM) staging score [35]. We did not include women that were diagnosed with pelvic inflammatory disease and those whose pain or infertility was due to other medical issues but endometriosis.
On the other hand, we invited all fertile women who attended the Department of Family Planning at INPer for bilateral tubal occlusion surgery as a definite contraceptive method to participate as "controls". The inclusion criteria were women without any apparent clinical symptom nor visual presence of endometriosis confirmed during the surgical procedure. The "control group" (CTR) included 186 women without endometriosis and confirmed fertility. We did not include fertile women that were diagnosed with pelvic inflammatory disease, endometriosis, or a medical history of myomas.
The Institutional Review Board and Ethics Committee of the INPer approved the study protocol (212250-06081). All procedures concerning this work comply with the Declaration of Helsinki. All women that accepted to participate were informed about the objectives and outcomes of the study and provided their written informed consent.

Blood samples collection and DNA extraction

Peripheral venous blood samples were collected in 7-mL heparin tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA) and taken to the laboratory immediately for DNA extraction. Genomic DNA was isolated from whole blood (100 µL) using 1 ml of the DNAzol Reagent (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. The isolated DNA was stored at − 20 °C until it was used for the polymerase chain reaction (PCR) experiments.

TNF, IL1B and IL1RN genotyping

TNF-α (G-308A; rs1800629) and IL-1β (C+3954T, rs1143634) SNPs were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RLFP) method using the restriction enzymes NcoI [36] and TaqI [37], respectively, as described elsewhere. IL-1Ra intron 2 (VNTR; rs2234663) alleles were determined using a PCR protocol [38], as described elsewhere. PCR reagents (10X PCR Buffer, MgCl2, Taq DNA polymerase, and dNTPs) were purchased from Invitrogen (ThermoFisher Scientific, Waltham, MA, USA).
Amplification of the genomic fragments where the polymorphic sites are located was carried out using the primers and PCR settings described in Table 1. For each PCR amplification protocol, we used 50 ng template DNA, 1.5 mM MgCl2, 1 Unit Taq DNA polymerase, 20 pmol of each primer, 0.2 mM of each dNTP and PCR grade water in a total reaction volume of 25 µl. All reactions were performed in a Mastercycler gradient thermal cycler (Eppendorf Scientific, Hamburg, Germany).
Table 1
Primers and PCR settings used for genotyping the cytokines polymorphisms
 
TNF-α (rs1800629)
IL-1β (rs1143634)
IL-1Ra (rs2234663)
Primers
F:AGGCAATAGGTTTTGAGGGCCAT
F:CTCAGGTGTCCTCGAAGAAATCAAA
F:TCCTGGTCTGCAGGTAA
R:TCCTCCCTGCTCCGATTCCG
R:GCTTTTTTGCTGTGAGTCCCG
R:CTCAGCAACACTCCTAT
Cycles
35
35
35
Initial denaturation
94 °C for 5 min
94 °C for 5 min
96 °C for 1 min
Denaturation
94 °C for 30 s
94 °C for 30 s
94 °C for 1 min
Annealing
60 °C for 30 s
55 °C for 30 s
62 °C for 1 min
Elongation
72 °C for 30 s
72 °C for 30 s
72 °C for 1 min
Final extension
72 °C for 5 min
72 °C for 5 min
72 °C for 7 min

TNF (G-308A; rs1800629) RFLP

We digested 10 µL of PCR product (107 bp) with 4 units of NcoI restriction enzyme (Roche Molecular Biochem, Mannheim, Germany) during 24 h at 37 °C. Digestion product was analyzed by electrophoresis in a 4% agarose gel stained with ethidium bromide and visualized in an Epichemi3 Darkroom Transilluminator (UVP Inc., Upland, California, USA). The identification of two bands of 87 bp and 20 bp revealed TNF*1 allele; meanwhile, a single 107 bp band revealed TNF*2 allele.

IL1B (C+3954T, rs1143634) RFLP

We digested 10 µL of PCR product (182 bp fragment) with 7 units of TaqI restriction enzyme (Roche Molecular Biochem, Mannheim, Germany) during 24 h at 65 °C. Digestion product was analyzed by electrophoresis in a 6% acrylamide gel stained with ethidium bromide and visualized using an Epichemi3 Darkroom Transilluminator (UVP Inc. Upland, CA, USA). The identification of two bands of 97 bp and 85 bp revealed the IL1B*1 allele; meanwhile, a single band of 182 bp revealed the point mutation corresponding to the IL1B*2 allele.

IL1RN (rs2234663) VNTR

PCR product (20 µL) was analyzed by electrophoresis in a 2% agarose gel stained with ethidium bromide and visualized using an Epichemi3 Darkroom Transilluminator (UVP Inc. Upland, CA, USA). The identification of 412 bp, 240 bp, 326 bp, 498 bp, and 584 bp fragments corresponded to alleles 1, 2, 3, 4 and 5, respectively.

Statistical analyses

All statistical analyses were assessed using the software SigmaStat v. 3.1 (Systat Software Inc., CA, USA). Age and obstetric characteristics were compared using Student's t, U-Mann Whitney, and ANOVA of Kruskall-Wallis tests, where applicable. Allele frequencies, genotype frequencies and carriage rate were computed. The polymorphisms were tested for Hardy–Weinberg equilibrium by the goodness-of-fit χ2 test. The χ2 test was used to examine the differences of allele and genotype frequencies, as well as carriage rate between groups. The risk associations for endometriosis were estimated by the odds ratio (OR) with 95% confidence interval (95% CI) and a p-value < 0.05 was considered statistically significant.

Results

All women included in the CTR (n = 186) and ENDO (n = 183) group self-reported their ethnical origin as Mexican mestizo as their parents and grandparents were born in Mexico. All of them had middle educational (< 13 years) and socioeconomical status and lived in Mexico City or its surroundings. According to the rASRM classification, 63 (34.4%) women had endometriosis stage I (minimal), 54 (29.5%) stage II (mild), 117 (63.9%) stages I–II (minimal/mild), 42 (23.0%) stage III (moderate), 24 (13.1%) stage IV (severe) and 66 (36.1%) stages III–IV (moderate/severe). There were no statistically significant differences in the mean age between the CTR (33.8 ± 3.2 years) and ENDO (32.7 ± 2.5 years) group nor among rASRM stages of endometriosis and the control group (data not shown). Conversely, obstetric characteristics were significantly different between groups (p < 0.05). While the CTR group reported a median of three pregnancies, one vaginal delivery, one Cesarean delivery and zero abortions, the ENDO group reported zero pregnancies.
The genotype and allele frequency distribution of the TNF-α (− 308) polymorphism among the 369 women from the ENDO and CTR group is described in Table 2.
Table 2
Genotype and allele frequencies of the TNF-α − 308 polymorphism between women with and without endometriosis
TNF-α
n
Genotype n (%)
Allele n (%)
*1*1
*1*2
*2*2
1
2
Women without endometriosis
186
171 (91.9)
15 (8.1)
0 (0.0)
357 (95.7)
15 (4.3)
Women with endometriosis
183
159 (86.9)
24 (13.1)
0 (0.0)
342 (93.4)
24 (6.6)
Stage I
63
54 (85.7)
9 (14.3)
0 (0.0)
117 (92.9)
9 (7.1)
Stage II
54
48 (88.8)
6 (11.2)
0 (0.0)
102 (94.4)
6 (5.6)
Stage I/II
117
102 (87.2)
15 (12.8)
0 (0.0)
219 (93.6)
15 (6.4)
Stage III
42
39 (92.9)
3 (7.1)
0 (0.0)
81 (96.4)
3 (3.6)
Stage IV
24
18 (75.0)
6 (25.0)1
0 (0.0)
42 (87.5)
6 (12.5)2
Stage III/IV
66
57 (86.4)
9 (13.6)
0 (0.0)
123 (93.2)
9 (6.8)
1x2 = 5.02, p = 0.025, OR = 3.8 (95% CI 1.31–11.01) versus women without endometriosis
2x2 = 4.75, p = 0.029, OR = 3.4 (95% CI 1.25–9.23) versus women without endometriosis
Allele and genotype frequencies in the study population were in Hardy–Weinberg equilibrium (p > 0.05). The distribution of TNF*1-allele homozygotes (p > 0.05) and TNF*2-allele heterozygotes (TNF*1/TNF*2) (p > 0.05) genotype frequencies was not statistically significant between groups. More than 85% of women in both groups were TNF*1 homozygotes. However, according to the r-ASRM staging, the prevalence of TNF*2-allele heterozygotes in stage IV was the only statistically different (p = 0.025) when compared to the CTR group. We did not identify the TNF*2-allele homozygote in our sample. A similar pattern was observed when we analyzed the TNF*1 and TNF*2 allele frequencies. No statistically significant difference was observed between groups (p > 0.05); except when endometriosis stage IV (p = 0.029) was compared to the CTR group. We also analyze the genotype and allele frequency of this polymorphism by grouping together stages I/II and stages III/IV and comparing them to the CTR group. However, no differences were found. The associations analysis suggests an approximate fourfold increased risk for women with endometriosis stage IV with TNF*2-allele heterozygote genotype and an approximate 3.5-fold increased risk with TNF*2-allele.
The genotype and allele frequencies distribution and the carriage rate of the IL-1β (+ 3954) polymorphism among the 369 women from the ENDO and CTR group is showed in Table 3.
Table 3
Genotype and allele frequencies of the IL-1β (+ 3954) polymorphism between women with and without endometriosis
IL-1β
n
Genotype n (%)
Allele n (%)
*1*1
*1*2
*2*2
*1*2 + *2*2
1
2
Women without endometriosis
186
135 (72.6)
46 (24.7)
5 (2.7)
51(27.4)
316 (84.9)
56 (15.1)
Women with endometriosis
183
129 (70.5)
47 (25.7)
7 (3.8)
54 (29.5)
305 (83.3)
61 (16.7)
Stage I
63
51 (80.9)
9 (14.3)
3 (4.8)
12 (19.0)
111 (88.1)
15 (11.9)
Stage II
54
36 (66.7)
16 (29.6)
2 (3.7)
18 (33.3)
88 (81.5)
20 (18.5)
Stage I/II
117
87 (74.4)
25 (21.4)
5 (4.3)
30 (25.6)
199 (85.0)
35 (15.0)
Stage III
42
30 (71.4)
11 (26.2)
1 (2.4)
12 (28.6)
71 (84.5)
13 (15.5)
Stage IV
24
12 (50.0)
11 (45.8)1
1 (4.2)
12 (50.0)2
35 (72.9)
13 (27.1)
Stage III/IV
66
42 (63.6)
22 (33.3)
2 (3.0)
24 (36.4)
106 (80.3)
26 (19.7)
1x2 = 4.03, p = 0.044, OR = 2.69 (95% CI 1.11–6.51) versus women without endometriosis
2x2 = 4.14, p = 0.041, OR = 2.64 (95% CI 1.11–6.27) versus women without endometriosis
Allele and genotype frequencies in the study population were in Hardy–Weinberg equilibrium (p > 0.05). The distribution of the three genotype frequencies (IL1B*1-allele homozygote, IL1B*2-allele heterozygote and IL1B*2-allele homozygote) and the carriage rate was not statistically significant between groups (p > 0.05). We identified that > 70% of women in both groups were IL1B*1 homozygotes. On the other hand, women with endometriosis stage I showed the highest frequency (80%) of this genotype, while those with endometriosis stage IV, the lowest (50%). Although the IL1B*2-allele heterozygote genotype frequency was similar between groups, we only found a statistically significant difference between women with stage IV endometriosis and the CTR group (p = 0.044). The IL1B*2-allele homozygote was found in a very low frequency (< 5%) in both groups and in all four stages of endometriosis. When we analyzed the carriage rate of IL1B*2 allele (*1*2 + *2*2), we found a statistically significant difference between women with endometriosis stage IV and the CTR group (p = 0.041). A similar pattern was observed when we analyzed the IL1B*1 and IL1B*2 allele frequencies. Regarding the IL1B*2-allele, its frequency was very alike between groups (15.1% vs. 16.7%) and no statistically significant difference was found (p > 0.05). Likewise, we found no statistical difference among the four stages of endometriosis and the CTR group, nor stages I/II, III/IV and the CTR group. The associations analysis suggests an approximate threefold increased risk for women with endometriosis stage IV with IL1B*2-allele heterozygote genotype and a tendency to a twofold increased risk with IL1B*2-allele [p = 0.056; OR 2.09; 95%CI (1.04–4.02)].
The genotypes and alleles frequencies distribution and the carriage rate of IL-1Ra (86 bp, VNTR) polymorphism is described in Table 4.
Table 4
Genotype and allele frequencies of the IL-1 Ra VNTR polymorphism between women with and without endometriosis
IL-1Ra
n
Genotype n (%)
Allele frequency n (%)
*1*1
*1*2
*1*3
*1*4
*2*2
*1*3 + *1*4
*1*2 + *2*2
1
2
3
4
Women without endometriosis
186
90 (48.4)
55 (29.6)
10 (5.4)
8 (4.3)
23 (12.4)
18 (9.7)
78 (41.9)
253 (68.0)
101 (27.2)
10 (2.7)
8 (2.1)
Women with endometriosis
183
129 (70.5)
25 (13.7)
4 (2.2)
5 (2.7)
20 (10.9)
9 (4.9)
45 (24.6)1
292 (79.8)
65 (17.8)7
4 (1.1)
5 (1.3)
Stage I
63
45 (71.4)
6 (9.5)
2 (3.2)
1 (1.6)
9 (14.3)
3 (4.8)
15 (23.8)2
99 (78.6)
24 (19.0)8
2 (1.6)
1 (0.8)
Stage II
54
39 (72.2)
9 (16.7)
1 (1.8)
2 (3.7)
3 (5.6)
3 (5.6)
12 (22.2)3
90 (83.3)
15 (13.9)9
1 (0.9)
2 (1.9)
Stage I/II
117
84 (71.8)
15 (12.8)
3 (2.6)
3 (2.6)
12 (10.3)
6 (5.1)
27 (23.1)4
189 (80.8)
39 (16.7)10
3 (1.3)
3 (1.3)
Stage III
42
31 (73.8)
7 (16.7)
2 (4.8)
0 (0.0)
2 (4.7)
2 (4.8)
9 (21.4)5
71 (84.5)
11 (13.1)11
2 (1.2)
0 (0.0)
Stage IV
24
14 (58.3)
3 (12.5)
1 (4.2)
0 (0.0)
6 (25.0)
1 (4.2)
9 (37.5)
32 (66.7)
15 (31.2)
1 (2.1)
0 (0.0)
Stage III/IV
66
45 (68.2)
10 (15.2)
3 (4.5)
0 (0.0)
8 (12.1)
3 (4.5)
18 (27.3)6
103 (78.0)
26 (19.7)12
3 (2.3)
0 (0.0)
1x2 = 16.6, p = 0.0004, OR 0.40 (95% CI 0.25–0.63), versus women without endometriosis
2x2 = 9.3, p = 0.002, OR 0.38 (95% CI 0.19–0.74), versus women without endometriosis
3x2 = 9.4, p = 0.002, OR 0.35 (95% CI 0.17–0.72), versus women without endometriosis
4x2 = 14.8, p = 0.0001, OR 0.37 (95% CI 0.21–0.62), versus women without endometriosis
5x2 = 8.6, p = 0.003, OR 0.33 (95% CI 0.15–0.74), versus women without endometriosis
6x2 = 6.77, p = 0.009, OR 0.46 (95% CI 0.24–0.86), versus women without endometriosis
7x2 = 11.17, p = 0.0008, OR 0.55 (95% CI 0.39–0.79), versus women without endometriosis
8x2 = 4.32, p = 0.037, OR 0.60 (95% CI 0.36–1.00), versus women without endometriosis
9x2 = 9.47, p = 0.002, OR 0.41 (95% CI 0.23–0.75), versus women without endometriosis
10x2 = 10.5, p = 0.001, OR 0.51 (95% CI 0.34–0.76), versus women without endometriosis
11x2 = 8.78, p = 0.003, OR 0.38 (95% CI 0.19–0.76), versus women without endometriosis
12x2 = 3.86, p = 0.049, OR 0.63 (95% CI 0.388–1.03), versus women without endometriosis
Allele and genotype frequencies in the study population were not in Hardy–Weinberg equilibrium (p < 0.05). The IL1RN*1-allele homozygote genotype was the most common of all in the ENDO group as well as in stages I-III (> 70%), but not for stage IV (58%). Conversely, this genotype was only present in 48% of women without endometriosis. The frequency of the IL1RN*1/IL1RN*2 genotype was higher in the CTR group (29%). The IL1RN*1/IL1RN*3 and IL1RN*1/IL1RN*4 genotypes showed very low frequencies (< 6%) and carriage rate (*1*3 + *1*4; < 10%) in both groups and in all four stages of endometriosis. However, we did not find IL1RN*1/IL1RN*4 genotype in women with endometriosis stage III and IV. The IL1RN*2-allele homozygote genotype frequency was very alike in both groups and no statistical difference was found among groups when compared to the CTR group. When we analyze the carriage rate of IL1RN*2-allele (*1*2 + *2*2), the ENDO group and the four stages of endometriosis had lower frequencies than the CTR group. All groups showed statistical difference, except for endometriosis stage IV. Surprisingly, all OR values were below 0.63 (a protective effect), except again for stage IV (OR 0.83). We found all alleles in both groups, except for IL1RN*5. The most common alleles were IL1RN*1 (68% and 80% in women without and with endometriosis, respectively) and IL1RN*2 (27% and 18% in women without and with endometriosis, respectively), as reported in the literature. Surprisingly, we observed a higher frequency of IL1RN*1 in women with endometriosis and a higher frequency of IL1RN*2 in the CTR group, which was statistically different (p < 0.0008). The frequency of IL1RN*3 and IL1RN*4 was < 3% in both groups. The ENDO group and endometriosis stages I-III had similar frequencies of IL1RN*1-allele (79.8–84.5%); however, this phenomenon was not observed in endometriosis stage IV, which frequency was very alike to that of the CTR group (67 vs. 68%). When we analyzed the IL1RN*2-allele frequency according to rASRM staging, all endometriosis stages showed statistical difference when compared to the CTR group, except for endometriosis stage IV (p > 0.05). Finally, we also found statistical differences in both carriage rate and IL1RN*2-allele frequency in both stage I/II and stage III/IV when compared to the CTR group.

Discussion

Endometriosis is a multifactorial disease where inflammation is actively involved in the initiation, establishment, and development of ectopic endometrial tissue in the peritoneal cavity. This process is highlighted by the involvement of pro-inflammatory cytokines synthesized by immune and non-immune cells present in the peritoneal microenvironment. In this study, we investigated the association of TNF-α (G-308A), IL-1β (C+3954T) and IL-1Ra (intron 2, VNTR) polymorphisms and endometriosis in Mexican mestizo women from Mexico City and its surroundings.
Positive (− 1031), negative (− 308, − 238) or ambiguous (− 863, − 857) associations [39] have been reported between TNF-α polymorphisms and endometriosis. Specifically, the − 308 polymorphism has been evaluated in nine studies [Asia (6), Europe (1) and Australia (1)], including ours (Mexico), and two systematic reviews and meta-analysis in Asians [40, 41] yielding negative associations in all cases. Regionally and geographically, the frequencies of TNF*2-allele have been shown to significantly differ. Wiezer (Austria) [42] and Hsieh (China) [43] described very similar genotype and allele frequencies in contrast to Zhao (Australia) [44], who studied haplotypes and found no association. Our results were very similar to that found by Lee (Korea) [45] and Babaabasi (Iran) [46]. Although the latter identified the TNF*2-allele homozygote (< 7%), we did not, as it appears to be very low or even absent in the American mestizo or Amerindian population [47, 48]. The higher prevalence of the TNF*2 heterozygote genotype observed in endometriosis stage IV (12.5%) might be related to an increased fashion synthesis of TNF-α by immune and non-immune cells, promoting the development and maintenance of endometriosis through the expression of different molecules related to growth, adhesion, maintenance, and survival.
There is still a scientific debate regarding the association of different IL-1β SNPs and endometriosis. All five studies (Turkey, Taiwan, China, Austria, Mexico) that have investigated the relationship between the C+3954T SNP and endometriosis found a negative association. The allele frequencies identified range from 1 to 43% in women with endometriosis [4952]. Attar [51], like us, identified an increased frequency in endometriosis stage IV (27%, p = 0.056), which could be related to an increased synthesis of IL-1β by peritoneal immune and non-immune cells that can induce the expression of different molecules involved in the immunological dysfunctions contributing to the establishment and progression of the disease.
The regulation of IL-1β by IL-1Ra should be coordinated during inflammation to cease the immune response and limit the potential for immunopathology [53, 54]. Four studies (Taiwan, Korea, China and Mexico) [49, 52, 55], have evaluated the association between IL1-Ra VNTR polymorphism and endometriosis. Unlike them, who found IL1RN*1-allele homozygote in more than 84% and 92% of women with and without endometriosis, we observed it in 70% and 48%, respectively. Like Hsieh [49] and Wen [52], we found the IL1RN*1/IL1RN*2-allele heterozygote in approximately 10% of women with endometriosis. Nevertheless, this genotype was present in 30% of Mexican women without endometriosis, while they found it in < 6%. Surprisingly, we found the highest prevalence of the IL1RN*2-allele homozygote genotype (10% vs. 1%) and the IL1RN*2-allele in Mexican women with (18% vs. < 7%) and without endometriosis (27% vs. < 4%). Although Wen suggests an approximate 3.5-fold increased risk for Chinese women with endometriosis carrying the IL1RN*2-allele, we found this allele protective in Mexican women (except for endometriosis stage IV). The IL1RN*2-allele homozygote genotype has been associated with more prolonged and more severe proinflammatory immune response due to a decreased bioactivity/concentration of IL-1ra and with an increased production of IL-1β [56, 57]. The relationship between the IL-1RN genotype and its protein concentration has conflicting results because of the diversity of the environment, pathology and populations studied [5760]. We do not know the biological meaning of a low frequency of IL1RN*2 allele and homozygote genotype in women with endometriosis. Nevertheless, the highest frequency of the IL1RN*2-allele homozygote genotype (25%) was observed again in endometriosis stage IV. This could lead to an insufficient production of IL-1Ra protein or to an overproduction of IL-1β in response to immune and/or inflammatory stimuli [60, 61], explaining why this allele could influence an individual’s susceptibility to endometriosis. Probably, this allele could genetically be associated with severity of disease (stage IV), rather than with predisposition [62]. Likewise, this could be related to an increased risk for intraperitoneal adhesion development [63], very common in severe stages of disease. A decreased production of IL-1Ra and an increase in IL-1β can contribute to a decrease in fibrinolysis during tissue repair [64].
To the best of our knowledge, the three polymorphisms evaluated in the present work are the first description of these genes in Mexican mestizo women with endometriosis. Although it appears that they are not associated with the risk of endometriosis, we identified that Mexican mestizo women with endometriosis stage IV have higher frequencies of TNF*2-, IL1B*2- and IL1RN*2-alleles than the CTR group, consistent with disease severity. Recent studies focused mainly on stage III/IV endometriosis, both recognized as severe stages of the disease, suggest a greater genetic burden when compared to stage I/II [6567]. Genetic predisposition is an important factor in the etiology of endometriosis. Despite several genes and SNPs have been identified in the physiopathology and development [68, 69] of endometriosis, studies have demonstrated inconsistent and contradictory results due to its heterogeneous clinical manifestations and classification, research methodology, human genetic variability and different genetic ancestries and admixture. Thus, genetic research in endometriosis is complicated and has not been successful in providing replicable results.
A limitation of our study was the staging of endometriosis based on the rASRM score. Although it is the best well-known and the most used, it does not correlate well with clinical features and has drawbacks. Also, we did not include other associated genes and clustered polymorphism sites of lL-1, hence a haplotype analysis could not be done. A strength of our study is that all women (case and controls) were surgically evaluated for the presence/absence of endometriosis. More studies with larger sample sizes, well-matched controls, using other classifications of the disease (ENZIAN, Fertility score), considering more clustered polymorphisms, associated genes and other ethnic populations are necessary to definitively confirm the association of these polymorphisms reported by several studies. It would be necessary to evaluate in Mexican mestizo women other cytokine polymorphisms in the promoter region that have found associated to the disease [e.g. TNF (− 1031 T/C, − 863 C/A, − 857 C/T), IL-6 (− 634 T/C), or TGF-β (− 509 C/T)] [33]. Maybe these, among others, could help us explain the chronic local inflammation that has been related to the initiation, development and spread of endometriosis, as well as with the etiology of the symptoms, such as infertility and pain. Increasing the knowledge of genetic characteristics of inflammatory molecules in women with endometriosis from diverse ethnic groups will help us understand the onset and evolution of the phenomenon better.

Conclusion

Although these three polymorphisms are not associated with the risk of endometriosis, Mexican mestizo women with severe stage of endometriosis (stage IV) have higher frequencies of TNF*2, IL1B*2- and IL1RN*2-alleles, which may explain a possible correlation with disease severity rather than predisposition or risk.

Acknowledgements

We like to thank the Dirección de Investigación y Posgrado de la Universidad Iberoamericana Ciudad de México for their support in the realization of this project

Declarations

The Institutional Review Board and Ethics Committee of the INPer approved the study protocol (212250-06081). All procedures concerning this work comply with the ethical standards of “Ley General de Salud en Materia de Investigación para la Salud”, as well as the Declaration of Helsinki. All women that accepted to participate were informed about the objectives and outcomes of the study and gave their informed written consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Wang Y, Nicholes K, Shih IM. The origin and pathogenesis of endometriosis. Annu Rev Pathol. 2020;15:71–95.PubMedCrossRef Wang Y, Nicholes K, Shih IM. The origin and pathogenesis of endometriosis. Annu Rev Pathol. 2020;15:71–95.PubMedCrossRef
3.
Zurück zum Zitat Khan KN, Fujishita A, Hiraki K, Kitajima M, Nakashima M, Fushiki S, et al. Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol. 2018;17:125–33.PubMedPubMedCentralCrossRef Khan KN, Fujishita A, Hiraki K, Kitajima M, Nakashima M, Fushiki S, et al. Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol. 2018;17:125–33.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril. 2019;111:327–40.PubMedCrossRef Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril. 2019;111:327–40.PubMedCrossRef
5.
Zurück zum Zitat Iwabe T, Harada T. Inflammation and cytokines in endometriosis. In: Harada T, editor. Endometriosis: pathogenesis and treatment. Tokyo: Springer; 2014. p. 87–106. Iwabe T, Harada T. Inflammation and cytokines in endometriosis. In: Harada T, editor. Endometriosis: pathogenesis and treatment. Tokyo: Springer; 2014. p. 87–106.
6.
Zurück zum Zitat Nanda A, Keolo T, Banerjee P, Dutta M, Wangdi T, Sharma P, et al. Cytokines, angiogenesis, and extracellular matrix degradation are augmented by oxidative stress in endometriosis. Ann Lab Med. 2020;40:390–7.PubMedPubMedCentralCrossRef Nanda A, Keolo T, Banerjee P, Dutta M, Wangdi T, Sharma P, et al. Cytokines, angiogenesis, and extracellular matrix degradation are augmented by oxidative stress in endometriosis. Ann Lab Med. 2020;40:390–7.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Piccinato CA, Malvezzi H, Gibson DA, Saunders PTK. Contribution of intracrine oestrogens to the aetiology of endometriosis. J Mol Endocrinol. 2018;61:T253–70.PubMedCrossRef Piccinato CA, Malvezzi H, Gibson DA, Saunders PTK. Contribution of intracrine oestrogens to the aetiology of endometriosis. J Mol Endocrinol. 2018;61:T253–70.PubMedCrossRef
8.
Zurück zum Zitat Lin Y-H, Chen Y-H, Chang H-Y, Au H-K, Tzeng C-R, Huang Y-H. Chronic niche inflammation in endometriosis-associated infertility: current understanding and future therapeutic strategies. Int J Mol Sci. 2018;19:2385.PubMedCentralCrossRef Lin Y-H, Chen Y-H, Chang H-Y, Au H-K, Tzeng C-R, Huang Y-H. Chronic niche inflammation in endometriosis-associated infertility: current understanding and future therapeutic strategies. Int J Mol Sci. 2018;19:2385.PubMedCentralCrossRef
9.
Zurück zum Zitat Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis? Int J Mol Sci. 2019;20:66.CrossRef Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis? Int J Mol Sci. 2019;20:66.CrossRef
10.
Zurück zum Zitat Zhang T, de Carolis C, Man GCW, Wang CC. The link between immunity, autoimmunity and endometriosis: a literature update. Autoimmun Rev. 2018;17:945–55.PubMedCrossRef Zhang T, de Carolis C, Man GCW, Wang CC. The link between immunity, autoimmunity and endometriosis: a literature update. Autoimmun Rev. 2018;17:945–55.PubMedCrossRef
11.
Zurück zum Zitat Shigesi N, Kvaskoff M, Kirtley S, Feng Q, Fang H, Knight JC, et al. The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis Endometriosis and autoimmune diseases. Hum Reprod Update. 2019;25:486–503.PubMedPubMedCentralCrossRef Shigesi N, Kvaskoff M, Kirtley S, Feng Q, Fang H, Knight JC, et al. The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis Endometriosis and autoimmune diseases. Hum Reprod Update. 2019;25:486–503.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hsieh YY, Chang CC, Tsai FJ, Lin CC, Yeh LS, Tsai CH. Tumor necrosis factor-α −308 promoter and p53 codon 72 gene polymorphisms in women with leiomyomas. Fertil Steril. 2004;82(SUPPL. 3):1177–81.PubMedCrossRef Hsieh YY, Chang CC, Tsai FJ, Lin CC, Yeh LS, Tsai CH. Tumor necrosis factor-α −308 promoter and p53 codon 72 gene polymorphisms in women with leiomyomas. Fertil Steril. 2004;82(SUPPL. 3):1177–81.PubMedCrossRef
14.
Zurück zum Zitat Rosier F, Brisebarre A, Dupuis C, Baaklini S, Puthier D, Brun C, et al. Genetic predisposition to the mortality in septic shock patients: from GWAS to the identification of a regulatory variant modulating the activity of a CISH s. Int J Mol Sci. 2021;22:5852.PubMedPubMedCentralCrossRef Rosier F, Brisebarre A, Dupuis C, Baaklini S, Puthier D, Brun C, et al. Genetic predisposition to the mortality in septic shock patients: from GWAS to the identification of a regulatory variant modulating the activity of a CISH s. Int J Mol Sci. 2021;22:5852.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al. Genome-wide association study data reveal genetic susceptibility to chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma risk. Can Res. 2020;80:4004–13.CrossRef Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al. Genome-wide association study data reveal genetic susceptibility to chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma risk. Can Res. 2020;80:4004–13.CrossRef
16.
Zurück zum Zitat Meenakshi P, Sumanlatha P. Genetic susceptibility of inflammatory genes in household contacts of tuberculosis patients with diabetes mellitus. J Bacteriol Mycol. 2020;7:1144. Meenakshi P, Sumanlatha P. Genetic susceptibility of inflammatory genes in household contacts of tuberculosis patients with diabetes mellitus. J Bacteriol Mycol. 2020;7:1144.
17.
Zurück zum Zitat Rahmioglu N, Montgomery GW, Zondervan KT. Genetics of endometriosis. Womens Health. 2015;11:577–86. Rahmioglu N, Montgomery GW, Zondervan KT. Genetics of endometriosis. Womens Health. 2015;11:577–86.
18.
Zurück zum Zitat Vassilopoulou L, Matalliotakis M, Zervou IM, Matalliotaki C, Krithinakis K, Matalliotakis I, et al. Defining the genetic profile of endometriosis. Exp Ther Med. 2019;17:3267–81.PubMedPubMedCentral Vassilopoulou L, Matalliotakis M, Zervou IM, Matalliotaki C, Krithinakis K, Matalliotakis I, et al. Defining the genetic profile of endometriosis. Exp Ther Med. 2019;17:3267–81.PubMedPubMedCentral
19.
Zurück zum Zitat Kobayashi H, Imanaka S, Nakamura H, Tsuji A. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review). Mol Med Rep. 2014;9:1483–505.PubMedCrossRef Kobayashi H, Imanaka S, Nakamura H, Tsuji A. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review). Mol Med Rep. 2014;9:1483–505.PubMedCrossRef
20.
Zurück zum Zitat Chanock S. Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis Mark. 2001;17:89–98.CrossRef Chanock S. Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis Mark. 2001;17:89–98.CrossRef
21.
Zurück zum Zitat Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res. 2011;39 Database issue:D913–9. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res. 2011;39 Database issue:D913–9.
23.
Zurück zum Zitat Bayley JP, Ottenhoff THM, Verweij CL. Is there a future for TNF promoter polymorphisms? Genes Immun. 2004;5:315–29.PubMedCrossRef Bayley JP, Ottenhoff THM, Verweij CL. Is there a future for TNF promoter polymorphisms? Genes Immun. 2004;5:315–29.PubMedCrossRef
24.
Zurück zum Zitat Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA. 1997;94:3195–9.PubMedPubMedCentralCrossRef Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA. 1997;94:3195–9.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, et al. Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA. 1999;282:561–8.PubMedCrossRef Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, et al. Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA. 1999;282:561–8.PubMedCrossRef
26.
Zurück zum Zitat Banday MZ, Mir AH, Sameer AS, Chowdri NA, Haq E. Interleukin-1β (IL-1β) -31C/T and -511T/C promoter single nucleotide polymorphism in colorectal cancer in ethnic Kashmiri population—a case control study. Meta Gene. 2017;12:94–103.CrossRef Banday MZ, Mir AH, Sameer AS, Chowdri NA, Haq E. Interleukin-1β (IL-1β) -31C/T and -511T/C promoter single nucleotide polymorphism in colorectal cancer in ethnic Kashmiri population—a case control study. Meta Gene. 2017;12:94–103.CrossRef
27.
Zurück zum Zitat Xu J, Yin Z, Cao S, Gao W, Liu L, Yin Y, et al. Systematic review and meta-analysis on the association between IL-1B polymorphisms and cancer risk. PLoS ONE. 2013;8:1–11. Xu J, Yin Z, Cao S, Gao W, Liu L, Yin Y, et al. Systematic review and meta-analysis on the association between IL-1B polymorphisms and cancer risk. PLoS ONE. 2013;8:1–11.
28.
Zurück zum Zitat Pani P, Tsilioni I, McGlennen R, Brown CA, Hawley CE, Theoharides TC, et al. IL-1B(3954) polymorphism and red complex bacteria increase IL-1β (GCF) levels in periodontitis. J Periodontal Res. 2021;56:501–11.PubMedPubMedCentralCrossRef Pani P, Tsilioni I, McGlennen R, Brown CA, Hawley CE, Theoharides TC, et al. IL-1B(3954) polymorphism and red complex bacteria increase IL-1β (GCF) levels in periodontitis. J Periodontal Res. 2021;56:501–11.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Pociot F, Mølvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992;22:396–402.PubMedCrossRef Pociot F, Mølvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992;22:396–402.PubMedCrossRef
30.
Zurück zum Zitat Fu P, Xie S, Zhang X. Investigation of the IL-1β +3954 C>T polymorphism and the risk of sepsis: a case–control study. Medicine. 2020;99: e21022.PubMedPubMedCentralCrossRef Fu P, Xie S, Zhang X. Investigation of the IL-1β +3954 C>T polymorphism and the risk of sepsis: a case–control study. Medicine. 2020;99: e21022.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Kim HJ, Kim EH, Park AK, Shin Y, Kang J, Lim J, et al. Detection of association between periodontitis and polymorphisms of IL-1β + 3954 and TNF-α-863 in the Korean population after controlling for confounding risk factors. J Periodontal Res. 2020;55:905–17.PubMedPubMedCentralCrossRef Kim HJ, Kim EH, Park AK, Shin Y, Kang J, Lim J, et al. Detection of association between periodontitis and polymorphisms of IL-1β + 3954 and TNF-α-863 in the Korean population after controlling for confounding risk factors. J Periodontal Res. 2020;55:905–17.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Vamvakopoulos JE, Taylor CJ, Morris-Stiff GJ, Green C, Metcalfe S. The interleukin-1 receptor antagonist gene: a single-copy variant of the intron 2 variable number tandem repeat (VNTR) polymorphism. Eur J Immunogenet. 2002;29:337–40.PubMedCrossRef Vamvakopoulos JE, Taylor CJ, Morris-Stiff GJ, Green C, Metcalfe S. The interleukin-1 receptor antagonist gene: a single-copy variant of the intron 2 variable number tandem repeat (VNTR) polymorphism. Eur J Immunogenet. 2002;29:337–40.PubMedCrossRef
33.
Zurück zum Zitat Tempfer CB, Simoni M, Destenaves B, Fauser BCJM. Functional genetic polymorphisms and female reproductive disorders: part II—endometriosis. Hum Reprod Update. 2009;15:97–118.PubMedCrossRef Tempfer CB, Simoni M, Destenaves B, Fauser BCJM. Functional genetic polymorphisms and female reproductive disorders: part II—endometriosis. Hum Reprod Update. 2009;15:97–118.PubMedCrossRef
34.
Zurück zum Zitat Méar L, Herr M, Fauconnier A, Pineau C, Vialard F. Polymorphisms and endometriosis: a systematic review and meta-analyses. Hum Reprod Update. 2020;26:73–103.PubMedCrossRef Méar L, Herr M, Fauconnier A, Pineau C, Vialard F. Polymorphisms and endometriosis: a systematic review and meta-analyses. Hum Reprod Update. 2020;26:73–103.PubMedCrossRef
35.
Zurück zum Zitat Canis M, Donnez JG, Guzick DS, Halme JK, Rock JA, Schenken RS, et al. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67:817–21.CrossRef Canis M, Donnez JG, Guzick DS, Halme JK, Rock JA, Schenken RS, et al. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67:817–21.CrossRef
36.
Zurück zum Zitat Wilson AG, di Giovine FS, Blakemore AIF, Duff GW. Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product. Hum Mol Genet. 1992;1:353.PubMedCrossRef Wilson AG, di Giovine FS, Blakemore AIF, Duff GW. Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product. Hum Mol Genet. 1992;1:353.PubMedCrossRef
37.
Zurück zum Zitat Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24:72–7.PubMedCrossRef Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24:72–7.PubMedCrossRef
38.
Zurück zum Zitat Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN, Steinkasserer A, et al. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet. 1993;91:403–4.PubMedCrossRef Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN, Steinkasserer A, et al. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet. 1993;91:403–4.PubMedCrossRef
39.
Zurück zum Zitat Abutorabi R, Baradaran A, Sadat Mostafavi F, Zarrin Y, Mardanian F. Evaluation of tumor necrosis factor alpha polymorphism frequencies in endometriosis. Int J Fertil Steril. 2015;9:329–37.PubMedPubMedCentral Abutorabi R, Baradaran A, Sadat Mostafavi F, Zarrin Y, Mardanian F. Evaluation of tumor necrosis factor alpha polymorphism frequencies in endometriosis. Int J Fertil Steril. 2015;9:329–37.PubMedPubMedCentral
40.
Zurück zum Zitat Lyu J, Yang H, Lang J, Tan X. Tumor necrosis factor gene polymorphisms and endometriosis in Asians: a systematic review and meta-analysis. Chin Med J. 2014;127:1761–7.PubMed Lyu J, Yang H, Lang J, Tan X. Tumor necrosis factor gene polymorphisms and endometriosis in Asians: a systematic review and meta-analysis. Chin Med J. 2014;127:1761–7.PubMed
41.
Zurück zum Zitat Li J, Chen Y, Wei S, Wu H, Liu C, Huang Q, et al. Tumor necrosis factor and interleukin-6 gene polymorphisms and endometriosis risk in Asians: a systematic review and meta-analysis. Ann Hum Genet. 2014;78:104–16.PubMedCrossRef Li J, Chen Y, Wei S, Wu H, Liu C, Huang Q, et al. Tumor necrosis factor and interleukin-6 gene polymorphisms and endometriosis risk in Asians: a systematic review and meta-analysis. Ann Hum Genet. 2014;78:104–16.PubMedCrossRef
42.
Zurück zum Zitat Wieser F, Fabjani G, Tempfer C, Schneeberger C, Zeillinger R, Huber JC, et al. Tumor necrosis factor-alpha promotor polymorphisms and endometriosis. J Soc Gynecol Investig. 2002;9:313–8.PubMedCrossRef Wieser F, Fabjani G, Tempfer C, Schneeberger C, Zeillinger R, Huber JC, et al. Tumor necrosis factor-alpha promotor polymorphisms and endometriosis. J Soc Gynecol Investig. 2002;9:313–8.PubMedCrossRef
43.
Zurück zum Zitat Hsieh Y-Y, Chang C-C, Tsai F-J, Hsu Y, Tsai H-D, Tsai C-H. Polymorphisms for interleukin-4 (IL-4) -590 promoter, IL-4 intron3, and tumor necrosis factor alpha −308 promoter: non-association with endometriosis. J Clin Lab Anal. 2002;16:121–6.PubMedPubMedCentralCrossRef Hsieh Y-Y, Chang C-C, Tsai F-J, Hsu Y, Tsai H-D, Tsai C-H. Polymorphisms for interleukin-4 (IL-4) -590 promoter, IL-4 intron3, and tumor necrosis factor alpha −308 promoter: non-association with endometriosis. J Clin Lab Anal. 2002;16:121–6.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhao ZZ, Nyholt DR, Le L, Thomas S, Engwerda C, Randall L, et al. Genetic variation in tumour necrosis factor and lymphotoxin is not associated with endometriosis in an Australian sample. Hum Reprod. 2007;22:2389–97.PubMedCrossRef Zhao ZZ, Nyholt DR, Le L, Thomas S, Engwerda C, Randall L, et al. Genetic variation in tumour necrosis factor and lymphotoxin is not associated with endometriosis in an Australian sample. Hum Reprod. 2007;22:2389–97.PubMedCrossRef
45.
Zurück zum Zitat Lee MK, Park AJ, Kim DH. Tumor necrosis factor-alpha and interleukin-6 promoter gene polymorphisms are not associated with an increased risk of endometriosis. Fertil Steril. 2002;77:1304–5.PubMedCrossRef Lee MK, Park AJ, Kim DH. Tumor necrosis factor-alpha and interleukin-6 promoter gene polymorphisms are not associated with an increased risk of endometriosis. Fertil Steril. 2002;77:1304–5.PubMedCrossRef
46.
Zurück zum Zitat Babaabasi B, Ahani A, Sadeghi F, Bashizade-Fakhar H, Khorram Khorshid HR. The association between TNF-alpha gene polymorphisms and endometriosis in an Iranian population. Int J Fertil Steril. 2019;13:6–11.PubMedPubMedCentral Babaabasi B, Ahani A, Sadeghi F, Bashizade-Fakhar H, Khorram Khorshid HR. The association between TNF-alpha gene polymorphisms and endometriosis in an Iranian population. Int J Fertil Steril. 2019;13:6–11.PubMedPubMedCentral
47.
Zurück zum Zitat Garza-González E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, et al. Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer. 2005;114:237–41.PubMedCrossRef Garza-González E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, et al. Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer. 2005;114:237–41.PubMedCrossRef
48.
Zurück zum Zitat Acosta O, Solano L, Ore D, Salazar-Granara A, Sandoval J, Fujita R. Polimorfismo −308G/A en la región promotora del gen factor de necrosis tumoral alfa (TNFA) en diferentes subpoblaciones peruanas. Revista Horizontez Médicos. 2010;10:47–54. Acosta O, Solano L, Ore D, Salazar-Granara A, Sandoval J, Fujita R. Polimorfismo −308G/A en la región promotora del gen factor de necrosis tumoral alfa (TNFA) en diferentes subpoblaciones peruanas. Revista Horizontez Médicos. 2010;10:47–54.
49.
Zurück zum Zitat Hsieh YY, Chang CC, Tsai FJ, Wu JY, Shi YR, Tsai HD, et al. Polymorphisms for interleukin-1 beta (IL-1 beta)-511 promoter, IL-1 beta exon 5, and IL-1 receptor antagonist: nonassociation with endometriosis. J Assist Reprod Genet. 2001;18:506–11.PubMedPubMedCentralCrossRef Hsieh YY, Chang CC, Tsai FJ, Wu JY, Shi YR, Tsai HD, et al. Polymorphisms for interleukin-1 beta (IL-1 beta)-511 promoter, IL-1 beta exon 5, and IL-1 receptor antagonist: nonassociation with endometriosis. J Assist Reprod Genet. 2001;18:506–11.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Wieser F, Hefler L, Tempfer C, Vlach U, Schneeberger C, Huber J, et al. Polymorphism of the interleukin-1beta gene and endometriosis. J Soc Gynecol Investig. 2003;10:172–5.PubMedCrossRef Wieser F, Hefler L, Tempfer C, Vlach U, Schneeberger C, Huber J, et al. Polymorphism of the interleukin-1beta gene and endometriosis. J Soc Gynecol Investig. 2003;10:172–5.PubMedCrossRef
51.
Zurück zum Zitat Attar R, Agachan B, Kucukhuseyin O, Toptas B, Attar E, Isbir T. Association of interleukin 1beta gene (+3953) polymorphism and severity of endometriosis in Turkish women. Mol Biol Rep. 2010;37:369–74.PubMedCrossRef Attar R, Agachan B, Kucukhuseyin O, Toptas B, Attar E, Isbir T. Association of interleukin 1beta gene (+3953) polymorphism and severity of endometriosis in Turkish women. Mol Biol Rep. 2010;37:369–74.PubMedCrossRef
52.
Zurück zum Zitat Jie Wen, Lin Deng. [Research on relationship between gene polymorphisms of interleukin-1 family and endometriosis]—PubMed. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2006;:653–7. Jie Wen, Lin Deng. [Research on relationship between gene polymorphisms of interleukin-1 family and endometriosis]—PubMed. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2006;:653–7.
53.
Zurück zum Zitat Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.PubMedCrossRef Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.PubMedCrossRef
54.
Zurück zum Zitat Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1 I genes. Eur J Immunol. 1998;28:2598–602.PubMedCrossRef Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1 I genes. Eur J Immunol. 1998;28:2598–602.PubMedCrossRef
55.
Zurück zum Zitat Chun S, Kim H, Ku S-Y, Suh CS, Kim SH, Kim JG. The association between endometriosis and polymorphisms in the interleukin-1 family genes in Korean women. Am J Reprod Immunol. 2012;68:154–63.PubMedCrossRef Chun S, Kim H, Ku S-Y, Suh CS, Kim SH, Kim JG. The association between endometriosis and polymorphisms in the interleukin-1 family genes in Korean women. Am J Reprod Immunol. 2012;68:154–63.PubMedCrossRef
56.
Zurück zum Zitat Wang P, Xia HHX, Zhang JY, Dai LP, Xu XQ, Wang KJ. Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int J Cancer. 2007;120:552–62.PubMedCrossRef Wang P, Xia HHX, Zhang JY, Dai LP, Xu XQ, Wang KJ. Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int J Cancer. 2007;120:552–62.PubMedCrossRef
57.
Zurück zum Zitat Danis VA, Millington M, Hyland VJ, Grennan D. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995;99:303–10.PubMedPubMedCentralCrossRef Danis VA, Millington M, Hyland VJ, Grennan D. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995;99:303–10.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Bioque G, Crusius JBA, Koutroubakis I, Bouma G, Kostense PJ, Meuwissen SGM, et al. Allelic polymorphism in IL-1 beta and IL-1 receptor antagonist (IL-1Ra) genes in inflammatory bowel disease. Clin Exp Immunol. 1995;102:379.PubMedPubMedCentralCrossRef Bioque G, Crusius JBA, Koutroubakis I, Bouma G, Kostense PJ, Meuwissen SGM, et al. Allelic polymorphism in IL-1 beta and IL-1 receptor antagonist (IL-1Ra) genes in inflammatory bowel disease. Clin Exp Immunol. 1995;102:379.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Tountas NA, Casini-Raggi V, Yang H, Di Giovine FS, Vecchi M, Kam L, et al. Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology. 1999;117:806–13.PubMedCrossRef Tountas NA, Casini-Raggi V, Yang H, Di Giovine FS, Vecchi M, Kam L, et al. Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology. 1999;117:806–13.PubMedCrossRef
60.
Zurück zum Zitat Mwantembe O, Gaillard MC, Barkhuizen M, Pillay V, Berry SD, Dewar JB, et al. Ethnic differences in allelic associations of the interleukin-1 gene cluster in South African patients with inflammatory bowel disease (IBD) and in control individuals. Immunogenetics. 2001;52:249–54.PubMedCrossRef Mwantembe O, Gaillard MC, Barkhuizen M, Pillay V, Berry SD, Dewar JB, et al. Ethnic differences in allelic associations of the interleukin-1 gene cluster in South African patients with inflammatory bowel disease (IBD) and in control individuals. Immunogenetics. 2001;52:249–54.PubMedCrossRef
61.
Zurück zum Zitat Santtila S, Savinainen K, Hurme M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol. 1998;47:195–8.PubMedCrossRef Santtila S, Savinainen K, Hurme M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol. 1998;47:195–8.PubMedCrossRef
62.
Zurück zum Zitat Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;13:323–40.PubMedCrossRef Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;13:323–40.PubMedCrossRef
63.
Zurück zum Zitat Wieser F, Tempfer C, Schneeberger C, van Trotsenburg M, Huber J, Wenzl R. Interleukin-1 receptor antagonist polymorphism in women with peritoneal adhesions. BJOG Int J Obstet Gynaecol. 2002;109:1298–300.CrossRef Wieser F, Tempfer C, Schneeberger C, van Trotsenburg M, Huber J, Wenzl R. Interleukin-1 receptor antagonist polymorphism in women with peritoneal adhesions. BJOG Int J Obstet Gynaecol. 2002;109:1298–300.CrossRef
64.
Zurück zum Zitat Thakur M, Rambhatla A, Qadri F, Chatzicharalampous C, Awonuga M, Saed G, et al. Is there a genetic predisposition to postoperative adhesion development? Reprod Sci. 2021;28:2076–86.PubMedCrossRef Thakur M, Rambhatla A, Qadri F, Chatzicharalampous C, Awonuga M, Saed G, et al. Is there a genetic predisposition to postoperative adhesion development? Reprod Sci. 2021;28:2076–86.PubMedCrossRef
65.
Zurück zum Zitat Sapkota Y, Attia J, Gordon SD, Henders AK, Holliday EG, Rahmioglu N, et al. Genetic burden associated with varying degrees of disease severity in endometriosis. Mol Hum Reprod. 2015;21:594–602.PubMedPubMedCentralCrossRef Sapkota Y, Attia J, Gordon SD, Henders AK, Holliday EG, Rahmioglu N, et al. Genetic burden associated with varying degrees of disease severity in endometriosis. Mol Hum Reprod. 2015;21:594–602.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20:702–16.PubMedPubMedCentralCrossRef Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20:702–16.PubMedPubMedCentralCrossRef
67.
68.
Zurück zum Zitat Joseph S, Mahale SD. Endometriosis knowledgebase: a gene-based resource on endometriosis. Database. 2019;2019:62.CrossRef Joseph S, Mahale SD. Endometriosis knowledgebase: a gene-based resource on endometriosis. Database. 2019;2019:62.CrossRef
69.
Zurück zum Zitat Deiana D, Gessa S, Anardu M, Daniilidis A, Nappi L, D’Alterio MN, et al. Genetics of endometriosis: a comprehensive review. Gynecol Endocrinol. 2019;35:553–8.PubMedCrossRef Deiana D, Gessa S, Anardu M, Daniilidis A, Nappi L, D’Alterio MN, et al. Genetics of endometriosis: a comprehensive review. Gynecol Endocrinol. 2019;35:553–8.PubMedCrossRef
Metadaten
Titel
Polymorphisms of TNF-alpha (− 308), IL-1beta (+ 3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: a case control study
verfasst von
Jennifer Mier-Cabrera
Oliver Cruz-Orozco
Julio de la Jara-Díaz
Oscar Galicia-Castillo
Mario Buenrostro-Jáuregui
Alicia Parra-Carriedo
César Hernández-Guerrero
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Women's Health / Ausgabe 1/2022
Elektronische ISSN: 1472-6874
DOI
https://doi.org/10.1186/s12905-022-01941-5

Weitere Artikel der Ausgabe 1/2022

BMC Women's Health 1/2022 Zur Ausgabe

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.