Skip to main content
Erschienen in: Annals of Nuclear Medicine 9/2010

01.11.2010 | Original Article

Positron emission tomography inter-scanner differences in dopamine D2 receptor binding measured with [11C]FLB457

verfasst von: Fumitoshi Kodaka, Hiroshi Ito, Miho Shidahara, Harumasa Takano, Hidehiko Takahashi, Ryosuke Arakawa, Kazuhiko Nakayama, Tetsuya Suhara

Erschienen in: Annals of Nuclear Medicine | Ausgabe 9/2010

Einloggen, um Zugang zu erhalten

Abstract

Objective

It is well known that the positron emission tomography (PET) system is subject to inter-scanner differences of regional radioactivity distribution. In the present study, the effect of inter-scanner difference of regional radioactivity on estimated binding potential (BPND) of [11C]FLB457 using the simplified reference tissue model (SRTM) was investigated.

Methods

Each of the 11 subjects was given two PET scans using [11C]FLB457, one each with both SET-3000 GCT/X (Shimadzu) and with ECAT EXACT HR+ (Siemens/CTI). In order to assess regional differences between the two scanners, estimated BPND values in six volumes of interest (VOIs) by SRTM method were compared in both individual PET space and anatomical template space after anatomical normalization. Statistical voxel-by-voxel paired t test of BPND images between SET-3000 GCT/X and ECAT EXACT HR+ was also performed.

Results

Shapes of time–activity curves of the two PET scanners were slightly different in each VOI, with estimated BPND values from ECAT EXACT HR+ appearing greater in the cerebral cortical regions and thalamus than that of SET-3000 GCT/X in both individual PET space and anatomical template space after anatomical normalization. Statistical voxel-by-voxel analysis showed similar tendency to BPND value estimation, with greater BPND values from ECAT EXACT HR+ than from SET-3000 GCT/X.

Conclusions

We demonstrated the inter-scanner differences in dopamine D2 receptor binding measured with [11C]FLB457. In particular, statistically significant differences of BPND in certain regions were observed between two PET scanners, despite the subject groups being the same. Our results suggest that we reconsider the effect of the scanner model on the measurement of receptor binding.
Literatur
1.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMed
2.
Zurück zum Zitat Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. 1998;18:941–50.CrossRefPubMed Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. 1998;18:941–50.CrossRefPubMed
3.
Zurück zum Zitat Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.CrossRefPubMed Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.CrossRefPubMed
4.
Zurück zum Zitat Blomqvist G, Pauli S, Farde L, Eriksson L, Persson A, Halldin C. Maps of receptor binding parameters in the human brain––a kinetic analysis of PET measurements. Eur J Nucl Med. 1990;16:257–65.CrossRefPubMed Blomqvist G, Pauli S, Farde L, Eriksson L, Persson A, Halldin C. Maps of receptor binding parameters in the human brain––a kinetic analysis of PET measurements. Eur J Nucl Med. 1990;16:257–65.CrossRefPubMed
5.
Zurück zum Zitat Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009;46:154–9.CrossRefPubMed Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009;46:154–9.CrossRefPubMed
6.
Zurück zum Zitat van Velden FH, Kloet RW, van Berckel BN, Buijs FL, Luurtsema G, Lammertsma AA, et al. HRRT versus HR+ human brain PET studies: an Interscanner Test-Retest Study. J Nucl Med. 2009;50:693–702.CrossRefPubMed van Velden FH, Kloet RW, van Berckel BN, Buijs FL, Luurtsema G, Lammertsma AA, et al. HRRT versus HR+ human brain PET studies: an Interscanner Test-Retest Study. J Nucl Med. 2009;50:693–702.CrossRefPubMed
7.
Zurück zum Zitat Halldin C, Farde L, Hogberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med. 1995;36:1275–81.PubMed Halldin C, Farde L, Hogberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med. 1995;36:1275–81.PubMed
8.
Zurück zum Zitat Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, et al. A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl). 1997;133:396–404.CrossRef Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, et al. A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology (Berl). 1997;133:396–404.CrossRef
9.
Zurück zum Zitat Suhara T, Sudo Y, Okauchi T, Maeda J, Kawabe K, Suzuki K, et al. Extrastriatal dopamine D2 receptor density and affinity in the human brain measured by 3D PET. Int J Neuropsychopharmacol. 1999;2:73–82.CrossRefPubMed Suhara T, Sudo Y, Okauchi T, Maeda J, Kawabe K, Suzuki K, et al. Extrastriatal dopamine D2 receptor density and affinity in the human brain measured by 3D PET. Int J Neuropsychopharmacol. 1999;2:73–82.CrossRefPubMed
10.
Zurück zum Zitat Delforge J, Bottlaender M, Loc’h C, Guenther I, Fuseau C, Bendriem B, et al. Quantitation of extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multi-injection approach. J Cereb Blood Flow Metab. 1999;19:533–46.CrossRefPubMed Delforge J, Bottlaender M, Loc’h C, Guenther I, Fuseau C, Bendriem B, et al. Quantitation of extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multi-injection approach. J Cereb Blood Flow Metab. 1999;19:533–46.CrossRefPubMed
11.
Zurück zum Zitat Ito H, Sudo Y, Suhara T, Okubo Y, Halldin C, Farde L. Error analysis for quantification of [(11)C]FLB 457 binding to extrastriatal D(2) dopamine receptors in the human brain. Neuroimage. 2001;13:531–9.CrossRefPubMed Ito H, Sudo Y, Suhara T, Okubo Y, Halldin C, Farde L. Error analysis for quantification of [(11)C]FLB 457 binding to extrastriatal D(2) dopamine receptors in the human brain. Neuroimage. 2001;13:531–9.CrossRefPubMed
12.
Zurück zum Zitat Olsson H, Halldin C, Swahn CG, Farde L. Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cereb Blood Flow Metab. 1999;19:1164–73.CrossRefPubMed Olsson H, Halldin C, Swahn CG, Farde L. Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cereb Blood Flow Metab. 1999;19:1164–73.CrossRefPubMed
13.
Zurück zum Zitat Matsumoto K, Kitamura K, Mizuta T, Tanaka K, Yamamoto S, Sakamoto S, et al. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high-sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard. J Nucl Med. 2006;47:83–90.PubMed Matsumoto K, Kitamura K, Mizuta T, Tanaka K, Yamamoto S, Sakamoto S, et al. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high-sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard. J Nucl Med. 2006;47:83–90.PubMed
14.
Zurück zum Zitat Ibaraki M, Sato K, Mizuta T, Kitamura K, Miura S, Sugawara S, et al. Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET. Ann Nucl Med. 2009;23:627–38.CrossRefPubMed Ibaraki M, Sato K, Mizuta T, Kitamura K, Miura S, Sugawara S, et al. Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET. Ann Nucl Med. 2009;23:627–38.CrossRefPubMed
15.
Zurück zum Zitat Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.PubMed Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.PubMed
16.
Zurück zum Zitat Watson C, Newport D, Casey M. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Kluwer; 1996. p. 255–68. Watson C, Newport D, Casey M. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Kluwer; 1996. p. 255–68.
17.
Zurück zum Zitat Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997;6:279–87.CrossRefPubMed Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997;6:279–87.CrossRefPubMed
18.
Zurück zum Zitat Montandon ML, Slosman DO, Zaidi H. Assessment of the impact of model-based scatter correction on [18F]-FDG 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage. 2003;20:1848–56.CrossRefPubMed Montandon ML, Slosman DO, Zaidi H. Assessment of the impact of model-based scatter correction on [18F]-FDG 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage. 2003;20:1848–56.CrossRefPubMed
19.
Zurück zum Zitat Bailey DL, Meikle SR. A convolution–subtraction scatter correction method for 3D PET. Physiol Med Biol. 1994;39:411–24.CrossRef Bailey DL, Meikle SR. A convolution–subtraction scatter correction method for 3D PET. Physiol Med Biol. 1994;39:411–24.CrossRef
20.
Zurück zum Zitat Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage. 2009;45:1107–16.CrossRefPubMed Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage. 2009;45:1107–16.CrossRefPubMed
Metadaten
Titel
Positron emission tomography inter-scanner differences in dopamine D2 receptor binding measured with [11C]FLB457
verfasst von
Fumitoshi Kodaka
Hiroshi Ito
Miho Shidahara
Harumasa Takano
Hidehiko Takahashi
Ryosuke Arakawa
Kazuhiko Nakayama
Tetsuya Suhara
Publikationsdatum
01.11.2010
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 9/2010
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-010-0407-5

Weitere Artikel der Ausgabe 9/2010

Annals of Nuclear Medicine 9/2010 Zur Ausgabe